ISSN: 2754-6659

Journal of Artificial Intelligence &

Cloud Computing

Review Article

Research and Community

\?‘.»SCIENTIFIC

v
Open @ Access

Architecting Resilient Online Transaction Platforms with Java in a

Cloud-Native World

Rajesh Kotha'* and Pavan Kumar Joshi?

!Software Development Engineering Advisor, Fiserv, USA

Director Information Technology, Fiserv, USA

ABSTRACT

The exponential growth of digital payments and e-commerce has revolutionized the consumer purchasing experience, enabling seamless transactions
across borders. In this landscape, electronic money (e-money) and digital payment platforms have emerged as key enablers, optimized transaction
efficiency and enhancing communication between businesses and financial institutions. As these solutions become integral to global commerce, the
resilience of payment platforms—particularly within cloud-native architectures—has become a critical concern. This paper examines the integration of
cloud-native design principles into modern payment platforms, emphasizing the need for architectural approaches that prioritize resilience, scalability,
and security. As businesses increasingly rely on digital payment solutions, the demand for platforms capable of handling fluctuating transaction volumes
and potential security threats is more pressing than ever. The research focuses on best practices for building resilient payment systems using Java and
Spring Boot, exploring how cloud-native techniques such as microservices architecture improve agility and responsiveness. Additionally, it highlights the
importance of employing layered security strategies and automated resilience mechanisms—such as circuit breakers and bulkheads—to safeguard system
reliability. This study offers a comprehensive guide to architecting secure, resilient, and adaptable payment platforms that meet the evolving demands of

the digital economy.

*Corresponding author

Rajesh Kotha, Software Development Engineering Advisor, Fiserv, USA.

Received: October 05, 2022; Accepted: October 09, 2022; Published: October 17, 2022

Keywords: Online Payment Platforms, Cloud-Native Architecture,
Digital Economy, Microservices Architecture, Java Resilience
Strategies, Application Security, Platform Scalability, Layered
Security

Introduction

Payments and e-commerce are perhaps the fastest-growing
industries. A customer can buy any desired product while he/
she is at home because e-commerce makes web-based shopping
easier and better thus eliminating geographical boundaries between
buyers and sellers. Similarly, it is also possible for sellers to sell
their products everywhere, which makes why online shopping
and electronic money easy and fast. E-money or e-payment
facilities are one of the clean and efficient methods of transacting
and are important in the design of efficient payment systems. It
integrates the transaction processes and communications of the
seller/business and the finance community within the e-commerce
structure. This system is becoming prevalent in the developing
and developed world and, therefore, the world. There are several
methods by which the clients can purchase goods with them,
for instance credit cards, debit cards, electronic funds transfers
(E.F.T.), etc. [1]. There is a huge need for resilience in online
platforms, especially in the field of cloud-native technologies.
The word "cloud-native" was used a lot when cloud computing
was first introduced in 2006, which seems pretty clear now. That
being said, the word almost disappeared. Suddenly, and in the last
few years, the term has been used more and more, and it seems
to be picking up speed [2].

Mlarket Share

Ao weon P
e Fhome Pay. 0925
BHIM P : ; Amuasan Far
=R
Gamouraiad Phose P
P
Thisieg v P
Parim, 480" .EHDO PR
P
1% L = s

Figure 1: Percentage of Studies Conducted in each Category

Figure 1 depicts the percentage of studies conducted in each
category of digital payment technologies. Digital transactions
and payment systems have several issues, like scalability, security
issues, and performance bottlenecks. These issues can cause delays,
high costs, and a lack of trust from users. Cloud-native design
patterns, which integrate microservice and cloud-focused design
patterns to provide characteristics like massive scalability and
resilience, can help tackle this issue [3,4]. However, putting these
patterns to use is a difficult procedure that raises several security
issues. In this work, we investigate these security issues and use
cloud-native design techniques to reimagine and launch a single

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 1-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

SaaS application. We also consider appropriate countermeasures
for multilayer security to be used at the application and cloud
networking layers.

Redesigning payment platforms to leverage cloud-native
technologies involves a careful migration from monolithic
systems to microservices, accompanied by the implementation
of layered security measures. By integrating security protocols
at both the application and cloud networking layers, businesses
can better protect themselves against potential threats. Continuous
monitoring of these systems will also play a vital role in detecting
and responding to security incidents promptly. Ultimately,
architecting resilient payment platforms in a cloud-native
environment is crucial for meeting the demands of an evolving
e-commerce landscape and ensuring the trust of users in digital
payment solutions.

Motivation for this study arises from the rapid evolution of
digital payment systems and the increasing reliance on cloud-
native architectures to support them. As businesses transition to
these innovative solutions, there is a pressing need for resilient,
secure, and scalable payment platforms capable of handling
diverse transaction loads and potential security threats. The aim
of this paper is to investigate effective architectural patterns and
best practices for developing such platforms using Java and the
Spring Boot framework, ultimately providing a comprehensive
framework that addresses the unique challenges posed by cloud
environments and enhances the agility of payment systems in the
digital economy.

Structure of the Paper

The following paper is structured as; Section II provide the cloud-
native architecture for payment platforms, Section III discussed
the systematic mapping process for cloud-native services, Section
IV give the overview of digital payment application, Section V
discussed the resilience of payment platforms, Section VI provide
the java in building resilient payment platforms, Section VII
discussed some challenges for security in cloud-native services,
Section VIII provide the literature review , at last section provide
the conclusion and future work.

Cloud-Native Architecture for Payment Platforms

A software program that is cloud-native is a distributed, adaptable,
and horizontally scalable system. It is composed of as few stateful
components as possible that maintain state separation using (micro)
services. The program is created utilizing cloud-focused design
patterns in each of its self-contained deployment blocks, and it is
operated on a self-service elastic platform [5]. Publicly available
and versioned APIs are the primary means by which services
communicate with one another in a cloud-native application
design. API-based cooperation is the term for this. These APIs
can utilize alternative protocols and serialization formats, but
they typically employ HTTP REST and JSON serialization. The
single deployment components of the architecture are created
and connected using a set of cloud-focused patterns, such as
the circuit breaker pattern, the twelve-factor app collection,
or cloud computing patterns. Finally, these microservices are
deployed and operated via self-contained deployment units, or
containers, using self-service agile infrastructure tools. These
systems provide additional operating functions, like load balancing
and dynamic routing, log and metric collection, and application
health management, on top of laaS infrastructures [6]. Among
these functionalities are on-demand and automated application
instance scaling. Figure 2 depicts the overall cloud-native design.

E wh""l me [I.‘nrzl]
()
[composies | wumert]

Frhed

¥
[[Fvent rcten |

ifu]ﬁ

Ea) (es) ()

(o) (o) o)

| Dewbiandsteam ;@
[mn
¥

T |

Figure 2: Cloud Native Applications Architecture

Infrastructure-as-a-Service, or IaaS, is the name of the service
model [7]. "Compute" computers are the IT resources that are
used over a network for networking, storage, and/or processing
power. The operating systems and applications that are installed
in the virtual machines (VMs) that the IaaS customer rents are
their own responsibility. The hardware is handled by the cloud
provider. The uses of [aaS services (such as virtual servers, storage,
and networking) may be restricted if a user has an agreement with
an laaS provider. AWS's EC2, S3, Route 53, and other services
are an example of an laaS offering. As a member of Google
Cloud Platform, the company's IaaS and PaaS group, Compute
Engine is likewise an laaS service. The business in question is
equipped with a private cloud. When hosting is done on-premise,
it takes place at the client's location and may be managed by
the client themselves [8]. You can leverage Microsoft's Azure,
IBM's SoftLayer/Bluemix, or VMware's vSphere to put up an
internal cloud PaaS or IaaS. While their investment banking
divisions would exclusively utilize Office 365 on-premise, some
banks' retail banking operations might use it in the cloud. In a
similar vein, Splunk is a software that many EU banks use for
data gathering, monitoring, and analysis. It can be utilized through
SaaS or installed on-premise [9].

Benefits of Cloud-Native Systems in Payment Services

The following Cloud-Native systems in Payment services

Benefits are:

* Digital Identification and Verification and KYC: The main
benefit of cloud services is the ability to process photographs
instantly utilizing cloud-stored legal documents and images
to verify and identify the individual as well as learn more
about them.

» Digital Signature: Digital signatures are an additional option
that enable users to access documents from any location in
the world. This reduces the expense of operating a business
and facilitates doing business. Investing in Al and the Internet
of Things is a wise strategy to keep ahead of the competition
in the market, even though it is a one-time event.

* Digital Payments: Digital payments have increased
significantly over time, and the global acceptance of these
payments has been facilitated by the current epidemic. The
compliance agreement enables users to buy and sell goods
globally. In this instance, cloud-based digital payments have
an impact.

e Banking Through Smart Speakers: Banks and IT
businesses are heavily investing in speech biometrics,

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 2-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

which is implemented through Internet of Things devices
such as smart speakers. Once again, banking through smart
speakers will revolutionize the industry and spur massive
cloud infrastructure development initiatives [10].

Systematic Mapping Process for Cloud Native Services
Cloud-native services alter software application design,
development, deployment, and management in cloud computing.
This cloud-based solution improves application performance,
availability, scalability, and efficiency. Through principles and
techniques, cloud-native services deliver durable, scalable,
and portable applications. Containerization isolates application
components and dependencies into lightweight containers,
supporting these services [11-13]. Containerization optimizes
resource utilization, streamlines deployment, and ensures
environment consistency.

DevOps, a scientific approach that promotes collaboration and
task automation between development and operations teams,
is the foundation for software development and delivery. Code
integration, testing, and deployment are all automated and go by
the name of Continuous Integration and Continuous Deployment
(CI/CD). This improves software and lowers the risk of launching
new features. DevOps uses Infrastructure as Code (1aC) to design
and maintain infrastructure based on code, ensuring consistency
and repeatability. This methodical integration of automation,
version control, and infrastructure management makes developing
and implementing cloud-native software more dependable,
efficient, and user-friendly.

o Stong Access
" Gontrols

Access
Management

\\\%7 %r-ﬂ“-*.’-::.:';:;,...:
PR

AL zersTrust
\ 25 [mecnascuure tzra)
Secasity, CONtNUOuS
x
Incident Responss \!n(-uuo- Detme tion
Duwaster Recavery,
Orcheatration
Prationm Securiy InciGent Repcnas
Container &

|
[
Security |
[
|
f

me

|
|
|
Data Securty } Data Encrypuon
[
i
M Security as o
f | serce (sECasE)

Devsecops

Vuinerability
Practices =

o |
Presarving ana Data
L Compitance |

Connguration
Management

Figure 3: A Systematic Mapping Process

A thorough design process that incorporates several crucial
elements, functionality, and security choices for cloud-native
applications is depicted in Figure 3. Important sections are
highlighted in green features are highlighted in blue, and responses
are highlighted in red for aesthetic purposes.

Cloud-native microservices divide applications into loosely
linked, deployable services. Each service can be designed,
deployed, scaled, and updated separately for a specific business
purpose [14]. This flexible, agile, and scalable architecture allows
organizations to swiftly add new goods and meet changing
demands. Microservices use containers to separate applications
and dependencies. With their lightweight and portable runtime
environment, containers maintain computer consistency. They
streamline application scalability, deployment, and management,
saving resources and speeding up launch. Kubernetes orchestrates
cloud-native container deployment, scalability, and administration

[15,16]. They ensure application reliability using service discovery,
load balancing, and self-healing. Orchestration systems allow
developers focus on app design and deployment, not infrastructure.

Overview of Digital Payment Application

Online applications, are software programs that allow users to
make browse, purchase products or services from their mobile
devices or computers. They can be used to make peer-to-peer
payments, pay bills, or pay businesses for products [17]. Using
a computerized payment method in place of cash or cheques is
known as digital payment [18]. The utilization of digital funds
is growing in popularity since they are more user-friendly and
straightforward. Customers can also make digital payments at
any time and from any location. This expedites the transaction
process and makes digital payments a beneficial substitute for
conventional payment methods [19]. The image shows the
current digital payment options in addition to their soon-to-be-
released replacements. The Figure 4 depicts the digital payment
technologies while Figure 5 shows the no. of studies conducted
in these fields.

Digital Payment
Technologies

l l

‘ Card Payment I | E-Payments I | Mobile Payments I | Cryptocurrencies l
! ! ! |
Fa) N/ saomDEwates, s \ § N
Bloctronic und ransler, [mmm" PP Bitcoin, Eereum, Qtum
EFTPOS Pogoh 1L 1 based PO5 Pt egii
Crudil Card Bett & Road sik ma::"';gl- Commny Curency
ﬁ"ﬁ""m m’;"‘mm (Googla Wallet, Apple mﬂamﬂm =
e P2 (und ransfar, o) amenen Eerl e,
OPERA (Google swwg Ottet Blackchain
Wallet, Apgle Pay, ol B eryplocurrencies

Intoetoco)

ALY | REM, JobioPay
— ~ N & N
Inda, Swoden, Zimbabiwe. Inia, Swoden. USA.
e e, D sraad oy, higena, Unraine, Inanesia, 6 GCC, USA, Eropean Union
Indonesia, Kirgre Indonasia, Russin China, Denmark, Kyngyz Repubbe, (EU), Russia, Intorpational
Rapls Jordan, UK, Inlsmalionsl Internabanal

Figure 4: Digital Payment Technologies

Cryptocurrencies
13 Studies

Card Payments
_ 14 Studies

E-Payments

Mobile Payments 22 Studies

28 Studies

m Card Payments

E-Payments

m Mobile Payments = Cryptocurrencies

Figure 5: The Number and Percentage of Research Studies
Conducted on Each Kind of Digital Payment Technology

Resilience in Online Application Platforms

Resilience in microservices is about designing systems that
can handle failures gracefully. It involves anticipating potential
points of failure, implementing mechanisms to recover from
those failures, and ensuring that the system continues to operate,
even if some components fail. In a microservices architecture,
where services are loosely coupled and often rely on network
communication, resilience becomes a crucial aspect of system
design.

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 3-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

Key Resilience Strategies in Microservices

The following key Resilience Strategies in Microservices are

discussed below:

* Circuit Breaker Pattern: The circuit breaker pattern is
a fundamental strategy for resilience in microservices. It
prevents a service from repeatedly attempting to call a failing
service, which can cause cascading failures. When the circuit
breaker is "open," the service immediately returns an error or
a fallback response, giving the failing service time to recover.
This strategy prevents the system from being overwhelmed by
repeated failure attempts and helps in containing the failure
within a specific service.

e Bulkhead Pattern: The bulkhead pattern is inspired by the
compartmentalized design of a ship, where failure in one
compartment does not lead to the sinking of the entire vessel.
In microservices, this pattern involves isolating different
parts of the system to prevent a failure in one service from
affecting others. By allocating separate resources (e.g.,
threads, memory) to different services, the bulkhead pattern
ensures that even if one service fails, others can continue to
operate normally.

* Failover Mechanisms: Failover mechanisms automatically
switch to a standby system or service when the primary one
fails. In microservices, this can be implemented at various
levels, including the service, database, and network layers.
By ensuring that a backup is always available, failover
mechanisms help in maintaining service continuity during
unexpected failures.

* One way to pay for items you purchase online is with an
electronic payment. Doing business is made easier for both
buyers and sellers by e-payment. The usage of electronic
payments benefits consumers, vendors, online retailers,
and the government in general. With electronic payments,
transaction data can be saved for subsequent use in additional
studies. Finding consumer trends and a product's market share
in a certain region might be aided by this. Other advantages
of e-payments include speedy payments, less time spent,
decreased expenses, and increased buyer-user trust. Financial
transactions occur as new technology is developed and applied
to electronic payment systems. Good electronic payment
technologies tend to ingrain themselves into users' minds and
alter their expectations of how things should operate [20].
Figure 6 shows the Payment information registration system.

O Payment information registration j
Financial P Mobile
o & raditional [Smant devices)

Institutions Payment IT Company

{Banks, credit Services |Aggle, Samsung,

card, insurance Albaba, Google, etc.)

companies, etc.)
L SO oy
| ARRY - - ’I ! N
| “ Integrated "’ "
| \ payment 1 1
: agency :
1 - -
| Service N e Service :
! I
! I
- i z
: — Service Service :
| 4= = Payment request I
L L)

Figure 6: Payment Information Registration

Online payment processing can be categorized into two primary
types: account-based and electronic currency techniques.
Therefore, you can use an existing personal account, such as a bank

account, to make payments utilizing account-based techniques.
On the other side, digital currency techniques enable users to
make payments using their digital money. Common account-
based methods include credit and debit cards, online banking, and
payment portals like PayPal. However, computer currency systems
include things like smart cards and online payment systems like
Bitcoin [21]. The novel concept of cloud-based mobile payments
has the potential to address these problems related to faith. Parts
of payment apps or entire apps are stored in cloud storage. The
phone has unique features that make using it as a repeater safe.
Relay technologies are occasionally viewed as potential hazards
in the scientific literature. However, we believe that monitoring
and recording financial activities in the cloud increases security
and provides us with valuable information in the context of big
data. The two main components of our cloud payment paradigm
are mobile host card emulation (HCE) and servers hosting secure
elements. As previously said, the most crucial component of
the cloud model payment process is trust in mobile terminals.
The TLS protocol makes reciprocal verification possible. TLS
processing is used by security components or Trusted Execution
Environment (TEE) architecture to ensure security. The majority of
safe components can function with a Java Virtual Machine (JVM).
A Java Card TLS program runs in one to ten seconds in the full
mode of TLS and in two to five seconds in the reduced mode [22].

Java in Building Resilient Payment Platforms

In 1995, Sun Microsystems developed the computer language
Java. Oracle assumed control of the Java project after purchasing
Sun Microsystems in 2010. Its class-based and object-oriented
design makes it popular among engineers. As per the source, it is
among the top three most widely used computer languages. Thus
far, Oracle has released several Java versions that are easier to use
and more suited for programmers [23,24]. Java 8 is one of the most
recent versions that is suitable for commercial use. This method
accumulates to numerous things, such as Lambda Expressions,
a new feature, allows programmers to more succinctly specify
instances of single-method interfaces. Code can be viewed as
data, and functionality as a method parameter. A new class named
Streams offers a Stream API that enables you to perform functional
operations on streams of elements. Its ability to work with the
Collections API allows you to perform bulk actions on collections.

Java Spring Boot Framework

The base of the new Spring Boot framework is the Spring

framework. Programmers may create web-based apps more

quickly and easily with the help of this technology. Spring Boot

requires less configuration than the Spring framework. It's time to

provide you with a ton of XML descriptions. All that's required is

careful selection of variables. The Spring software is built around

Multi-tier Architecture. It appears as follows:

e The Web Layer — It takes care of requests from users and
errors that other layers throw.

e The Service Layer — It implements the business rules of
the application.

¢ The Repository Layer — Its responsibility is the database
connection.

Although it's a strong tool, Spring Boot is not enough to develop
microservices; other tools are required to handle basic architectural
elements like communication. To assist you with this, Spring
Cloud offers standard patterns for distributed systems [25].

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 4-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

Web Layer

- (controliers, exception handlers, fllars, view templates, and 50 on) DTOs

Service Layer
{application services and Infrastructure services)

Private

Repository Layer

(repository interfacas and their implementations)

Figure 7: Shows the Typical Three-Tier Architecture Found in a
Lot OF Online Apps

Figure 7 depicts the illustrates a typical three-tier architecture
commonly used in web applications, including a Web Layer for
handling user interactions, a Service Layer for business logic and
transaction management, and a Repository Layer for data access.
It also highlights the use of DTOs for data transfer and a Domain
Model for encapsulating business logic.

Autonomic and Cognitive Security Management

Many technologies will underpin cloud-native service
cybersecurity frameworks. Paradigm-based frameworks like
enabling technologies are examined in this section. Microservices
are being used to make modern programs more portable, scalable,
and reliable in cloud-native contexts. This approach creates new
cloud-native application growth and complexity security issues.
Intelligent and automated solutions are needed to reduce human
workload in cloud-native application security management. Figure
8 shows a paradigm based on ETSI ZSM design principles for
autonomous safe resource management in varied areas. This
framework introduces node, end-to-end, and inter-slice Al-
powered closed loops. Thus, it can swiftly and efficiently detect
and mitigate security problems near the source, limiting network
proliferation.

E2E Management Layer |
E2E TSM €26 Stice Manager | | Cross-Domain
M5 T . - [Data Services
E2E B == posad
3 15::. Sec. Policy E2€ Sec. Mo || i
. BSSLA Orchestrator E==) pe——i——
DE || MATIREC | | pranager | m == [
praial || X] : | E2E MANO
!\ tnl-el_ra.ll_:_m Fabric]
| |
Cross-Domain Integration Fabric
Domain Management Layer mas, ™ o tdge)
Integration Fabris |
| I [‘
ITsm |
1 r < . P o JJ' ?:' .'- T 1
Trust | Se;sl::w Sec | B5 Sub-Slice Manager | MANO]
Ll o | e
anager M‘m‘!‘r 1l Orchestrator | MS . AE ! e
ws | [ae] [oc] oefe] |
- |
SEM |
IH s || o w | [H
NFfCNF/PNE || VNF/CNF/PNF
TSM rr.n-tl.ssn—_n,-.!;»!.ra;\e- L] -Ma\'ralur- At
DE - Ducision Engine ES - Enforceme e

Figure 8: The Architecture of a Cognitive and Autonomous
Security Management System

Figure 8 shows the architecture of an autonomous and cognitive
security management system. By establishing layers, the
technology enhances E2E security over the entire region. From
network nodes to end-to-end links and levels between slices,
Al-driven closed loops are created. By identifying and resolving
security issues at their source, this fine-grained approach prevents
them from propagating to other areas of the network. The ETSI
ZSM design standards serve as the foundation for this framework.
This is made possible by service-based design and independent
security control. This design permits users who are authorized
to access security control services to do so via an integration
fabric. Integration fabric locates, files, and makes calls to security
management services. Between these management services
and other management services, there is more communication.
Historical security management service data and expertise are
stored by data services in the same or a different location and
provided to the framework.

Challenges for Security in Cloud-Native Services
Cloud-native services offer numerous advantages, such as cost-
effectiveness, flexibility, and the capacity to expand as needed.
On the other hand, developing secure cloud-native services is
challenging due to the numerous issues that surround them.
This section is devoted to a cursory examination of a few of
them. Because of the way cloud-native services manage and
store sensitive data, it might be more difficult to maintain data
security. Maintaining confidence, abiding by privacy regulations,
and averting potential legal, financial, and societal issues all
depend on the security of user data and private information.
Furthermore, maintaining a consistent security posture is more
difficult with cloud-native services due to their dynamic and
scalable nature. Scalability is a big plus, but it also implies that
security concerns must be properly considered. The concept that
cloud-native services are harder to secure due to their distributed
nature is supported by an examination of the many risks that they
are likely to encounter [26]:

* Malware Attacks: Malware can target cloud-native services due
to their dispersed deployment over multiple servers. Attackers have
the ability to penetrate one area of the infrastructure before moving
on to other areas that are connected to it. Data breaches, illegal
access, or service disruptions could result from this. Additionally,
vulnerabilities in cloud-native designs might be exploited by
malware, compromising the security and integrity of the entire
system [27].

* Man-in-the-Middle (MITM) Attacks: Cloud-native services
are also more vulnerable to man-in-the-middle assaults due to their
dispersed nature. These kinds of attacks involve someone listening
in on a discussion between two individuals and altering it without
the victims' knowledge. This can result in the loss, unauthorized
access to, or alteration of private data. MITM attacks can exploit
compromised certificates, lax encryption techniques, or gaps in
communication links[28].

* DDoS Attacks: Every type of attack on Industrial IoT (IlioT)
and strategies for defending against it: A network or service may
experience service outages if a large number of compromised
devices overwhelm it with data. We refer to this as a Denial of
Service (DDoS) assault. These attacks, also referred to as "Cloud
Zombie" attacks, can be extremely detrimental to cloud-native
applications that rely on network connectivity and access [29].
The ability of cloud settings to grow or decrease automatically
has also been leveraged by a few variations of this attack.

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 5-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

Literature Review

This section includes the associated work on cloud-native Java
payments. This paper aims to provide an in-depth analysis of the
ways in which cloud-native technologies provide scalable and
dependable payments.

Wang, Hahn and Sutrave, outline the various types of mobile
payment systems and discuss a model for making mobile payments.
We compile a list of security elements that consumers desire and
those that are already available in mobile payment systems. We
discuss three main security threats: data leaks, SSL/TLS flaws, and
malware. We discuss four main security issues: detecting malware,
utilizing multi-factor authentication, preventing data breaches, and
identifying and thwarting fraud in mobile payment systems [30].

First, Zhang et al., discuss the adversary model, specifications,
and system architecture of BCPay. They then discuss its design
in considerable detail. Our security study scores BCPay with
robust fairness as well as soundness. This implies that assaults
such as recording discussions or altering the rules have no effect
on the fairness. Our analysis of BCPay's performance reveals
that it operates with exceptional efficiency when it comes to
both transaction volume and calculation costs. We also develop a
blockchain-based protocol for fog computing task outsourcing and
a blockchain-based system for cloud computing data ownership
verification to demonstrate the potential applications of BCPay
[31].

As demonstrated by Zouina and Outtai, (2019), a distributed
payment system built on Blockchain technology and payment
tokens is suggested. By preventing unauthorized use of the
customer's payment card details (PAN, CVV) as a result of third
parties managing the payment system poorly, these payment
tokens shield them against identity theft. A private Blockchain
consortium contributes to the safety and privacy of the proposed
payment system. Three private blockchains comprise this
consortium: the acquisition and issuer banks' blockchains, the
third private blockchain, which is the issuer bank; and Bank

Authority, the interoperability domain. Particular nodes verify and
check transactions to identify and thwart fraud attempts, thereby
strengthening the security of the payment system [32].

Chun, (2019) investigate who bears responsibility for breaches of
security or privacy in electronic transactions. Many devices and
architectures, such as PCs, smartphones, tablets, smart meters,
sensors, automobiles, and more, are used to send data. Along with
the cloud and the Internet of Things, electronic trade likewise
has well defined network structures. Security and privacy are
compromised, though. This essay demonstrates that if a consumer
loses a significant amount of money and there is a high likelihood
of security or privacy breaches, the corporation may be held
accountable. However, the extent of the customer's culpability
depends on their attitude towards risk, the amount of money
they lose, and the effectiveness of their security investment [33].

A R Sri Nandhini, discuss cloud-native apps as a replacement
for on-premise software in their 2020 study. We use Platform as
a Service (PaaS) for Application Streaming on-premise instead
of installing on-premise application software on each server as
is customary. Furthermore, the study attempts to elucidate the
superiority of native-cloud applications over on-premise ones [34].

The survey by, Prokhorenko and Ali Babar examines the most
recent architectural techniques proposed to increase the resilience
of Cloud-, Fog-, and Edge-based systems. This paper offers a
flexible taxonomy to examine several approaches to developing
distributed systems that are robust. Additionally, this work presents
a capability-based cyber-foraging technique that considers
a physical node's capabilities in order to increase the overall
resilience of the system. This survey also discusses trust issues
and solutions within the framework of system resilience and
reliability [35].

This Table 1 provides a concise overview of each paper,
highlighting the main focus, technologies involved, and the
security or resilience mechanisms they describe.

Table 1: Summary of Related Work for Payments with Java in a Cloud-Native World

Reference Year Topic System/ Key Focus Security/Privacy
Technology Mechanisms
Wang et al. [30] 2016 Mobile Payment Mobile Payment Malware, SSL/TLS Desired security
Processing Systems vulnerabilities, and data services, existing
breaches are examples of | mechanisms
security threats. Stopping
data leaks, employing
multifactor authentication
(MFA), identifying
malware, and identifying
and preventing fraud are
some of the challenges.
Y. Zhang et al. [31] | 2018 Blockchain-Based | Blockchain BCPay architecture, Resilient to
Payment (BCPay) Soundness, Robust eavesdropping and
Fairness; Performance malleability attacks
analysis and blockchain-
based applications
M. Zouina et al. 2019 Distributed Blockchain Payment tokens to protect | Blockchain to secure
[32] Payment System Consortium against identity theft; payment tokens,
Security/privacy through | interoperability via
private blockchains and "Bank Authority"
special nodes for fraud blockchain
detection

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 6-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

Chun et al. [33] 2019 Liability in Electronic Analysis of liability in Liability depends on
Electronic Commerce security/privacy breaches; | customer risk attitude,
Transactions Factors affecting liability | firm-side investment in
decisions security.
AR Sri Nandhini | 2020 Cloud-Native Cloud PaaS Advantages of using PaaS | -
et al. [34] Application for application streaming
Implementation over on-premise software
Prokhorenko and 2020 System Resilience | Cloud, Fog, Edge | Taxonomy of resilience Focus on system
Ali Babar [35] in Distributed approaches; Capability- resilience, trust issues,
Systems based cyber-foraging and capability analysis.
framework for resilience
improvement

Conclusion and Future Work

In the present world which is advancing radically in its digital
space, it is important that there is a growing need for payment
systems that are strong, safe, and efficient. In conclusion,
architecting resilient payment platforms in a cloud-native
environment is crucial for businesses seeking to thrive in the
digital economy. The integration of Java and the Spring Boot
framework enables developers to build scalable and efficient
microservices that enhance the overall performance of payment
systems. However, as these platforms evolve, they face significant
security challenges that must be addressed through a proactive
approach to security management. Implementing layered security
strategies and resilience patterns is essential to safeguard sensitive
transaction data and maintain user trust. Future work should focus
on refining these architectural practices and exploring emerging
technologies that can further enhance the resilience and security
of payment platforms, ensuring they can effectively respond to
the complexities of the modern digital landscape.

Future work in architecting resilient payment platforms should
focus on integrating Al and machine learning for enhanced fraud
detection and risk management. Exploring blockchain technology
can improve transaction transparency and security. Developing
standardised frameworks for microservices and APIs will
facilitate interoperability, while automated testing and continuous
deployment strategies will ensure ongoing reliability. Additionally,
researching the impact of emerging cloud technologies, like
serverless and edge computing, will provide insights for future
architectural designs.

References

1. RF Olanrewaju, B Ul Islam Khan, MM Ul Islam Mattoo, F
Anwar, AN Anis, etal. (2017) “Securing electronic transactions
via payment gateways — a systematic review,” Int. J. Internet
Technol. Secur. Trans doi: 10.1504/IJITST.2017.089781.

2. N Kratzke, PC Quint (2017) “Understanding cloud-native
applications after 10 years of cloud computing - A systematic
mapping study,” J. Syst. Softw doi: 10.1016/j.jss.2017.01.001.

3. MT VISHWA VIJAY Kumar, MUKUL Tripathi, SATISH
KUMAR Tyagi, SK Shukla (2007) “An integrated real time
optimisation approach (IRTO) for physical programming
based redundancy allocation problem,” Proc. 3rd Int. Conf.
Reliab. Saf. Eng. Udaypur, Rajasthan, India 692-704.

4. VV Kumar (2014) “An interactive product development
model in remanufacturing environment : a chaos-based
artificial bee colony approach,” https://scholarsmine.mst.
edu/masters_theses/7244/.

5. VV Kumar, FTS Chan, N Mishra, V Kumar (2010)
“Environmental integrated closed loop logistics model: An
artificial bee colony approach,” in SCMIS 2010 - Proceedings

10.

I1.

12.

13.

14.

15.

16.

of 2010 8th International Conference on Supply Chain
Management and Information Systems: Logistics Systems
and Engineering.

N Kratzke, R Peinl (2016) “ClouNS-a Cloud-Native
Application Reference Model for Enterprise Architects,”
in Proceedings - IEEE International Enterprise Distributed
Object Computing Workshop, EDOCW doi: 10.1109/
EDOCW.2016.7584353.

VV Kumar, SR Yadav, FW Liou, SN Balakrishnan (2013) “A
digital interface for the part designers and the fixture designers
for a reconfigurable assembly system,” Math. Probl. Eng doi:
10.1155/2013/943702.

V Kumar, VV Kumar, N Mishra, FTS Chan, B Gnanasekar
(2010) “Warranty failure analysis in service supply Chain
a multi-agent framework,” in SCMIS 2010 - Proceedings
of 2010 8th International Conference on Supply Chain
Management and Information Systems: Logistics Systems
and Engineering.

WK Hon, C Millard (2018) “Banking in the cloud: Part 1 —
banks’ use of cloud services,” Comput. Law Secur. Rev doi:
10.1016/j.¢clsr.2017.11.005.

D Vivek, S Rakesh, RS Walimbe, A Mohanty (2020) “The
Role of CLOUD in FinTech and RegTech,” Ann. Dunarea
Jos Univ. Galati. Fascicle I. Econ. Appl. Informatics doi:
10.35219/eail15840409130.

D Gannon, Barga R, Sundaresan N, Goasguen S, Gustaffson
N, et al. (2017) “An Asynchronous Panel Discussion: What
Are Cloud-Native Applications?,” IEEE Cloud Computing
doi: 10.1109/MCC.2017.4250941.

VV Kumar, M Tripathi, MK Pandey, MK Tiwari (2009)
“Physical programming and conjoint analysis-based
redundancy allocation in multistate systems: A Taguchi
embedded algorithm selection and control (TAS&C)
approach,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab 3:
215-232.

SKR Anumandla, VK Yarlagadda, SCR Vennapusa, KR
V Kothapalli (2020) “Unveiling the Influence of Artificial
Intelligence on Resource Management and Sustainable
Development: A Comprehensive Investigation,” Technol.
\& Manag. Rev vol. 5: 45-65.

N Alshugayran, N Ali, R Evans (2016) “A systematic
mapping study in microservice architecture,” in Proceedings
- 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications, SOCA doi: 10.1109/
SOCA.2016.15.

N Poulton (2019) “The Kubernetes Book,” Angew. Chemie
Int. Ed 6: 951-952.

VV Kumar, MK. Pandey, MK Tiwari, D Ben-Arieh (2010)
“Simultaneous optimization of parts and operations sequences
in SSMS: A chaos embedded Taguchi particle swarm

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 7-8

Citation: Rajesh Kotha, Pavan Kumar Joshi (2022) Architecting Resilient Online Transaction Platforms with Java in a Cloud-Native World. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E184. DOI: doi.org/10.47363/JAICC/2022(1)E184

17.

18.

19.

20.

21.

22.

23.

24.

25.

optimization approach,” J. Intell. Manuf doi: 10.1007/s10845-
008-0175-4.

SBR Kumar, SA Rabara, JR Martin (2009) “A system
model and protocol for mobile payment consortia system,”
in Proceedings of the International Symposium on Test and
Measurement doi: 10.1109/ICTM.2009.5413011.

BP Vamsi Krishna Yarlagadda, Sai Sirisha Maddula,
Dipakkumar Kanubhai Sachani, Kishore Mullangi, Sunil
Kumar Reddy Anumandla (2020) “Unlocking Business
Insights with XBRL: Leveraging Digital Tools for Financial
Transparency and Efficiency,” Asian Account. Audit. Adv
11: 101-116.

M Massoth, T Bingel (2009) “Performance of different
mobile payment service concepts compared with a NFC-
based solution,” in Proceedings of the 2009 4th International
Conference on Internet and Web Applications and Services,
ICIW doi: 10.1109/ICIW.2009.112.

DS Islamiati, D Agata, AR Anom Besari (2019) “Design
and Implementation of Various Payment System for Product
Transaction in Mobile Application,” in IES 2019 - International
Electronics Symposium: The Role of Techno-Intelligence in
Creating an Open Energy System Towards Energy Democracy,
Proceedings doi: 10.1109/ELECSYM.2019.8901643.

FH Al-Hawari, MS Habahbeh (2020) “Secure and robust
web services for e-payment of tuition fees,” Int. J. Eng. Res.
Technol doi: 10.37624/ijert/13.7.2020.1795-1801.

P Urien, X Aghina (2016) “Secure Mobile Payments Based on
Cloud Services: Concepts and Experiments,” in Proceedings
- 2nd IEEE International Conference on Big Data Security on
Cloud, IEEE BigDataSecurity 2016, 2nd IEEE International
Conference on High Performance and Smart Computing,
IEEE HPSC 2016 and IEEE International Conference on
Intelligent Data and S doi: 10.1109/BigDataSecurity-HPSC-
1DS.2016.48.

RP Vamsi Krishna Yarlagadda (2018) “Secure Programming
with SAS: Mitigating Risks and Protecting Data Integrity,”
Eng. Int 6: 211-222.

VKY Nicholas Richardson, Rajani Pydipalli, Sai Sirisha
Maddula, Sunil Kumar Reddy Anumandla (2019) “Role-
Based Access Control in SAS Programming: Enhancing
Security and Authorization,” Int. J. Reciprocal Symmetry
Theor. Phys 6: 31-42.

K Gos, W Zabierowski (2020) “The Comparison of Microservice
and Monolithic Architecture,” in International Conference on
Perspective Technologies and Methods in MEMS Design doi:
10.1109/MEMSTECH49584.2020.9109514.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Y Shah, S. Sengupta (2020) “A survey on Classification
of Cyber-attacks on IoT and IIoT devices,” in 2020 11th
IEEE Annual Ubiquitous Computing, Electronics and Mobile
Communication Conference, UEMCON doi: 10.1109/
UEMCONS51285.2020.9298138.

MN Alenezi, H Alabdulrazzaq, AA Alshaher, MM Alkharang
(2020) “Evolution of Malware Threats and Techniques: A
Review,” Int. J. Commun. Networks Inf. Secur doi: 10.17762/
ijenis.v12i3.4723.

M Conti, N Dragoni, V Lesyk (2016) “A Survey of Man in
the Middle Attacks,” IEEE Communications Surveys and
Tutorials doi: 10.1109/COMST.2016.2548426.

AC Panchal, VM Khadse, PN Mabhalle (2018) “Security
Issues in IIoT: A Comprehensive Survey of Attacks on IloT
and Its Countermeasures,” in Proceedings - 2018 IEEE
Global Conference on Wireless Computing and Networking,
GCWCN doi: 10.1109/GCWCN.2018.8668630.

Y Wang, C Hahn, K Sutrave (2016) “Mobile payment security,
threats, and challenges,” in Proceedings of the 2016 2nd
Conference on Mobile and Secure Services, MOBISECSERV
2016 doi: 10.1109/MOBISECSERV.2016.7440226.

. Zhang, RH Deng, X Liu, D Zheng (2018) “Blockchain
based efficient and robust fair payment for outsourcing
services in cloud computing,” Inf. Sci. (Ny) doi: 10.1016/j.
ins.2018.06.018.

M Zouina, B Outtai (2019) “Towards a distributed token
based payment system using blockchain technology,” in
Proceedings - 2019 International Conference on Advanced
Communication Technologies and Networking, CommNet
2019 doi: 10.1109/COMMNET.2019.8742380.

SH Chun (2019) “E-commerce liability and security breaches
in mobile payment for e-business sustainability,” Sustain doi:
10.3390/su11030715.

A R Sri Nandhini (2020) “Impact of Implementing
Cloud Native Applications in Replacement to on-Premise
Applications,” Int. J. Eng. Res doi: 10.17577/ijertv9is061021.
V Prokhorenko, M Ali Babar (2020) “Architectural resilience
in cloud, fog and edge systems: A survey,” IEEE Access doi:
10.1109/ACCESS.2020.2971007.

Copyright: ©2022 Rajesh Kotha. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

J Arti Inte & Cloud Comp, 2022

Volume 1(4): 8-8

