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Introduction
The use of containerization technologies has changed the method 
of cloud application deployment and management. Containers 
are lightweight and portable runtime environments that enable 
applications to run similarly in all computing environments [1]. 
EKS Amazon Elastic Kubernetes Service (EKS) has become 
a popular option for running containerized applications in the 
cloud, providing an easy-to-use managed Kubernetes service 
that simplifies the deployment and management of containerized 
workloads [2].

Data-intensive applications, such as big data processing, machine 
learning, and real-time analytics, will greatly benefit from the 
scalability and flexibility provided by containerization and 
Amazon EKS [3]. Nevertheless, the installation and management 
of containerized data workloads on EKS is challenging. It 
requires carefully observing different issues, such as data storage, 
networking, security, and performance optimization [4].

In this paper, it examines the procedure for rolling out and 
controlling containerized data workloads on Amazon EKS. It 
discusses the benefits of containerization in terms of portability, 
scalability, and the same conditions in different environments. 
Besides, it also examines the best practices for designing and 
running data-heavy applications on EKS by referring to data 
storage, networking, and security. Here, it illustrates the case 
study of managing a Kafka cluster and streaming data in EKS, 
which is a viable option.

Containerization and its Benefits
Containerization is one of the most preferred solutions for packaging 
and deploying applications in a portable and efficient way [5]. 
Containers are a lightweight and isolated runtime environment 
that wraps an application, its libraries, and configuration files 
and, thus, creates an isolated application environment [6]. By 
containerizing applications, organizations can achieve several 
benefits, including: By containerizing applications, organizations 
can achieve several benefits, including:
•	 Portability Containers are how the applications can be 

packaged in a self-contained manner so they can be easily 
transported to different computing environments [7]. 
Containerized applications are easily transferred from this part 
of deployment to testing and then to production with the help 
of various cloud platforms or the on-premises infrastructure 
[8]. The portability of mobile devices helps prevent the 
occurrence of compatibility problems, and it guarantees the 
same performance of applications in any environment.

•	 Scalability is possible through containerization, by which 
applications can be easily scaled horizontally by running 
several instances of the same container [9]. Containers are 
light and can be easily allocated or stopped when needed. 
Thus, organizations can dynamically modify their application 
capacity to accommodate varying workloads [10]. This 
growth is especially useful for data-intensive applications 
that are subject to fluctuations in demand or need to deal with 
large amounts of data.

•	 Consistency Containers are the run time environments for 
applications that are similar everywhere, meaning that the 
application runs the same way in different environments 
[11]. The “it works on my computer” issue is solved by 
packing an application with its dependencies in a container, 
where applications perform differently on different machines 
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because of the differences in the underlying infrastructure or 
runtime dependencies [12]. The consistency in this system 
of the application development, testing, and deployment 
processes makes it easier to achieve, reducing the number 
of errors and the time it takes to be ready to be launched on 
the market.

Amazon Elastic Kubernetes Service (EKS)
Amazon EKS is a completely managed Kubernetes service 
that Amazon Web Services (AWS) offers to users [13]. The 
EKS enables the easy deployment, managing and scaling of 
containerized applications using the Kubernetes, an open-source 
container orchestration platform [14]. Some of the key features 
of Amazon EKS include: 

Managed Kubernetes Control Plane 
EKS provides a fully managed Kubernetes control plane, which 
is responsible for the overall management and orchestration 
of containers [15]. The control plane is broadly accessible and 
automatically scales up to guarantee the dependability and 
steadiness of the Kubernetes cluster [16]. This controlled plane 
of management of the Kubernetes infrastructure reduced the 
operational overhead connected to managing the Kubernetes 
infrastructure, allowing organizations to concentrate on their 
application development and deployment.

EKS is easily connected with other AWS services, making AWS 
the perfect, complex ecosystem for containerized workloads [17]. 
EKS is a service that can easily integrate with others, such as 
Amazon Elastic Container Registry (ECR) for storing container 
images, Amazon Elastic Block Store (EBS) for making persistent 
storage and Amazon Virtual Private Cloud (VPC) for networking 
[18]. This fusion of EKS and AWS eliminates the need for complex 
deployment and management of containers, as organizations can 
use the familiar AWS services and tools [19].

EKS is a scalable and highly available solution for containerized 
applications. It instructs the system to scale the worker nodes 
according to the workload demands automatically. Hence, the 
cluster has the resources to deal with the increased traffic or 
processing needs [20]. Moreover, EKS splits the containers into 
several Availability Zones (AZs) to increase the applications’ 
resilience and fault tolerance [21].

Best Practices for Deploying and Managing Containerized 
Data
The Best Practices for Deploying and Managing Containerized 
Data Workloads on EKS Combining the aspects of various factors 
that must be considered is the main topic of deployment and 
management of containerized data workloads on EKS. In the given 
section, it discusses some good practices for the architecture and 
operation of data-intensive applications on EKS.

Data Storage Selecting
The appropriate data storage solution for containerized data 
workloads on EKS is vital [22]. EKS can cooperate with different 
storage types, such as Amazon Elastic Block Store (EBS) for 
durable storage, Amazon Elastic File System (EFS) for file sharing, 
and Amazon S3 for object storage [23]. The selection of the storage 
is based on the particularity of the workload, for example, the type 
of data access, the performance demands, and the scalability [24].

For crateful applications that are based on the principle of storage 
persistence, such as databases or message queues, EBS volumes 

can provide dedicated storage for each container instance [25]. 
EBS volumes can be dynamically extended and attached to 
containers, guaranteeing data persistence across container restarts 
or failures [26].

The top use of EFS is for applications that need shared file storage 
that can be reached from different containers. EFS can be used for 
that [27]. EFS is a scalable and fully managed file system that can 
be mounted at the same time by several containers, which thus 
leads to easy data sharing and collaboration [28].
Amazon S3 can be the choice of object storage solution for huge 
data processing and analysis workloads because of its scalability 
and cost-effectiveness [29]. Containers can read from and write 
to S3 buckets, thus utilizing S3’s high availability and durability 
for storing and accessing big data [30].

Networking
Networking is one of the most crucial aspects of the EKS when 
deploying containerized data workloads [31]. On the other 
hand, Kubernetes uses the Amazon Virtual Private Cloud (VPC) 
for networking. Thus, organizations can define their network 
configurations and control traffic [32]. Some of the networking 
best practices for EKS include:
•	 Using VPC for Network Isolation: Each EKS cluster must 

be deployed in a separate VPC to maintain network isolation 
and security [33]. This way, the organizations can manage 
network access and impose policies at the VPC level.

•	 Configuring Network Policies: Kubernetes network policies 
are tools that can help regulate the traffic between the 
containers in the cluster [34]. The network policies regulate 
the interaction between the containers that can communicate 
with each other, thereby significantly contributing to the 
enhancement of security and reduction of the attack surface.

•	 Leveraging Load Balancers: EKS supports the use of 
Kubernetes load balancers such as the AWS Network Load 
Balancer (NLB) or the AWS Application Load Balancer (ALB) 
in the case of exposing containerized services externally 
[35]. Load balancers are responsible for allocating incoming 
traffic to the various container instances, which ensures high 
availability and scalability.

Security
Security of the containerized data workloads on EKS is vital to 
data protection and the prevention of unauthorized access [36]. 
Some of the security best practices for EKS include: 
•	 Implementing Role-Based Access Control (RBAC): 

EKS enables the Kubernetes RBAC system, through 
which organizations can set access rights for the users and 
applications within the clusters [37]. RBAC guarantees that 
the users and applications have the least privilege needed to 
carry out their tasks, which in turn minimizes the chances of 
unauthorized access.

•	 Securing Container Images: Before using a container image, 
one must be sure that it is scanned for vulnerabilities and 
built from trusted sources [38]. Amazon ECR has image-
scanning features that can help detect possible security threats 
in container images [39]. Besides, companies should insist 
on policies that guarantee that only authorized and screened 
container images will be allowed in the EKS cluster.

•	 Encrypting Data at Rest and in Transit: Data encryption 
is needed to protect sensitive information [40]. EKS supports 
data encryption at rest using Amazon EBS or Amazon EFS 
encryption [41]. On the other hand, for data in transit, TLS/
SSL encryption should be used to secure communication 
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between containers and with external services.
Practical Example
The deployment and management of Kafka Cluster and Data 
Stream in EKS 
To illustrate the application and the handling of containerized 
data workloads on EKS, let me take a real example of managing 
a Kafka Cluster and Data Stream in EKS. 
Kafka is a distributed streaming platform that allows the 
publishing and subscribing of real-time data streams [42]. The 
tool is commonly used for constructing data pipelines, real-time 
analytics, and event-driven architectures, as shown by its wide use 
for these purposes [43]. In this example it illustrates how to set 
up a Kafka cluster on EKS and show data streaming using Kafka.

Deploying a Kafka Cluster on EKS
Deploying a Kafka cluster on EKS can be done by using the Strimzi 
Kafka Operator, which makes the deployment and management 
of Kafka in Kubernetes simple [44]. The Strimzi Kafka Operator 
gives a declarative method to setup Kafka clusters by the means 
of Custom Resource Definitions (CRDs) [45].

Here is an example of deploying a Kafka cluster using the Strimzi 
Kafka Operator:

In this case, Kafka cluster is defined as one with three broker replicas 
and three ZooKeeper replicas. The Kafka brokers are configured 
with two listeners: a plain listener for internal communication 
and a TLS listener for secure communication. The config section 
lets you set different Kafka configuration parameters, such as 
replication factors and message format versions.

The storage area specifies the storage structure of the Kafka 
brokers and ZooKeeper nodes. It uses persistent volume claims 
(PVCs) to give a cluster persistent storage. After the Kafka cluster 
is deployed, you can access it using the Kafka client libraries and 
start producing and consuming data.

Streaming Data with Kafka 
To illustrate streaming data with Kafka, a simple example of a 
producer application that produces sensor data and a consumer 
application that processes the data in real-time is applied.

Producer Application

In the producer application, its a constructed Kafka producer 
using the Kafka Producer class from the Kafka-python library. It 
specifically chooses the bootstrap servers (Kafka brokers) and set 
up the value serializer to transform the sensor data to JSON format.

The loop’s cycle creates random sensor data (temperature and 
humidity) with a time stamp. The producer’s production method 
sends the sensor data to the desired Kafka topic. Kafka receives 
the sensor data, which is continuously generated and sent to it 
every second.

Consumer Application

The consumer application is where a Kafka consumer with the 
Kafka Consumer class created. The bootstrap server, the topic to 
consume from, and the consumer group ID is chosen. In addition, 
it sets up the value deserializer to extract the JSON-formatted 
sensor data from the sensor.

The consumer keeps receiving new messages from the specified 
topic. For every received message, one is able to extract the sensor 
data from the message value and process it as required. In this 
case, just print the sensor data; however, in the real world, you 
would carry out more advanced analysis or take actions depending 
on the data.

Running the producer and consumer applications via Kafka allows 
you to see the actual streaming of sensor data from the producer 
to the consumer in real-time.
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Figure 1: Kafka Streaming Architecture for Real-Time Data 
Processing

Conclusion and Future Work 
In this paper, it discusses the installing and managing containerized 
data workloads on Amazon EKS. It discussed the advantages, such 
as mobility, scalability, and environment coherence, which resulted 
in the containerization. Besides, it presented Amazon EKS and its 
key benefits, such as the managed Kubernetes control plane, the 
integration with AWS services, the scalability, and the security.

The research dealt with the best practices of deploying and 
managing containerized data works on EKS and discussed the 
issues of data storage, networking, and security. It pointed out the 
necessity of selecting the appropriate storage options, configuring 
the network policies, setting up the RBAC, securing the container 
images, encrypting the data, and monitoring and logging the 
container ecosystem in containers. An example of the application 
of a Kafka cluster on EKS was given using the Strimzi Kafka 
Operator. It also demonstrated data streaming through the use of 
Kafka, with the data producer application generating sensor data 
and the data consumer application processing the data in real-time.

Looking ahead, there are several areas for future research and 
exploration in the field of containerized data workloads on EKS:
•	 Serverless Computing: Researching serverless computing 

frameworks, such as AWS Lambda, and their integration with 
EKS to facilitate serverless and event-driven data processing 
workloads [46].

•	 Multi-Cloud Deployments: Exploring the difficulties and 
good practices for deploying and managing containerized 
data workloads on the instances of several cloud platforms 
leveraging the portability of containers [47].

•	 Machine Learning and AI: The study of the deployment and 
management of machine learning and AI workloads on EKS, 
based on the specific requirements and challenges associated 
with these workloads, is what is being realized [48].

•	 Hybrid and Edge Computing: Exploring the application 
of EKS in hybrid and edge computing, a scenario of data 
processing in the cloud and on edge devices [49].

However, organizations are still computerizing and running 
their data workloads on Amazon EKS, they need to keep up 
with the current best practices, tools, and techniques. By using 
containerization and EKS features, organizations can create data 
workloads that are scalable, portable, and resilient to failure.

Figure 2: Amazon EKS Architecture for Deploying and Managing 
Containerized Workloads
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