ISSN: 2754-6659

Journal of Artificial Intelligence &

Cloud Computing

Review Article

\?‘.»SCIENTIFIC

Research and Community

v
Open @ Access

Graph Neural Networks (GNN) for Code Dependency Vulnerability

Detection

Yogeswara Reddy Avuthu
Software Developer, USA

ABSTRACT

networks.

Modern software development relies heavily on third-party libraries and external dependencies, leading to increasingly complex dependency graphs.
Managing these dependencies is challenging, as vulnerabilities often arise from indirect or transitive dependencies that are difficult to detect using
traditional security tools. Graph Neural Networks (GNNs) offer a novel approach to vulnerability detection by leveraging graph structures to model code
dependencies. This paper proposes a GNN-based framework for identifying vulnerabilities within code dependency graphs in DevOps environments.
The framework models libraries, modules, and their relationships as graph nodes and edges, enabling the aggregation of dependency information across
the entire software stack. Experimental results demon- strate that GNNs outperform traditional static analysis tools in detecting hidden and transitive
vulnerabilities. Additionally, the paper discusses challenges such as scalability, interpretability, and data quality in applying GNNs to real-world codebases.
The results suggest that GNNs offer a promising solution to enhance software security by proactively identifying vulnerabilities in complex dependency

*Corresponding author
Yogeswara Reddy Avuthu, Software Developer, USA.

Received: February 03, 2023; Accepted: February 13, 2023; Published: February 17, 2023

Keywords: Graph Neural Networks, Code Dependency Graphs,
Vulnerability Detection, GNN, DevOps Security, Machine
Learning, Static Analysis, Software Dependencies, Transitive
Vulnerabilities

Introduction

The increasing reliance on third-party libraries, frameworks,
and external modules has introduced significant challenges in
software security. Modern applications often consist of multiple
dependencies that are deeply nested and interconnected, forming
complex code dependency graphs. While these dependencies
accelerate development, they also expose software systems to
vulnerabilities, especially from indirect or transitive dependencies
that are not directly visible to developers. Managing these security
risks in fast-paced DevOps pipelines requires more than traditional
static or dynamic analysis tools.

Traditional static analysis tools focus on scanning codebases for
known vulnerabilities, but they often fall short in detecting issues
caused by dependencies, especially when vulnerabilities exist in
third-party or nested libraries. Dynamic testing tools, on the other
hand, detect vulnerabilities during runtime, but they may miss
flaws that only become evident through specific combinations of
dependencies. In complex software environments, such limitations
can leave critical vulnerabilities undetected, posing significant
security risks to organizations.

Graph Neural Networks (GNNs) provide a novel solution to
these challenges by leveraging the underlying graph structure
of code dependencies to detect hidden vulnerabilities. Unlike
traditional methods that treat each component in isolation, GNNs
model dependencies as graphs, with nodes representing libraries,
packages, or modules, and edges representing relationships such
as function calls, imports, or library dependencies. Through graph

convolutions, GNNs aggregate information from neighboring
nodes, enabling the detection of vulnerabilities that arise from
complex interactions between components.

In DevOps environments, where software is continuously
developed, integrated, and deployed, detecting vulnerabilities
in real time is essential. Integrating GNN-based scanning into
DevOps pipelines can proactively identify vulnerabilities during
development, reducing the risk of deploying insecure software.
By modeling dependencies as graphs and applying GNN-based
algorithms, security teams can detect both direct and transitive
vulnerabilities more effectively.

This paper presents a framework that integrates Graph Neural
Networks (GNNs) into DevOps pipelines for detect- ing
vulnerabilities within code dependency graphs. The key
contributions of this research are as follows:

*+ We propose a GNN-based framework to model software
dependencies as graphs, capturing both direct and indirect
relationships between components.

* We evaluate the framework using open-source datasets
containing known vulnerable dependencies, demonstrating
that GNNs outperform traditional static analysis tools.

* We discuss the challenges of applying GNNs in real world
scenarios, including scalability, data quality, and model
interpretability, and propose solutions to address these
challenges.

Related Work

The growing reliance on third-party dependencies has introduced
new challenges in managing software vulnerabilities, especially
in modern DevOps pipelines. Existing solutions, including static
and dynamic analysis tools, offer partial solutions, but they are
limited in detecting vulnerabilities caused by indirect or transitive

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 1-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

dependencies. This section provides an overview of research on
code dependency management, traditional vulnerability detection
tools, and the emerging use of Graph Neural Networks (GNNs)
in security applications.

Dependency Management and Vulnerability Risks
Code dependencies are often introduced to speed up development,
but they come with risks. Vulnerabilities in libraries

CE ModueX |y

Figure 1: Sample Code Dependency Graph with Vulnerability
Nodes High- lighted

can propagate through multiple layers of dependencies, creating
what are known as transitive vulnerabilities. Managing these
dependencies manually is challenging, as projects may rely on
numerous libraries with nested dependencies [1]. Tools such
as **OWASP Dependency-Check** and **Snyk** provide
automated scanning solutions to identify known vulnerabilities,
but their reliance on public vulnerability databases limits their
ability to detect emerging threats [2]. Additionally, these tools often
generate false positives or fail to capture complex dependency
interactions.

Limitations of Static and Dynamic Analysis Tools

Static Application Security Testing (SAST) tools, such as
SonarQube, analyze source code for known vulnerabilities
[3]. These tools are effective at catching coding flaws during
development but are limited in detecting vulnerabilities introduced
through dependencies. Because SAST tools treat components
independently, they often miss issues arising from interactions
between dependencies.

Dynamic Application Security Testing (DAST) tools, including
OWASP ZAP and **Burp Suite**, detect vulnerabilities by
analyzing applications during runtime [4]. While DAST tools excel
at finding runtime issues, they struggle to detect vulnerabilities that
manifest only in specific dependency configurations. Moreover,
DAST tools are typically used later in the development lifecycle,
which limits their effectiveness in identifying issues early in the
development process.

_Accuracy Comparison of GNN vs. Traditional Static Analysis
10p

-]

GNM Sratic Anabysis
Pl tururiis

Figure 2: Comparison of Accuracy between GNN-based Detection
and Static Analysis Tools

Graph Neural Networks for Security Applications

Graph Neural Networks (GNNs) are a class of deep learning
models that operate on graph-structured data, enabling the
capture of complex relationships between nodes [5]. GNNs have
demonstrated success in various domains, including social net-
work analysis, molecular graph prediction, and cybersecurity.
In the context of software security, GNNs offer a powerful way
to model dependencies as graphs, with nodes representing code
components and edges representing dependency relation- ships [6].

Recent research has explored the use of GNNs to detect software
vulnerabilities by analyzing code dependencies. Zhang et al.
applied GNNs to model open-source projects and demonstrated
that GNNs outperform traditional static analysis tools in identifying
hidden vulnerabilities [6]. Similarly, Liu et al. used GNNs to
analyze package managers such as npm and PyPI, showing that
GNNs can detect transitive vulnerabilities that static scanners
often overlook [7].

Challenges of Applying GNNs in Dependency Vulnerability
Detection

While GNN s offer promising solutions, several challenges remain
in their practical application. First, the **scalability** of GNN
models is a concern, as large dependency graphs with thousands of
nodes require significant computational resources. Efficient graph
partitioning techniques are needed to handle large-scale codebases.
Second, the **quality of training data** impacts the effectiveness
of GNNss. Since labeled datasets containing known vulnerabilities
are limited, it is difficult to train models accurately without
overfitting [8]. Another challenge is the **interpretability** of
GNN pre- dictions. Security analysts often need to understand
why a

_ Precision and Recall Metrics for GNMN-based Detection
(v

Scone

aolk S
Precision

Metrics

Figure 3: Precision and Recall Metrics for GNN-based
Vulnerability Detection

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 2-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

particular dependency is flagged as vulnerable to take appro- priate
action. Developing explainable Al (XAI) techniques for GNNs is
a critical area of future research to enhance their practical utility
in software security.

Research Gap and Opportunities

While traditional tools and recent advances in GNNs have
addressed several aspects of vulnerability detection, the
intersection of these fields remains underexplored. Most existing
tools focus on either static or dynamic analysis, often neglecting
the complex interactions between dependencies in real- world
codebases. Although GNNs provide a powerful way to model these
interactions, their adoption in DevOps pipelines has been limited
by challenges such as scalability, data quality, and interpretability

[5].

This paper aims to bridge this gap by integrating GNN- based
detection frameworks directly into DevOps workflows, enabling
real-time identification of vulnerabilities as soft- ware components
are developed, integrated, and deployed. The framework also
addresses the challenges of scalability through optimized graph
partitioning techniques and proposes solutions to improve the
interpretability of GNN outputs.

Proposed Framework

This section presents the design and implementation of the
proposed framework for code dependency vulnerability detection
using Graph Neural Networks (GNNs). The framework models
code dependencies as graphs, captures relationships between
components, and applies GNN algorithms to detect vulnerabilities.
The goal is to enable the proactive detection of both direct and
transitive vulnerabilities in DevOps pipelines, ensuring secure
software releases.

System Architecture

The proposed framework consists of three main components:

e **Dependency Graph Construction:** Extracts libraries,
modules, and their relationships from the codebase.

* **Graph Neural Network Model:** Applies GNN layers to
learn node embeddings and identify vulnerable components.

* *¥*DevOps Pipeline Integration:** Integrates the GNN
model into CI/CD workflows for continuous vulnerability
detection.

Figure 4 illustrates the architecture of the proposed framework

INPUT LAYER

PUT LAYER
FEaire matries

AdgEcCEMCY
LAYER

= N crmee ©
= | REMDOUT LAYER g oo
- ' LAYERS
READCOY

w

C—— =

e

LLAYOH

CODE DEPEBERITY NETWLK ~NODE T VULNAREITY SCORES

Figure 4: System Architecture of GNN-based Vulnerability
Detection Frame- work

Dependency Graph Construction

The first step involves transforming the codebase into a dependency
graph. Each node in the graph represents a library, module, or
function, and each edge represents a dependency relationship.
Directed edges capture the flow of dependencies, allowing us to
model both direct and transitive relationships. The dependency
graph is stored as an adjacency matrix, which serves as the input
to the GNN model.

Ay = 1 ifnod:c_ i depends on node j (1)
0 otherwise

The framework supports multiple dependency extraction methods,
including parsing dependency manifests (e.g., ‘packge.json for
npm) and analyzing import statements in source code.

Graph Neural Network Model

The GNN model operates on the dependency graph to detect

vulnerabilities. It consists of the following layers:

e **Input Layer:** Accepts the adjacency matrix and feature
matrix as inputs.

e **Graph Convolution Layers:** Aggregates information
from neighboring nodes using graph convolutions to capture
contextual dependencies.

» **Readout Layer:** Combines node embeddings to generate
graph-level features.

e **Qutput Layer:** Produces vulnerability scores for each
node, indicating the likelihood of the node being vulnerable.

The model is trained using a cross-entropy loss function with
labeled data, where vulnerable and non-vulnerable nodes are
identified.

yilog(yr} + (1 —yi)log(1 —§7) (2)

=1

Performance Optimization

To handle large dependency graphs efficiently, the frame- work

incorporates several optimization techniques:

e **Graph Partitioning:** Divides large graphs into smaller
subgraphs for parallel processing.

e **Feature Pruning:** Reduces the size of the feature matrix
by selecting the most relevant features.

o **Model Caching:** Caches intermediate results to avoid
redundant computations during frequent scans.

Summary

The proposed framework leverages Graph Neural Networks to
detect vulnerabilities in code dependencies, providing enhanced
security for DevOps environments. By modeling dependencies
as graphs, the framework identifies both direct and transitive
vulnerabilities that traditional tools often miss. Integration into
DevOps pipelines ensures continuous monitoring and timely
remediation of vulnerabilities, improving the overall security
posture of software systems.

Experimental Setup

This section describes the experimental setup used to evaluate
the performance of the proposed GNN-based framework for
code dependency vulnerability detection. We discuss the dataset,
preprocessing techniques, model parameters, evaluation metrics,
and computing infrastructure.

Dataset

We used open-source datasets containing known vulnerable
and non-vulnerable dependencies from repositories such
as **GitHub**, **npm**, and **PyPI**. The datasets were

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 3-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

preprocessed to generate dependency graphs, where:

e **Nodes** represent libraries, modules, or functions.

o **Edges** indicate dependency relationships (e.g., imports,
function calls).

e **Node Labels** denote whether a node contains a
vulnerability (1) or is safe (0).

Each project was transformed into an adjacency matrix and feature
matrix. We ensured a balanced distribution of vulnerable and non-
vulnerable nodes to avoid bias in the training process.

Preprocessing

The following preprocessing steps were applied:

* **Dependency Graph Construction:** Dependencies were
extracted from ‘package.json‘ (npm) and ‘require- ments.txt*
(Python) files to build directed graphs.

» **Feature Extraction:** Features for each node included
metadata such as version, number of contributors, recent
commits, and known vulnerabilities.

e **Graph Normalization:** Large graphs were partitioned
into subgraphs to facilitate parallel processing and avoid
memory bottlenecks.

Model Architecture and Parameters

The GNN model used for the experiments consists of:

e **Input Layer:** Accepts the adjacency matrix and fea
ture matrix.

* **Two Graph Convolution Layers:** Each with 128 hidden
units, followed by ReLU activation.

* **Dropout Layer:** A 0.5 dropout rate to prevent over-
fitting.

e **Readout Layer:** Aggregates node embeddings to
generate graph-level representations.

e **Qutput Layer:** A softmax layer that outputs the
probability of each node being vulnerable.

The model was trained using the Adam optimizer with a learning
rate of 0.001 for 100 epochs. Early stopping was applied if
validation loss did not improve for 10 consecutive epochs.

N),
L=— yilog(§s) + (1 —yi)log(l —)
Evaluation =1
The following metrics were used to evaluate the performance of
the GNN model:
e *¥Accuracy:** Measures the overall correctness of the model
predictions.
e **Precision:** Indicates the proportion of correctly identified
vulnerable nodes among all nodes predicted as vulnerable.
o *¥*Recall:** Measures the ability of the model to identify all
actual vulnerable nodes.
e **F1-Score:** Harmonic mean of precision and recall. The
accuracy, precision, and recall metrics are defined as:

Precision =TPRecall =TP (4)
TP+ FP TP + FN

F1-Score = 2 Precision - Recall
Precision + Recall

Computing Infrastructure

All experiments were conducted on a cloud-based environment
with the following configuration:

o **CPU:** 8-core Intel Xeon

o **GPU:** NVIDIA Tesla V100 with 16GB VRAM

o **RAM:** 64GB

o **Software:** Python 3.8, TensorFlow, PyTorch, and DGL
(Deep Graph Library)

Training and Validation Process

The dataset was split into **80% training**, **10% validation**,
and **10% test sets**. The model was trained on the training set,
and its performance was monitored using the validation set. The
final evaluation was conducted on the test set to ensure unbiased
results.

Training and Validation Loss over 100 Epochs

Epochs

Figure 5: Training and Validation Loss over 100 Epochs

Summary

The experimental setup ensures a comprehensive evaluation
of the proposed GNN-based framework for code dependency
vulnerability detection. By using a combination of preprocessing
techniques, model optimization, and performance metrics, the
framework demonstrates its capability to identify vulnerabilities
effectively within DevOps pipelines.

Results and Discussion

This section presents the results of the experiments and discusses
the implications of using Graph Neural Networks (GNNs) for
code dependency vulnerability detection. We analyze the model’s
performance using metrics such as accu- racy, precision, recall, and
F1-score. The results highlight the effectiveness of the GNN-based
framework in identifying both direct and transitive vulnerabilities
in software dependencies.

Performance Metrics

The GNN-based framework was evaluated on the test set, and the
performance metrics are summarized in Table I. The framework
achieved high accuracy and demonstrated superior precision and
recall compared to traditional static analysis tools.

Table I: Performance Metrics of GNN-Based Vulnerability
Detection

Metric Value
Accuracy 92.5%
Precision 89.0%
Recall 85.0%
F1-Score 87.0%

The high precision of 89% indicates that the model correctly
identifies a large proportion of actual vulnerabilities with
minimal false positives. The recall value of 85% demonstrates
the framework’s ability to detect a substantial number of existing
vulnerabilities, ensuring that few vulnerabilities go undetected.
The F1-score, which balances precision and recall, confirms that
the framework achieves reliable performance across various test
scenarios.

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 4-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

Comparison with Traditional Static Analysis Tools

We compared the GNN-based framework with traditional static
analysis tools like **SonarQube** and **OWASP Dependency-
Check**. Figure 6 shows the accuracy comparison, where the
GNN-based approach outperformed traditional tools, especially
in detecting transitive vulnerabilities

JAccuracy Comparison of GNN vs. Traditional Static Analysis

Accuracy

= :
L L Static Anakysis

Figure 6: Accuracy Comparison: GNN-based Detection vs.
Traditional Static Analysis Tools

Traditional tools often miss vulnerabilities in nested dependencies
because they rely on known vulnerability databases, which are
limited in scope. In contrast, the GNN-based approach captures
complex interactions between dependencies, allowing it to detect
vulnerabilities that traditional tools over- look.

Precision and Recall Analysis

Figure 7 presents the precision and recall metrics for the GNN
model. The results indicate that the model maintains a

good balance between minimizing false positives and maximizing
true positives, which is critical for effective vulnerability
management in DevOps pipelines.

Precision and Recall Metrics for GNN-based Detection

oo

Metrics

Figure 7: Precision and Recall Metrics for GNN-based
Vulnerability Detection

The slight gap between precision and recall suggests that the
model may occasionally classify safe dependencies as vulnerable,
which can be addressed by further refining the model or using
more diverse datasets for training.

Training and Validation Process

The training process was monitored using the validation loss
to ensure the model did not overfit the data. Figure 8 shows the
training and validation loss curves over 100 epochs.

Training and Validation Loss over 100 Epachs
L0} e

0.2

o 0 an 0 BO 100
Epachs

Figure 8: Training and Validation Loss over 100 Epochs

The model converged smoothly after approximately 80 epochs,
with no significant overfitting observed. Early stopping was
used to prevent unnecessary training, ensuring efficient resource
utilization.

Discussion of Key Findings

The results highlight several key insights:

¢ **Superior Performance:** The GNN-based framework
achieves higher accuracy and better precision-recall balance
than traditional static analysis tools, especially in detecting
complex transitive vulnerabilities.

e *¥*Proactive Detection:** Integrating the framework into
DevOps pipelines enables continuous monitoring, reducing
the risk of deploying software with hidden vulnerabilities.

e **Scalability:** The model efficiently handles large de-
pendency graphs through graph partitioning, ensuring
scalability for real-world applications.

Challenges and Limitations

Despite the promising results, several challenges remain:

e **Data Quality:** The performance of the model de-
pends heavily on the quality and diversity of the training
data. Limited access to labeled datasets with real-world
vulnerabilities is a constraint.

e **Interpretability:** GNNs, like many deep learning
models, operate as black boxes, making it difficult to explain
why specific dependencies are flagged as vulnerable.

e **Computational Overheads:** Although graph
partitioning helps, training GNNs on large dependency graphs
still requires significant computational resources.

Summary

The experimental results demonstrate that the GNN-based
framework effectively detects vulnerabilities within code
dependencies, outperforming traditional static analysis tools.
The framework’s ability to capture both direct and transitive
dependencies makes it a valuable addition to DevOps pipelines,
where continuous monitoring and early vulnerability detection
are essential. However, challenges related to data quality,
interpretability, and computational requirements need to be
addressed in future work.

Challenges and Limitations

While the proposed GNN-based framework demonstrates
promising results in detecting vulnerabilities within code de-
pendency graphs, several challenges and limitations remain. These
issues need to be addressed to ensure the practical adop tion and

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 5-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

scalability of the framework in real-world DevOps environments.

Scalability and Performance Overheads

Graph-based models, particularly Graph Neural Networks
(GNNS), require significant computational resources, especially
when dealing with large dependency graphs containing thousands
of nodes and edges. The time complexity of graph convolution
operations grows with the size of the graph, making it challenging
to apply GNNs efficiently in large-scale software projects.
Proposed Solutions: Optimizations such as **graph partitioning™**
and **parallel processing™* can help manage large graphs.
However, these techniques introduce additional complexity in
graph reconstruction and dependency tracking across partitions.

Quality and Availability of Labeled Data

The effectiveness of the GNN model relies heavily on high-
quality, labeled datasets. In practice, datasets with accurate labels
for vulnerable and non-vulnerable dependencies are limited,
particularly for open-source projects and new libraries. This
scarcity of labeled data can lead to biased models and affect the
generalizability of the results. Proposed Solutions: Approaches
such as **data augmentation**, **semi- supervised learning**,
and **transfer learning®* can mitigate the effects of limited
labeled data. Collaboration with security communities to build
comprehensive vulnerability datasets is also essential.

Interpretability and Explain ability of GNN Predictions
One of the primary challenges of using GNNs is the lack of
interpretability. Security analysts require explanations for why
a specific node (dependency) is flagged as vulnerable to take
appropriate action. However, GNNs operate as black- box models,
making it difficult to extract meaningful in- sights from their
predictions. Proposed Solutions: Developing **Explainable Al
(XAID)** techniques tailored for GNNs can enhance interpretability.
These methods may include feature importance analysis or
subgraph visualization to highlight critical components that
contribute to a node’s classification.

False Positives and False Negatives

The framework may occasionally produce **false positives**
(flagging non-vulnerable dependencies as vulnerable) or **false
negatives®* (failing to detect actual vulnerabilities). These errors
can lead to unnecessary remediation efforts or the deployment of
insecure software components. Proposed Solutions: Fine-tuning
hyperparameters, using **ensemble learning methods**, and
employing multiple GNN architectures in parallel can improve
model accuracy and reduce the occurrence of false predictions.

Integration Challenges in DevOps Pipelines

Integrating GNN-based vulnerability detection into continuous
integration and continuous delivery (CI/CD) pipelines introduces
operational challenges. Frequent scans and large dependency
graphs may slow down the pipeline, impacting deployment
timelines. Additionally, DevOps teams may re- quire training to
understand the results and act upon them effectively. Proposed
Solutions: **Incremental scanning** of new code changes,
along with **caching of intermediate results**, can minimize
performance bottlenecks. DevOps teams can also benefit from
training sessions on GNN- based vulnerability detection
tools and workflows.

Handling Transitive Vulnerabilities

Detecting vulnerabilities that arise from indirect or transitive
dependencies remains a challenging task. The complexity increases
with the number of nested dependencies, and vulnerabilities in

deeply nested libraries may go undetected. Proposed Solutions:
The use of **deep graph models** and **recursive dependency
analysis** can improve the detection of transitive vulnerabilities.
Additionally, incorporating **real- time threat intelligence feeds**
into the framework can help identify vulnerabilities as they are
discovered.

Security and Privacy Risks

Since the framework relies on dependency data, including metadata
and package versions, there are potential privacy concerns if
sensitive project information is exposed during the analysis.
Moreover, the reliance on external sources for vulnerability data
introduces risks, such as misinformation or incomplete disclosures.
Proposed Solutions: **Privacy- preserving GNNs** and **secure
data sharing protocols** can ensure that sensitive information is
protected during analysis. Verification of external vulnerability
data sources is essential to maintain the integrity of the results.
Summary

While the proposed GNN-based framework offers significant
advantages over traditional static analysis tools, several challenges
must be addressed for it to achieve widespread adoption. Future
work will focus on improving scalability, interpretability, and the
integration of the framework within DevOps pipelines. Addressing
these challenges will enhance the framework’s practicality,
enabling continuous and reliable vulnerability detection in
complex software ecosystems.

Conclusion and Future Work

In this paper, we presented a Graph Neural Network (GNN)- based
framework for detecting vulnerabilities in code de- pendency
graphs. The framework addresses the limitations of traditional
static and dynamic analysis tools by capturing both direct and
transitive dependencies in complex software projects. Our
experimental results demonstrate that the GNN- based approach
outperforms traditional tools, providing higher accuracy, precision,
and recall in identifying vulnerabilities.

The proposed framework integrates seamlessly into DevOps
pipelines, enabling continuous monitoring and proactive
vulnerability detection. By modeling dependencies as graphs and
leveraging the power of GNNSs, the framework effectively detects
hidden vulnerabilities that are often overlooked by conventional
methods. Additionally, the study highlights key challenges,
including scalability, interpretability, data quality, and integration
within DevOps workflows, and proposes prac tical solutions to
address them.

The primary contributions of this work include:

* A novel GNN-based framework for modeling code de-
pendencies and identifying vulnerabilities in DevOps
pipelines.

* Experimental validation of the framework’s effectiveness,
demonstrating superior performance compared to tradi- tional
static analysis tools.

* Identification of challenges and proposed solutions for
deploying GNN-based vulnerability detection systems in
real-world environments.

Conclusion and Future Work

The increasing complexity of software ecosystems, with their
reliance on third-party libraries and external dependencies, has
introduced new security challenges that are difficult to address with
traditional vulnerability detection methods. This paper presented
a novel framework leveraging Graph Neural Networks (GNNs)
to detect vulnerabilities in code dependency graphs. By modeling

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 6-7

Citation: Yogeswara Reddy Avuthu(2023) Graph Neural Networks (GNN) for Code Dependency Vulnerability Detection. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E192. DOI: doi.org/10.47363/JAICC/2023(2)E192

dependencies as graphs, the framework captures both direct and
transitive vulnerabilities that often remain undetected by static
analysis tools. Our experimental results demonstrate that the
GNN-based approach outperforms traditional methods in accuracy,
precision, and recall, especially in identifying vulnerabilities in
deeply nested dependencies.

The integration of the GNN framework into DevOps pipelines
enables continuous vulnerability detection through- out the
software development lifecycle, minimizing the risks of deploying
insecure software. The ability to proactively detect vulnerabilities
and provide actionable insights makes the pro- posed framework
a valuable addition to modern DevSecOps practices. However,
several challenges remain, including scalability, interpretability,
and the need for high-quality training data. Addressing these
challenges will enhance the practical adoption of the framework
in real-world applications.

Future Work

While the proposed framework demonstrates significant potential,
several areas warrant further research and improvement.

* Enhancing Model Scalability: Processing large dependency
graphs remains a challenge due to the high computational
requirements of GNNs. Future work will explore the use of
graph partitioning algorithms and **distributed GNN
architectures®* to improve scalability and reduce processing
time.

* Improving Model Interpretability with Explainable Al
(XAI): The lack of interpretability in GNN models makes
it challenging for security analysts to understand why
specific dependencies are flagged as vulnerable. Integrating
Explainable Al (XAI) techniques, such as feature
attribution methods and subgraph visualizations, will provide
deeper insights into model decisions, making the framework
more user-friendly.

* Leveraging Transfer Learning for Cross-Project Vulnerability
Detection: Given the limited availability of labeled
vulnerability datasets, transfer learning offers a promising
solution. Future work will investigate how models trained on
one set of projects can generalize to other codebases, enabling
cross-project vulnerability detection with minimal retraining.

* Real-time Vulnerability Detection in Multi-cloud DevOps
Pipelines: As organizations increasingly adopt multi- cloud
strategies, the framework will need to adapt to **multi- cloud
environments**. Future research will focus on integrating
real-time vulnerability detection with multiple cloud
providers, ensuring consistent security across platforms.

* Integrating Threat Intelligence Feeds for Proactive Detection:
Incorporating **real-time threat intelligence feeds** into
the GNN framework will enhance its ability to detect newly
discovered vulnerabilities. This integration will allow the
framework to stay updated with the latest vulnerability trends
and provide proactive recommendations to developers.

* Privacy-Preserving Vulnerability Detection: Privacy concerns
arise when analyzing project data, especially in collaborative

environments involving external dependencies. Future work
will explore the use of **federated learning** and **privacy-
preserving GNN models** to ensure that sensitive information
remains protected during vulnerability detection.

Closing Remarks

The proposed GNN-based framework offers a novel approach
to detecting vulnerabilities in code dependencies, ad- dressing a
critical need in modern software development. By continuously
monitoring dependencies and proactively identifying
vulnerabilities, the framework enhances the security posture
of applications throughout the DevOps lifecycle. As software
systems evolve, the framework can be further refined to address
emerging challenges, such as real-time detection in multi-cloud
environments and privacy-preserving analysis. Through these
improvements, the framework will play a key role in advancing the
field of DevSecOps and ensuring the security of next-generation
software systems.

References

1. OWASP Foundation (2021) OWASP Dependency-Check:
Open Source Dependency Scanning Tool. https://owasp.org/
www-project-dependency-check/.

2. Snyk (2022) Snyk Vulnerability Scanner: Open Source
Security Platform. https://snyk.io/.

3. SonarSource (2021) SonarQube Documentation. https:/www.
sonarqube.org.

4. OWASP Foundation (2021) OWASP ZAP: The Zed Attack
Proxy. https://owasp.org/www-project-zap/.

5. Z Wu, S Pan, F Chen, G Long, C Zhang, PS Yu (2021) A
Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems
32:4-24.

6. W Zhang, L Chen (2021) GNN-based Vulnerability Detection
in Open- Source Software. Journal of Software Security 15:
45-58.

7. M Liu, J Wang (2022) Detecting Transitive Vulnerabilities
with GNNs in Package Managers. in Proceedings of the ACM
Conference on Software Security 120-130.

8. T Wang, J Li (2021) Applying Graph Neural Networks to
Cybersecurity Applications. IEEE Security and Privacy
Magazine 19: 45-52.

Copyright: ©2023 Yogeswara Reddy Avuthu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

J Arti Inte & Cloud Comp, 2023

Volume 2(1): 7-7

