
J Arti Inte & Cloud Comp, 2023 Volume 2(4): 1-8

Review Article Open Access

Exploration of Java-Based Big Data Frameworks: Architecture,
Challenges, and Opportunities
Aniruddha Arjun Singh Singh1, Vaibhav Maniar2, Rami Reddy Kothamaram3, Dinesh Rajendran4*, Venkata Deepak Namburi5 and Vetrivelan
Tamilmani6

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Dinesh Rajendran, Coimbatore Institute of Technology, MSC. Software Engineering,USA.

Received: November 15, 2023; Accepted: November 21, 2023; Published: November 30, 2023

Keywords: Big Data Frameworks, Java, Big Data, Hadoop, Spark,
Flink, Distributed Computing, Big Data Infrastructure (BDI),
Data Analytics

Introduction
Big data has grown at an exponential rate due to the proliferation
of data generated by numerous digital sources and the rapid
advancement of digital technologies in the modern world. Data
has grown in significance due to its extensive use. Data is defined
by the McKinsey Global Institute as datasets that are too big for
traditional database management solutions to handle [1]. The term
"Big Data" was unanimously defined by researchers as "a term that
denotes large volumes of complex, variable, and high-velocity data
that necessitate advanced technologies and techniques to facilitate
the capture, storage, distribution, management, and analysis of the
information." [2]. Most of the major computer companies have
started their Big Data projects in the last few years. This includes
Amazon, Google, Facebook, EMC, Microsoft, Oracle, and IBM.
With 30 properties connected to Big Data, IBM has invested 16
billion USD [3]. Companies like SAS Institute, IBM, Gartner, and
McKinsey & Company have all said that Big Data the next big
thing in terms of quality, productivity, innovation, and competition.

Business applications have relied on Java for years due to its object-
oriented architecture, robust ecosystem, vast standard libraries, and
cross-platform interoperability [4]. Java has evolved to support
scalable frameworks like as Apache Hadoop, Apache Spark, and
Apache Flink, which have become increasingly important in the
big data space. These frameworks are either built on top of or
compatible with Java Virtual Machine (JVM) [5]. The effective
handling of big data sets is made possible by its scalable nature,
memory management, and concurrent capabilities. The system-
level optimizations and runtime enhancements ensure its excellent
performance. Spark and Flink provide in-memory computation
and real-time stream processing, whereas Hadoop's HDFS and
MapReduce facilitate dependable storage and batch processing.
Combined with mature libraries, robust community support,
and ongoing performance gains, Java continues to serve as an
important foundation for developing scalable, high-performance
solutions in the current big data ecosystem.

This survey explores the architecture, challenges and opportunities
of Java-based big data frameworks in the future. It gives a full
picture of the way these frameworks work, their shortcomings in

ISSN: 2754-6659

1ADP, Sr. Implementation Project Manager, USA

2Oklahoma City University, MBA / Product Management, USA

3California University of management and science, MS in Computer Information systems, USA

4Coimbatore Institute of Technology, MSC. Software Engineering, USA

5University of Central Missouri, Department of Computer Science, USA

6Principal Service Architect, SAP America, USA

ABSTRACT
Java has proven to be an indispensable part of the big data infrastructure with its strength, scalability and large ecosystem. The huge amount of information
associated with big data needs advanced technologies and architecture to be captured, stored, and analyzed. Traditional computer models have a hard
time handling such huge amounts of data, especially when it comes to speed, scalability, and management. Because of its maturity and independence from
specific platforms, Java is well-suited for building distributed data processing systems with exceptional performance. Java is a popular language for big
data analytics, and this article delves into its history, current frameworks, and optimizations at the JVM level that promote efficient use of resources and
horizontal scalability. In addition to addressing data accuracy, scalability, and security as major issues with big data frameworks, the study also discusses
potential solutions, such as incorporating machine learning, cloud-native frameworks, and containerization systems like Kubernetes and Docker. The
results indicate that Java cannot be replaced in handling complicated processing applications and big data, which strengthens its use as a core technology
in fueling innovations in data-oriented sectors.

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 2-8

feasible applications and possible research areas to create more
robust, intelligent and resource-efficient solutions. This study
delves into the history and definition of big data, its defining
features, and the shortcomings of existing data processing tools,
arguing for the need for more advanced approaches to archiving
and analyzing massive datasets. Various applications of big data
analytics are showcased, along with the Big Data Value Chain
that encompasses data collection and analysis. It concludes by
outlining the current problems with big data analytics and offering
solutions to the unanswered questions in the field.

Organisation of the Paper
The structure of the paper is as follows: Section II is the review of
Big data frameworks, Section III, Java-based big data framework,
Section IV, Architectural aspects of Java-based with challenges,
future scope, Section V, literature review, and finally, Section VI,
conclusion with key fieldwork.

Big Data Frameworks
Big data frameworks are crucial pieces of software for managing
and analysing large datasets across multiple nodes. Their capability
to enable parallelism, scalability, and fault tolerance lays the
groundwork for overcoming the restrictions of processing on
single-core CPUs. A strong ecosystem including components like
HDFS, MapReduce, Hive, and HBase has been introduced by
Apache Hadoop, one of the most popular frameworks, allowing
for dependable processing and management of large-scale data.
Although Hadoop is capable of processing data on disk, it isn't
always ideal for real-time analytics because of the latency that could
occur [6]. As a more sophisticated and adaptable framework, Apache
Spark rose to the occasion, providing in-memory computation,
increased processing rates, and compatibility with a wide range
of workloads, such as streaming, graph analytics, ML, batch
processing, and more. By bringing analytics into the mainstream
and streamlining their implementation, these frameworks have
revolutionized the way businesses use big data in fields as diverse
as healthcare, banking, manufacturing, and social media.

Characteristics of Big Data (Volume, Velocity, Variety,
Veracity, Value)
Big Data is important because it enables organizations to efficiently
gather, store, handle, and modify large amounts of data to gain
valuable insights. Big Data generators also need to create scalable
data of many kinds at a controlled rate of generation (Velocity)
while preserving the raw data's critical properties. It is possible
to conduct the desired procedure, activity, or prediction analysis/
hypothesis using the obtained data [7]. Big Data, sometimes
called the 5V's (Volume, Variety, Velocity and Veracity, Value),
is characterized by these five qualities, as seen in Figure 1 below:

Figure 1: Big Data Characteristics

•	 Volume: The term describes the amount of information
collected by a business. Important insights can only be derived
from further processing of this data. Businesses nowadays
can easily accumulate terabytes, if not petabytes, of data, and
this data comes in many shapes and sizes.

•	 Velocity: Processing time for Big Data is what this term
alludes to. Fast processing maximizes efficiency, especially
for some very vital jobs that require instant responses.
Businesses must evaluate and utilize Big Data flows as they
arrive if they are to maximize the information's potential
Especially for jobs that demand instantaneous answers, like
fraud detection, this is vital.

•	 Variety: This term encompasses the various manifestations
of Big Data. The format of the data could be structured or
unstructured. Big data encompasses all forms of information,
including structured and unstructured data [8]. Text, music,
video, clickstreams, log files, and a whole lot more fall under
this category. Hundreds of live video feeds from surveillance
cameras are being monitored in order to zero in on certain
areas of interest, but new issues and scenarios emerge when
different kinds of data are merged.

•	 Value: This crucial characteristic is defined by the value
that the collected data adds to the planned process, activity,
or predictive analysis/hypothesis. An item's worth is based
on whether it is random, regular, stochastic, or probabilistic.

The veracity of a leader is measured by the degree to which they
rely on information for decision-making. The key to the company's
success is discovering the correct correlations in Big Data. An
important hurdle in establishing trust in Big Data is the fact that
one-third of business leaders doubt the data used for making
decisions. This problem becomes even more acute as the variety
and quantity of sources increase.

General Architecture of Big Data Processing Frameworks
Distributed computing systems can store, manage, and analyze
large, heterogeneous data sets more efficiently with the help
of big data processing frameworks. Despite differences among
frameworks, their architectures generally share three core layers:
•	 Data Storage Layer: Structured, semi-structured, and

unstructured data are all entrusted to this layer for their eternal
preservation. To provide fault tolerance, scalability, and quick
data retrieval, it is usual to use NoSQL databases (like HBase
and Cassandra) and distributed file systems (like HDFS) [9].
Data is typically partitioned into blocks and replicated across
multiple nodes to maintain reliability.

•	 Processing Layer: Responsible for computation and
transformation of data, this layer supports various processing
models, including batch processing (MapReduce), stream
processing (Apache Storm, Flink), and in-memory
computation (Apache Spark). It manages task scheduling,
resource allocation, and fault tolerance, often leveraging
Directed Acyclic Graphs (DAGs) for efficient execution.

•	 Analytics and Application Layer: The top layer provides
tools and APIs for data analytics, machine learning, and
visualization. It enables users to extract insights from
processed data through libraries for statistical analysis, graph
processing, or AI/ML integration.

Importance of Java for Scalability and Cross-Platform
Compatibility
Programming languages are the bricks out of which the software
developers make application software, automate conveyor belts to
solve problems. The outlines six reasons that justify the importance
of programming languages in software development, shown in

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 3-8

Figure 2 below:

Enabling Software Development Across Domains
There are several programming languages that are used in
programming aiming at all sorts of domains, enabling enhanced
development for particular purposes [10]. Java and C#, for
instance, are ubiquitous in business app development; Python
and ML are essential for building web apps; while C and Rust
are staples in system development.

Impact on Performance and Efficiency
A programming language's efficiency dictates the execution
speed, memory consumption, and overall system performance
due to the fact that various languages have distinct functional
and implementation skills. Languages such as C or Rust have the
ability to exert direct control over memory and hardware within a
program; thus, they are ideal for applications that require a high
level of efficiency.

Maintainability and Code Readability
Clean syntactical languages, as well as the programs that
apply structural modularity, are less complicated and are easy
to understand. Kotlin, Python, and Swift are characterised by
clear and concise code and less duplicated code, which makes an
easier for the programmer when managing the software. Proper
code structuring is crucial in large teams, as it facilitates bug
identification in the long run.

Security Considerations in Software Development
To be specific, if a language is not capable of providing enough
features for programming, security deficiencies can be expected, as
well as the wrong usage of memory space by a program. Rust also
takes strong advantage of memory safety, and there is no buffer
overflow, no null pointer dereferences [11]. While programming
Java and C#, certain inherent security elements like that as a
sandbox and managed code alleviate most security threats.

Scalability and Concurrency Support
The current applications should be designed to be scalable and
concurrent to be able to handle many processes at the same time. Go
(Golang) is used popularly for cloud applications since it provides
a lightweight goroutine which helps in parallel computing. Java
and Scala, with their strong support for threading, facilitate the
development of large-scale enterprise applications. Since computer
processes can be asynchronous in distributed systems, concurrency
is an important factor in a language.

Influence on Developer Productivity and Adoption
Programming languages affect productivity because they provide
developers with means, templates, and resources. Various toolkits
make Python preferred for AI and data science, while front-end
development for web applications is preferred to be done in either
React JS or Angular. Support from the code communities which
are active and do regular updates of the particular languages like
Java and Python also makes continuous learning possible and
relevant to the modern market.

Fugure 2: Importance of Programming Languages in Software
Development

Java-Based Big Data Frameworks
Apache Hadoop, Apache Spark, and Apache Kafka are three of the
most important frameworks driving the Big Data ecosystem, and
they are all built on top of Java. In a fault-tolerant and scalable way
across clusters, massive datasets can be stored and analyzed using
the Hadoop distributed file system (HDFS) and the MapReduce
programming paradigm. The Java programming language is the
foundation of Hadoop [12]. Apache Spark, which is built in Scala
but is completely compatible with Java APIs, is an improvement
over Hadoop. Iterative computation, in-memory data processing,
and stream processing all contribute to real-time analytics being
faster and more adaptive. Together, these Java-based frameworks
form the backbone of Big Data architectures by supporting scalable
storage, distributed computation, and real-time data pipelines.

Hadoop Ecosystem
The MapReduce programming model is most commonly
implemented by Apache Hadoop. Hadoop is well-liked by both
academics and companies due to its open-source nature. Some
of its inherent features that are propelling its quick acceptance
are scalability, fault tolerance, and load balancing [13]. Hadoop
has evolved rapidly since its initial release due to the increased
interest from researchers and adoption by industry heavyweights
like Yahoo!, Amazon, Facebook, eBay, and Adobe. In Figure 3,
shows how storage, resource management, and data processing
are interconnected in Apache Hadoop's architecture. At the storage
layer (HDFS), data is stored across distributed Data Nodes,
while the Name Node manages metadata such as file names and
replication. The resource management layer (YARN) allocates
computing resources, where the Resource Manager coordinates
tasks and communicates with Node Managers, each of which hosts
an Application Master and Containers for execution.

Figure 3: Apache Hadoop Architecture

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 4-8

Apache Spark (Java APIs)
The Apache Software Foundation made contributions to Apache
Spark in 2013, after its 2009 creation by Matei Zaharia of UC
Berkeley. Spark is a general-purpose framework for cluster
computing. It is fast and has many uses. Spark was built to
effectively allow interactive queries and iterative processes, in
contrast to Hadoop MapReduce, which battles with iterative
workloads and reusing data over numerous operations [14].
With the advent of Resilient Distributed Datasets (RDDs), Spark
made great strides in reducing computing time and enabling in-
memory processing [15]. Over time, Spark has evolved into a
comprehensive ecosystem, offering APIs in Scala, Java, Python,
R, and SQL, thereby broadening its adoption. Spark stands out
for its versatility and ability to power large-scale data analytics.
It was one of the first frameworks to merge iterative computation,
batch processing, and stream processing into a single platform
[16]. Figure 4 presents the layered architecture of Apache Spark,
illustrating its ecosystem and integration capabilities.

Figure 4: Layered Architecture of Spark

Apache Flink
Apache Flink is a distributed system framework that allows several
nodes to process data streams statefully, regardless of whether the
streams have boundaries or not [17]. For low latency and high
throughput across all the most popular cluster configurations,
Flink is the way to go in large-scale data processing [18]. Flink
is the new moniker for Stratosphere, which made the transition
from an Apache incubator project to an open-source one in 2014.
When comparing the two, Flink boasts a hundred times faster
data processing performance than MapReduce [19]. Because of
its highly customizable windowing technique, Flink programs
can integrate two systems for the two use cases—early and
approximate results and delayed and correct outcomes-into one
process.

As shown in Figure 5, the stack design of Apache Flink enables
the execution of both batch and stream operations. The foundation
of it is its ability to integrate with other storage systems, such as
HDFS, S3, databases, and streams. Processing that is both parallel
and fault-tolerant is powered by a distributed streaming dataflow
engine. Flink provides two APIs, DataSet and DataStream, to
handle batch and stream workloads, respectively. These APIs can
be extended with libraries like FlinkML, Gelly, the Table API, and
CEP, which support sophisticated analytics.

Figure 5: Apache Flink Architecture

Apache Storm (Java-Based Stream Processing)
The distributed computing system Apache Storm has the capability
to process data streams in real-time. Nathan Martz of BackType,
which Twitter bought in 2011, was the original developer of Storm.
Some of the most well-known companies in the industry have used
Storm since its start Twitter, Yahoo!, Alibaba, Groupon, Baidu,
The Weather Channel, and Rocket Fuel [20]. Apache Storm does
not store any data; it can handle and analyze huge volumes of
unconstrained data streams in real-time from a variety of sources.
The results can be displayed in the user interface or elsewhere.
The intuitive design, low latency, and scalability of Storm make
it suitable for developers to work with nearly any programming
language. Figure 6 shows Apache Storm’s architecture. In (a), a
Nimbus master node manages the cluster with Apache ZooKeeper,
distributing tasks to supervisor nodes that run multiple worker
processes. In (b), Storm’s dataflow model ingests data from spouts,
processes it through bolts for transformations, aggregations, or
filtering, and passes results downstream.

Figure 6: Apache Storm (a) Architecture of Apache Storm; (b)
An illustration of Storm Topology

Architectural Aspects of Java-Based Frameworks with
Challenges and Opportunities
Java-based Big Data frameworks are built upon robust architectural
principles that enable large-scale, distributed data processing.

Architectural Aspects of Java-Based Frameworks
Here are the aspects of Java-based Big Data frameworks are as
follows:

Distributed Computing Models
Big Data frameworks employ various execution paradigms,
including MapReduce for batch workloads and DAG-based models

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 5-8

in Spark and Flink for iterative and real-time processing [21].
Important programming paradigms include message forwarding,
MapReduce, DAG, workflow, Bulk Synchronous Parallel (BSP),
and systems similar to SQL. All of these models have their own
benefits and drawbacks.

Storage Architectures
Data persistence in Big Data frameworks is supported by
distributed file systems and NoSQL databases. These techniques
make storing and retrieving any kind of data a breeze, whether
it's structured, semi-structured, or unstructured. HDFS is widely
used, although it lacks some features that make it helpful for
managing large datasets. For example, it cannot handle concurrent
writes, real-time processing, or specific error handling. Yet, it
is excellent for dividing files into blocks and distributing them
across clusters [22].

Scalability and Fault Tolerance
In distributed computing environments, scalability ensures that
systems can handle increasing volumes of data and workloads by
efficiently adding more nodes or resources, while fault tolerance
enables continued operation despite failures [23]. A fault-tolerant
architecture is therefore essential to ensure reliability, high
availability, and uninterrupted processing in Big Data frameworks.

Programming Models and Java APIs
Programming Models and Java APIs: Java provides rich APIs and
libraries for developers to interact with Big Data systems, enabling
seamless integration with enterprise applications [24]. Software
development kits (SDKs) written in Java enable open-source
projects like Apache Spark, Apache Flink, Apache Hadoop, and
Apache Storm. The performance, portability, and type safety of
these frameworks are preserved.

Challenges in Java-Based Big Data Frameworks
Data storage and analysis, computational complexity, data
scalability and visualization, security and privacy, and
heterogeneity and incompleteness are the main categories of
difficulties in big data analytics. In the parts that follow, quickly
go over these difficulties:

Scalability and Storage Issues
The exponential growth of data often outpaces the capabilities of
existing processing systems. Traditional storage solutions struggle
to efficiently accommodate these massive volumes, creating
bottlenecks in both storage and retrieval operations.

Representation of Heterogeneous Data
Data from multiple sources is highly heterogeneous, including
unstructured formats like images, videos, audio, and social media
content. The traditional technologies like SQL cannot process
or store this kind of heterogeneous data and, as a result, require
sophisticated frameworks that could process more complicated
and multimedia data.

Hardware Bias and Scope Constraints
The majority of tests of Java-based frameworks are performed
on specialized cluster hardware, their external validity to
heterogeneous cloud conditions is restricted. Furthermore, research
is typically limited because real-time systems that can use GPU
acceleration or low-latency edge devices are not included.

Language Isolation
This research is limited to Java APIs only; other frameworks, like

as Spark and Flink, usually have Python or Scala bindings, which
have different performance traits. Spark and Flink, two popular
frameworks, offer bindings in Scala and Python in addition to the
extensive support for Java APIs. All languages can be dramatically
different in performance traits and thus stressing the drawback of
concentrating on Java.

Privacy and Security
The process of securing data in big data models is not simple
because of multiple factors such as the use of heterogeneous
data formats which demand specific security provisions, parallel
processing which makes access control more complex, and the
necessity to safeguard confidential data of real-time analytics.
Security and privacy risks are further enhanced by the distributed
storage that occurs in the cloud environment of big datasets.

Handling Real-Time vs. Batch Workloads
Streaming and batch workloads are still a tricky matter to balance.
Despite the answers provided by frameworks like Apache Spark
Streaming and Apache Flink, the simultaneous achievement of low
latency, high throughput, and consistency remains a significant
challenge.

Opportunities and Future Directions
•	 To compare the performance of Hadoop, Spark and Flink

based on Java-based benchmarking of batch and stream
processing.

•	 Profitability of Java Virtual Machine (JVM) tuning, such as
garbage collection strategies, heap settings, and Just-in-Time
(JIT) compiler flags, can yield considerable benefits in the
processing efficiency on large-scale data applications.

•	 Scalable, high-performance data pipelines can be built with
Java concurrency models like Fork/Join frameworks and
Completable Future. Studies of these models can determine
the best practices in the execution of parallel tasks and the
utilization of resources.

•	 The discovery of efficient architectural patterns and design
principles of scalable Java-based data applications can help
developers create resilient, supportable, and high-performance
solutions of big data solutions.

Future Directions
•	 GraalVM with AOT Compilation Investigating native image

creation and ahead-of-time compilation to reduce memory
utilization and startup time.

•	 Adaptive scaling the techniques that use a combination of
JVM telemetry and Kubernetes auto-scaling to dynamically
scale Java microservices in response to runtime performance.

•	 Edge Computing Explore the potential of Java on edge devices
or the Internet of Things for scalable processing using either
native pictures or lightweight Java profiles.

AI-Driven Tuning Machine learning methods that might predict
optimal JVM parameters from workload details and past logs.

Literature Review
This Java-based big data framework literature review identifies
essential trends, empirical research results, and technology,
which provide information to direct future studies and practical
applications.

Lockwood, Holland and Kothari (2019) introduce the Mockingbird
model, a realistic and adaptable approach to analyzing large Java
programs. The model combines static and dynamic assessments.
The Object Mocker is a cutting-edge new tool that streamlines

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 6-8

the process of integrating static and dynamic analysis tools.
In order to find potentially vulnerable portions in big software
systems, static analyzers are utilized. By focusing on the parts of
a program that might be susceptible to attack, targeted dynamic
analysis can determine whether an exploit is possible. By studying
complex software vulnerabilities, case studies can show how the
strategy works. The groundwork for this case study was a solution
developed for a DARPA Space/Time Analysis for Cybersecurity
(STAC) program challenge [25]. Yu and Zhou (2019) foundational
ideas and future prospects of Big Data platform research through
showcasing studies conducted on contemporary Big Data products.
They came up with a standard structure with five horizontal and
one vertical after reviewing and comparing numerous state-of-
the-art frameworks in detail. This paper lays out the components
and current optimization techniques for Big Data according to
this framework, which aids in selecting the best architecture and
components from among the many Big Data technologies available
depending on needs. As the use of distributed computing has
increased, so too has the variety of features included in today's
Big Data analysis platforms [26]. Nagdive and Tugnayat, (2018)
The term "Big Data," used to describe a set of data sets so large
that traditional computing techniques struggle to manage them,
is defined in this article. With that in mind, Hadoop is a platform
optimized for handling Big Data. For companies, Hadoop is the
way to go when processing Big Data. Distributed computing makes
possible the processing and storage of extraordinarily huge datasets
with the help of Hadoop, an open-source programming framework
based on Java. It aids Big Data analytics by overcoming the usual
obstacles encountered when dealing with Big Data. Hadoop can
partition massive computing problems into manageable chunks,
and this is because smaller pieces can be efficiently and cheaply
analysed. Hadoop is a free and open-source infrastructure for
data storage and application processing on commodity hardware
clusters [27]. Singh (2017) creates a number of models based
on current research on programming languages. Improvements
in managing late situations have inspired architects to create
classroom buildings that promote conversation. Realizing the

significance of data and putting that understanding into practice
are the two main components of learning. They also display a
multi-layered Student Model that collects students' issue-specific
information states from their configurations; this model is the
foundation of adaptive coaching. Rather than focusing on practice,
this study is concerned with learning the ropes of programming.
Expert programmers should anticipate these situations. Thinking
about how students learn and use the Java programming language
in a secure way is the goal of this study. A student wondering how
to identify a Java application's problem [28]. Saxena et al. (2016)
present the case for new methods and tools to help programming
engineers make better use of energy while reducing the risks
associated with developing, deploying, and operating software on
the cloud using big data. Working in small groups, where each co-
worker has a lot of ownership and can make a big impact, is ideal
for this kind of research. As the primary conduit for big data in the
cloud, web servers and application servers need to be modernized
to keep up with the demands of execution and force. Although there
has been a lot of investment in web server or application server
delivery and web storage processes, there has been surprisingly
little work to enhance hardware-favoured web-type services [29].
Yin and Wang (2015) analyze distributed file systems that allow
for concurrent data access, such as HDFS. The absence of thought
for distributed I/O resources and worldwide data distribution
causes storage servers to inefficiently and remotely handle data
requests from executors and concurrent processes. To address these
concerns, developers built I/O middleware systems and matching-
based algorithms, which map concurrent data requests to storage
servers and provide balanced and localized data access. Last but
not least, my dissertation describes strategies to improve big
data analysis's interactive data access performance. Specifically,
the vast majority of interactive analytic tools traverse the whole
dataset indiscriminately, without consideration of whether data are
truly necessary [30]. To improve the uptake and efficacy of Java-
based big data techniques, Table I gives a comparative review of
recent studies, describing their methodologies, important results,
implementation hurdles, and suggested future paths.

 Table 1: Literature Summary on Java-Based big Data Frameworks
Reference Study on Approaches Findings/Insights Challenges Future Work
Lockwood, et.al.
(2019)

Efficient analysis of
large Java software
vulnerabilities

The Mockingbird
framework's newest
addition, Object
Mocker, integrates
static and dynamic
analysis.

Targeted dynamic
analysis after
static identification
allows scalable and
efficient vulnerability
detection

Integrating static and
dynamic analysis;
handling large and
complex software

Apply framework
to other types
of software and
broader vulnerability
detection scenarios

Yu et. al. (2019) Modern Big Data
platform design and
optimization

A survey and
assessment of
current Big Data
frameworks; a five-
dimensional, one-
dimensional proposed
structure

Provides guidance
for selecting suitable
components and
architectures;
identifies
optimization
technologies

Diverse
characteristics of
distributed systems
make uniform
evaluation difficult

Extend research
into emerging
technologies and
heterogeneous
computing
environments

S. & M. et.al. (2018) Big Data processing
and Hadoop
framework

Overview of Hadoop
architecture and
distributed computing
for Big Data

Hadoop enables
efficient storage and
processing of large
datasets; breaks
large problems into
smaller, analyzable
tasks

Handling extremely
large datasets
efficiently;
overcoming
limitations
of traditional
computational
techniques

Improve scalability,
fault-tolerance, and
processing speed for
very large datasets

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 7-8

Singh et.al. (2017) Learning Java
programming and
secure use

Review of
student learning
models, layered
Student Model,
and educational
techniques

Highlights how
students learn
Java and identify
application
weaknesses;
emphasizes
understanding vs.
rote practice

Bridging gap between
learning and real-
world programming
security

Develop adaptive
learning systems
to enhance Java
programming
security education

Saxena et al. (2016) Cloud computing
with Big Data:
efficiency and energy
consumption

Review of web/
application server
performance and
cloud computing with
Big Data

Identifies the need
for hardware-aware
services and energy-
efficient cloud
computing

Optimizing
cloud servers for
performance and
energy efficiency;
limited research on
hardware-aware
methods

Design novel tools
and methods for
energy-efficient,
high-performance
cloud services

Yin et.al. (2015) Parallel data access
in distributed file
systems

Developed I/O
middleware systems
and matching-based
algorithms for HDFS

Enables local and
balanced data access
for parallel processes;
improves interactive
data access
performance

Remote and
imbalanced data
access in distributed
systems; inefficient
interactive queries

Enhance performance
of interactive Big
Data analysis
programs by selective
data scanning

Conclusion and Future Work
Java-based Big Data platforms use a variety of processing engines,
analytical tools, and dynamic visualization approaches to derive
useful insights from complicated and dynamic information. Major
issues necessitated by Big Data's new features and requirements
must be resolved prior to embarking on any Big Data adventure.
Modern JVM tuning options and large data frameworks have
significantly broadened Java's usage outside traditional corporate
applications. Fork/Join and Completable Future are concurrency
utilities that developers can use to build systems with high
throughput and low latency. They also refine garbage collection
algorithms and adopt in-memory computing concepts. When
properly set up and designed, Java-based systems can handle the
load of today's data-intensive applications and more. Researchers
found that when it came to scalability, throughput, and interaction
with major big data frameworks, Java's large library support,
adaptability, and robustness were the most important factors in
making big data operations possible. Future research should focus
on enhancing Java’s effectiveness in big data analytics by exploring
areas such as advanced data organization, domain-specific tools,
and next-generation platform technologies. The construction of
more advanced and efficient Big Data infrastructures can be aided
by investigating these characteristics, which can help address
technological issues across different Big Data fields. Java must
constantly innovate and adapt if it wants to keep its position as a
leading technology in big data analytics.

References
1.	 Al-Sai ZA, Abdullah R, Heikal Husin M (2019) Big Data

Impacts and Challenges: A Review, in 2019 IEEE Jordan
International Joint Conference on Electrical Engineering and
Information Technology (JEEIT). IEEE 150-155.

2.	 Gupta S, Agrawal N, Gupta S (2016) A Review on Search
Engine Optimization: Basics, Int. J. Hybrid Inf. Technol 9:
381-390.

3.	 Cumbane SP, Gidófalvi G (2019) Review of Big Data and
Processing Frameworks for Disaster Response Applications.
ISPRS Int. J. Geo-Information 8: 387.

4.	 Bastian CC von, Locher A, Ruflin M (2013) Tatool: A Java-
based open-source programming framework for psychological
studies, Behav. Res. Methods 45: 108-115.

5.	 Almansouri HT, Masmoudi Y (2019) Hadoop Distributed File
System for Big Data analysis, in 2019 4th World Conference

on Complex Systems (WCCS), IEEE 1-5.
6.	 Gupta A, Thakur HK, Shrivastava R, Kumar P, Nag S (2017)

A Big Data Analysis Framework Using Apache Spark and
Deep Learning, IEEE Int. Conf. Data Min. Work. ICDMW
1: 9-16.

7.	 Hiba J, Hadi HJ, Shnain AH, Hadishaheed S (2015) Big Data
And Five V’S Characteristics, Int. J. Adv. Electron. Comput.
Sci 2: 2393-2835.

8.	 Preethi AA, Vani B (2015) A Survey on Big Data and its
Characteristics. Int. J. Eng. Res. Technol 10: 3343-3347.

9.	 Neeli SSS (2019) The Significance of NoSQL Databases :
Strategic Business Approaches and Management Techniques.
J. Adv. Dev. Res 10: 11.

10.	 Siddardha K, Suresh C (2018) Big Data Analytics: Challenges,
Tools and Limitations, Int. J. Eng. Tech. Res 6: 40-44.

11.	 Pathak P, Shrivastava A, Gupta S (2015) A Survey on Various
Security Issues in Delay Tolerant Networks. J. Adv. Shell
Program 2: 12-18.

12.	 Memon MA, Soomro S, Jumani AK, Kartio MA (2017) Big
Data Analytics and Its Applications, Ann. Emerg. Technol.
Comput 1: 45-54.

13.	 Uzunkaya C, Ensari T, Kavurucu Y (2015) Hadoop Ecosystem
and Its Analysis on Tweets. Procedia - Soc. Behav. Sci 195:
1890-1897.

14.	 Alkatheri S, Abbas S, Siddiqui M (2019) A Comparative
Study of Big Data Frameworks. Int. J. Comput. Sci. Inf.
Secur 17: 1.

15.	 Assefi M, Behravesh E, Liu G, Tafti AP (2017) Big data
machine learning using Apache Spark MLlib, in 2017 IEEE
International Conference on Big Data (Big Data). IEEE 3492-
3498.

16.	 Salloum S, Dautov R, Chen X, Peng PX, Huang JZ (2016)
Big data analytics on Apache Spark, Int. J. Data Sci. Anal
1: 145-164.

17.	 Carbone P, Asterios Katsifodimos (2015) Apache FlinkTM:
Stream and Batch Processing in a Single Engine. IEEE Data
Eng. Bull 38.

18.	 Dai JJ, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, et al.
(2019) BigDL: A Distributed Deep Learning Framework for
Big Data. in Proceedings of the ACM Symposium on Cloud
Computing, ACM 50-60.

19.	 Dolev S, Florissi P, Gudes E, Sharma S, Singer I (2019) A
Survey on Geographically Distributed Big-Data Processing

Citation: Aniruddha Arjun Singh Singh, Vaibhav Maniar, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, et al. (2023) Exploration of Java-
Based Big Data Frameworks: Architecture, Challenges, and Opportunities . Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-541.
DOI: doi.org/10.47363/JAICC/2023(2)501

J Arti Inte & Cloud Comp, 2023 Volume 2(4): 8-8

Copyright: ©2023 Dinesh Rajendran, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Using MapReduce. IEEE Trans. Big Data 5: 60-80.
20.	 Demchenko Y, Laat C de, Membrey P (2014) Defining

architecture components of the Big Data Ecosystem, in 2014
International Conference on Collaboration Technologies and
Systems (CTS), IEEE 104-112.

21.	 Belcastro L, Marozzo F, Talia D (2017) Programming models
and systems for Big Data analysis. Int. J. Parallel, Emergent
Distrib. Syst 346: 632-652.

22.	 Nima P (2018) Comparative study on MongoDB and HBase
https://www.researchgate.net/publication/330837495_
Comparative_study_on_MongoDB_and_HBase.

23.	 Zaharia M, Das T, Li H, Hunter T, Shenker S, et al. (2016)
Discretized streams: fault-tolerant streaming computation at
scale. in An Architecture for Fast and General Data Processing
on Large Clusters, no. 1, Association for Computing
Machinery and Morgan & Claypool https://dl.acm.org/
doi/10.1145/2517349.2522737.

24.	 Gai K, Qiu M, Liu M, Xiong Z (2018) In-memory big data
analytics under space constraints using dynamic programming.
Futur. Gener. Comput. Syst 83: 219-227.

25.	 Lockwood D, Holland B, Kothari S (2019) Mockingbird: A
Framework for Enabling Targeted Dynamic Analysis of Java
Programs, in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE 39-42.

26.	 Yu JH, Zhou ZM (2019) Components and Development in
Big Data Systems: A Survey. J. Electron. Sci. Technol 17:
51-72.

27.	 Nagdive AS, Tugnayat RM (2018) A Review of Hadoop
Ecosystem for Big Data. Int. J. Comput. Appl 180: 35-40.

28.	 Singh T (2017) A Survey on Java Programming Language
and Methods of Improvisation,” Int. J. Innov. Adv. Comput.
Sci 6: 12.

29.	 Saxena A, Kaushik N, Kaushik N, Dwivedi A (2016)
Implementation of cloud computing and big data with Java-
based web application,0 in 2016 3rd International Conference
on Computing for Sustainable Global Development
(INDIACom) 1289-1293.

30.	 Yin J, Wang J (2015) Optimize Parallel Data Access in
Big Data Processing, in 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE
721-724.

