ISSN: 2754-6659

Journal of Artificial Intelligence &

Cloud Computing

Review Article

Research and Community

& ESCIENTIFIC

v
Open @ Access

Generative Al for Cloud Infrastructure Decision-Making and Self-

Healing Systems

Tirumala Ashish Kumar Manne

USA

ABSTRACT

Cloud infrastructure has grown increasingly complex, demanding intelligent automation to ensure performance, reliability, and resilience. This paper
explores the application of Generative Artificial Intelligence (Generative AI) to enhance decision-making and enable self-healing capabilities in cloud
environments. Generative models such as large language models (LLMs), generative adversarial networks (GANs), and variational autoencoders (VAEs)
are proving instrumental in addressing challenges related to dynamic resource provisioning, anomaly detection, root cause analysis, and automated
remediation. I present a framework that leverages generative models to simulate failure scenarios, generate configuration policies, and synthesize runbooks
for autonomous recovery. Integration with observability pipelines and cloud-native services enables closed-loop, real-time adaptation, reducing mean
time to resolution (MTTR) and improving system uptime. Case studies demonstrate improved accuracy in fault prediction and faster recovery compared
to traditional methods. I also discuss implementation challenges, including model drift, latency constraints, and data privacy. This study underscores the
transformative potential of Generative Al in building resilient, adaptive, and scalable cloud infrastructures, while offering practical insights for architects,

DevOps teams, and Al researchers aiming to advance autonomous cloud operations.
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Introduction

Modern cloud infrastructure has become the backbone of digital
transformation, enabling scalable, on-demand services across
industries. The increasing complexity of distributed systems,
managing these environments efficiently and ensuring high
availability has become a significant challenge. Traditional rule-
based automation tools and static monitoring frameworks often fall
short in detecting novel faults or adapting to unforeseen failures
in real time. This has led to growing interest in intelligent systems
capable of dynamic decision-making and self-healing capabilities.
Generative Artificial Intelligence (Generative Al) represents
a promising frontier in addressing these challenges. Unlike
discriminative models that merely classify or predict, generative
models can synthesize new data, simulate scenarios, and generate
actionable insights. In the context of cloud operations, these
models are now being applied to tasks such as auto-remediation,
configuration generation, and predictive scaling. Large Language
Models (LLMs) like GPT and Codex can understand infrastructure
logs and generate diagnostic responses or remediation scripts,
while Generative Adversarial Networks (GANSs) and Variational
Autoencoders (VAEs) are useful in simulating infrastructure
stress conditions and generating synthetic training data for fault
prediction systems.

Recent advancements have shown the potential of combining
generative models with cloud-native observability pipelines to

create closed-loop systems that adapt and recover autonomously.
These capabilities mark a shift toward Autonomous Cloud
Operations (ACO), where systems not only detect failures but
proactively prevent and resolve them with minimal human
intervention [1,2]. This paper explores the architectural design,
implementation strategies, and real-world applications of generative
Al in enabling resilient, self-managing cloud environments.

Generative Al Models and Techniques

Generative Artificial Intelligence encompasses a class of machine
learning models capable of generating data that mimics the
distribution of a given dataset. In cloud infrastructure contexts,
such models enable synthetic data generation, scenario simulation,
and the automated creation of remediation and configuration
content. This section highlights key generative AI models and
techniques applicable to cloud decision-making and self-healing
operations.
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Large Language Models (LLMs)

Large Language Models (LLMs), such as OpenAl’s GPT series
and Google’s PaLM, are trained on extensive corpora of natural
language and code. These models can interpret infrastructure logs,
diagnose system anomalies, and generate configuration scripts
or remediation plans based on textual prompts. Their ability to
perform few-shot or zero-shot learning makes them adaptable
to new scenarios without requiring extensive retraining [3]. In
infrastructure-as-code (IaC) environments, LLMs also support
automated documentation and template generation, accelerating
DevOps workflows.

Generative Adversarial Networks (GANs)

GANSs, comprising a generator and discriminator in a competitive
setup, are powerful tools for generating realistic data distributions.
In cloud operations, GANSs can simulate rare or catastrophic failure
conditions that are otherwise difficult to capture in real logs,
enabling the training of robust fault-detection models [4]. They
also aid in data augmentation, improving model generalization in
imbalanced datasets commonly encountered in anomaly detection.

Variational Autoencoders (VAEs)

VAE:s learn latent representations of data and generate new instances
by sampling from this latent space. They are especially useful
for detecting deviations in system behavior and reconstructing
expected system states. VAEs are often employed to capture
patterns in telemetry data and flag anomalies that deviate from
learned baselines [5].

Diffusion Models and Emerging Techniques

Diffusion models, though newer in adoption compared to GANs
and VAEs, have shown potential for high-fidelity data generation.
These models are being explored for simulating time-series data
in cloud environments, offering controllable generation with less
mode collapse than GANs [6].

Reinforcement Learning (RL) with Generative Elements
Reinforcement Learning, particularly when combined with
generative techniques, enables policy learning in dynamic
environments. RL agents can generate action policies for auto-
scaling, load balancing, or resource recovery based on continuous
feedback from the environment [7].

These models form the backbone of intelligent, generative systems
that support adaptive and autonomous cloud infrastructure
management.

Generative Al in Cloud Decision-Making

Generative Al is revolutionizing cloud infrastructure by enabling
intelligent, data-driven decision-making across the lifecycle of
resource management, configuration, and incident response.
Unlike traditional systems that depend on static policies or manual
thresholds, generative models can synthesize insights and suggest
dynamic actions based on real-time system conditions.
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Figure 2: Generative Al in Cloud Decision-Making

Resource Provisioning and Optimization

Generative models enhance auto-scaling decisions by predicting
future workload patterns and suggesting optimal resource
allocations. For example, LLMs can be trained on historical usage
logs and infrastructure metrics to generate recommendations for
compute and storage provisioning, reducing both underutilization
and over-provisioning [8]. Such models outperform reactive
scaling policies by considering contextual, time-sensitive variables
such as seasonal spikes or regional demand shifts.

Intelligent Configuration and Policy Generation

Infrastructure-as-code (IaC) has become standard in DevOps, and
generative Al can accelerate its adoption by creating validated
templates and compliance-aware configurations. Techniques such
as prompt-based generation using fine-tuned LLMs help automate
configuration scripts and enforce cloud security policies, reducing
misconfiguration risks a leading cause of cloud security breaches

[9].

Anomaly Detection and Response Suggestions

Generative models like VAEs and GANSs can learn normal system
behavior and generate synthetic baselines, which aid in identifying
subtle anomalies that deterministic rules may overlook. Coupled
with LLM-based summarization of logs and context-aware
alerting, these systems assist site reliability engineers (SREs) in
prioritizing incidents and suggesting likely causes and resolutions
[10].

Cost and Performance Trade-offs

Generative Al also facilitates multi-objective decision-making by
balancing cost, latency, throughput, and compliance requirements.
For example, reinforcement learning agents enhanced with
generative policies can simulate various deployment strategies and
identify optimal trade-offs under budget and SLA constraints [11].

Integration with Cloud Service Providers

Major cloud providers are embedding generative Al into their
platforms. AWS integrates services like Amazon Code Whisperer
and DevOps Guru with generative capabilities for decision
support, while Google Cloud’s Duet Al offers generative assistance
for operations and security [12]. These tools are reshaping the
operational workflows of cloud engineers by automating low-level
decisions and surfacing high-impact recommendations.

By augmenting human decision-making and enabling intelligent
automation, generative Al establishes a foundation for more
autonomous, resilient, and cost-effective cloud operations.
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Generative Al for Self-Healing Systems

Self-healing systems are a cornerstone of resilient cloud
infrastructure, aiming to detect, diagnose, and remediate
faults autonomously without human intervention. Generative
Al significantly enhances this paradigm by enabling proactive
detection of anomalies, generation of recovery strategies, and
dynamic adaptation to infrastructure changes. This section
discusses how various generative models contribute to building
intelligent, self-correcting cloud environments.

Fault Detection and Diagnosis

Generative models such as Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs) are well-suited
for modeling normal system behavior and identifying deviations
that indicate faults. By learning latent patterns from telemetry
data including CPU usage, memory consumption, and network
throughput these models can accurately detect anomalies even
in noisy environments. For example, GAN-based frameworks
have shown superior performance in identifying zero-day faults
in real-time cloud operations [13].

Runbook and Remediation Script Generation

Large Language Models (LLMSs), fine-tuned on system logs,
incident reports, and operational documentation, can generate
step-by-step remediation scripts tailored to the detected issue.
These models can simulate recovery actions and provide human
readable explanations, enabling either automated execution or
review by DevOps engineers [14]. This reduces mean time to
resolution (MTTR) and minimizes service disruptions.

Closed-Loop Feedback and Learning

Generative Al enables closed-loop systems by continually
learning from each incident and adapting future responses.
Reinforcement learning agents, guided by generative models,
can optimize remediation policies based on prior outcomes, system
state transitions, and feedback from monitoring tools [15]. This
continual learning loop ensures that the system improves its self-
healing accuracy over time.

Integration with Observability Platforms

By integrating with observability tools such as Prometheus,
Grafana, and AWS CloudWatch, generative Al systems can
analyze logs, metrics, and traces in real-time. LLMs can synthesize
diagnostic summaries from distributed logs, while generative
models propose potential recovery paths, rank them based on
historical success, and recommend the best action [16].

Proactive Recovery and Fault Simulation

GANSs and diffusion models can simulate future fault scenarios
and test the resilience of deployed systems under hypothetical
conditions. These simulations help identify weak points and refine
the self-healing logic before real failures occur. This proactive
capability supports chaos engineering practices and resilience
modeling [17].

Generative Al thus provides a robust foundation for self-healing
systems that are proactive, adaptive, and increasingly autonomous,
significantly reducing operational overhead while enhancing
reliability and uptime.

Implementation Framework

Establishing a robust implementation framework is critical to
successfully deploying generative Al solutions for decision-
making and self-healing in cloud infrastructure. This section

outlines the architectural components, workflows, and key
considerations involved in operationalizing generative Al within
real-world cloud environments.

System Architecture

The architecture for generative Al-enhanced cloud systems
typically comprises five layers: data ingestion, preprocessing,
model layer, decision engine, and execution layer. Telemetry data
from logs, metrics, and traces is ingested in real time using tools
like Fluentd, Kafka, or Amazon Kinesis. This data is preprocessed
normalized, anonymized, and filtered before feeding into generative
models such as LLMs, VAEs, or GANSs for inference and learning
[18]. The decision engine interprets the model outputs to generate
remediation plans, which are executed through orchestration
platforms like Ansible, Terraform, or Kubernetes controllers.

Model Selection and Training

Model selection is based on the problem domain. For anomaly
detection, VAEs or GANs are preferred; for remediation, LLMs
like GPT or domain-specific transformers are utilized. Training
involves a mix of supervised learning for classification tasks and
unsupervised generative approaches for synthesis tasks. Data
pipelines must be designed to continuously update models with
fresh logs and feedback from recent incidents to ensure model
relevance and reduce drift [19].

CI/CD and DevOps Integration

The framework should integrate with CI/CD pipelines using tools
such as Jenkins, GitLab, or AWS Code Pipeline. This enables
continuous deployment of updated models, validation of Al-
generated configurations, and automatic rollback in case of
failure. Infrastructure-as-code practices further allow Al-generated
configurations to be versioned and reviewed systematically [20].

Security and Compliance

Security is paramount when deploying generative Al in operational
environments. Models must be sandboxed and subjected to
adversarial testing to prevent misuse or hallucinations. Generated
configurations and scripts must adhere to security baselines CIS
Benchmarks and pass compliance checks through tools like
OpenSCAP or AWS Config [21]. Furthermore, sensitive data used
in training must be anonymized to meet data privacy regulations
such as GDPR or HIPAA.

Performance and Cost Optimization

Model inference and orchestration workloads should be cost-
efficient. Serverless architectures AWS Lambda or Azure Functions
and GPU acceleration via NVIDIA Triton or Amazon Inferentia
can reduce latency while optimizing cost. Tools like Kubeflow
or MLflow can be employed to monitor model performance and
resource utilization in production [22].

This implementation framework provides the foundation for
deploying scalable, secure, and responsive generative Al systems
that can adapt dynamically to evolving cloud infrastructure
demands.

Challenges and Limitations

Despite its transformative potential, the application of Generative
Al in cloud infrastructure decision-making and self-healing
systems presents several challenges and limitations that hinder
widespread adoption and operational maturity. These include
technical, operational, ethical, and regulatory concerns.
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Data Quality and Availability

Generative models require large volumes of high-quality training
data to produce reliable and contextually accurate outputs. In
cloud environments, log data can be noisy, sparse, or inconsistent
across services. Poorly labeled or incomplete telemetry can lead
to overfitting, hallucinations, or failure to detect rare but critical
anomalies [23]. Access to sensitive infrastructure logs is often
restricted due to privacy or compliance regulations, limiting the
scope of model training.

Model Drift and Hallucination

As infrastructure evolves software updates, topology changes,
generative models can become outdated known as model drift.
Without continuous retraining, predictions or generated scripts
may become invalid or even dangerous. LLMs and diffusion
models may hallucinate inaccurate remediations or misinterpret
log patterns, leading to incorrect actions and reduced trust in
autonomous systems [24].

Latency and Real-Time Constraints

Many generative models, especially large-scale LLMs, have high
inference latency and require significant computational resources,
posing challenges for real-time cloud operations. In scenarios
requiring rapid failure recovery or anomaly detection, delays
introduced by generative inference may lead to SLA violations
or service degradation [25].

Integration Complexity

Integrating generative Al into existing CI/CD pipelines, monitoring
systems, and orchestration layers is non-trivial. The need for
standardized APIs, scalable serving infrastructure, and feedback
loops requires substantial engineering effort. Al-generated outputs
must be validated through rigorous testing frameworks before
automated execution to avoid cascading system failures [26].

Security and Ethical Concerns

Generative models pose novel attack surfaces in cloud
environments. Adversaries may manipulate input data to
induce misleading outputs log poisoning or prompt injection.
Automatically generated configurations and scripts may violate
compliance policies or introduce security vulnerabilities if not
properly vetted [27].

Addressing these challenges requires interdisciplinary collaboration
between Al researchers, cloud engineers, and policy makers to
ensure that generative Al systems are trustworthy, secure, and
operationally viable.

Future Directions

The integration of Generative Al into cloud infrastructure is still in
its formative stages, presenting ample opportunities for research,
development, and innovation. As cloud environments evolve in
complexity, the following future directions are expected to shape
the next generation of decision-making and self-healing systems:

Federated and Privacy-Preserving Learning

To overcome challenges related to data privacy and compliance,
future generative Al systems may adopt federated learning
techniques. This approach enables decentralized model training
across multiple cloud environments without exposing sensitive
operational data, preserving both privacy and compliance with
regulations like GDPR and HIPAA.

Multi-Cloud and Edge Intelligence

Generative Al models tailored for multi-cloud and hybrid
environments will be essential as enterprises diversify their
infrastructure across providers. Lightweight generative models
optimized for edge computing will support autonomous decision-
making in resource-constrained environments such as [oT
networks and edge data centers enabling localized self-healing
and predictive analytics.

Explainable and Auditable Generative Al

Developing explainable generative Al (XGALI) tools will be critical
to build trust and transparency in autonomous cloud operations.
Future work will focus on integrating interpretability into the
output of LLMs and GANSs, allowing DevOps and SRE teams
to understand and audit the logic behind generated remediations
and configuration policies.

Integration with GenAl-Powered Observability
Observability platforms will increasingly embed generative
capabilities for dynamic summarization, root-cause narratives, and
synthetic alert simulations. Such platforms will assist engineers
with rich, contextual insights and enhance the responsiveness of
self-healing mechanisms in highly distributed systems.

Al-Augmented Human Collaboration

Rather than replacing human operators, the future of generative
Al lies in collaborative autonomy where Al augments human
expertise with contextual recommendations, guided remediation,
and adaptive playbooks. Human-in-the-loop frameworks will
ensure safety, accountability, and situational awareness in critical
infrastructure scenarios.

Future advancements will push generative Al from an assistive
tool to a core architectural pillar in intelligent cloud systems
enabling proactive, explainable, and scalable self-management
of infrastructure with minimal human intervention.

Conclusion

Generative Al offers a transformative leap in cloud infrastructure
management by enabling intelligent decision-making and
autonomous self-healing capabilities. Through models such as
LLMs, GANs, VAEs, and reinforcement learning agents, cloud
systems can now predict failures, generate remediation plans,
optimize resource usage, and dynamically adapt to evolving
workloads. This paper has explored the architectural foundations,
implementation strategies, and challenges associated with
deploying generative Al in real-world cloud environments. While
the benefits include reduced downtime, improved scalability,
and greater operational efficiency, critical challenges such as
data quality, explainability, integration complexity, and security
risks must be carefully addressed to ensure reliable adoption.
Future innovations in privacy-preserving learning, multi-cloud
intelligence, and explainable Al are poised to make generative
models even more robust and trustworthy. As cloud ecosystems
grow in complexity and scale, generative Al will play an
increasingly vital role in achieving resilient, autonomous, and self-
managing infrastructure, ushering in a new era of cloud operations
that are proactive rather than reactive.
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