ISSN: 2754-6659

Journal of Artificial Intelligence &

Cloud Computing

Review Article

\?‘.»SCIENTIFIC

Research and Community

v
Open @ Access

Deploying and Managing Containerized Data Workloads on Amazon

EKS

Chandrakanth Lekkala

USA

ABSTRACT

EKS for their data workloads.

In the age of big data and cloud computing, many organizations are moving towards containerization technologies to deploy and manage their data
workloads. Amazon Elastic Kubernetes Service (EKS) has recently become a trendy option for using container applications in the cloud. This paper
discusses the procedure of deploying and managing containerized data workloads on Amazon EKS. It points out the benefits of containerization in terms of
portability, scalability, and consistency of the workload in different environments. The research also looks into the best practices for creating and managing
data-intensive applications on EKS, such as data storage, networking, and security issues. Besides, it gives a realistic case of administering a Kafka cluster
and streaming data in EKS. This paper is designed to provide important tips and advice to organizations that want to use containerization and Amazon

*Corresponding author
Chandrakanth Lekkala, USA.

Received: June 05, 2023; Accepted: June 09, 2023; Published: June 16, 2023

Keywords: Containerization, Amazon EKS, Data Workloads,
Kafka, Streaming Data, Scalability, Portability, Cloud Computing

Introduction

The use of containerization technologies has changed the method
of cloud application deployment and management. Containers
are lightweight and portable runtime environments that enable
applications to run similarly in all computing environments [1].
EKS Amazon Elastic Kubernetes Service (EKS) has become
a popular option for running containerized applications in the
cloud, providing an easy-to-use managed Kubernetes service
that simplifies the deployment and management of containerized
workloads [2].

Data-intensive applications, such as big data processing, machine
learning, and real-time analytics, will greatly benefit from the
scalability and flexibility provided by containerization and
Amazon EKS [3]. Nevertheless, the installation and management
of containerized data workloads on EKS is challenging. It
requires carefully observing different issues, such as data storage,
networking, security, and performance optimization [4].

In this paper, it examines the procedure for rolling out and
controlling containerized data workloads on Amazon EKS. It
discusses the benefits of containerization in terms of portability,
scalability, and the same conditions in different environments.
Besides, it also examines the best practices for designing and
running data-heavy applications on EKS by referring to data
storage, networking, and security. Here, it illustrates the case
study of managing a Kafka cluster and streaming data in EKS,
which is a viable option.

Containerization and its Benefits
Containerization is one of the most preferred solutions for packaging
and deploying applications in a portable and efficient way [5].
Containers are a lightweight and isolated runtime environment
that wraps an application, its libraries, and configuration files
and, thus, creates an isolated application environment [6]. By
containerizing applications, organizations can achieve several
benefits, including: By containerizing applications, organizations
can achieve several benefits, including:

» Portability Containers are how the applications can be
packaged in a self-contained manner so they can be easily
transported to different computing environments [7].
Containerized applications are easily transferred from this part
of deployment to testing and then to production with the help
of various cloud platforms or the on-premises infrastructure
[8]. The portability of mobile devices helps prevent the
occurrence of compatibility problems, and it guarantees the
same performance of applications in any environment.

* Scalability is possible through containerization, by which
applications can be easily scaled horizontally by running
several instances of the same container [9]. Containers are
light and can be easily allocated or stopped when needed.
Thus, organizations can dynamically modify their application
capacity to accommodate varying workloads [10]. This
growth is especially useful for data-intensive applications
that are subject to fluctuations in demand or need to deal with
large amounts of data.

* Consistency Containers are the run time environments for
applications that are similar everywhere, meaning that the
application runs the same way in different environments
[11]. The “it works on my computer” issue is solved by
packing an application with its dependencies in a container,
where applications perform differently on different machines

J Arti Inte & Cloud Comp, 2023

Volume 2(2): 1-5

Citation: Chandrakanth Lekkala (2023) Deploying and Managing Containerized Data Workloads on Amazon EKS. Journal of Artificial Intelligence & Cloud Computing.

SRC/JAICC-342. DOI: doi.org/10.47363/JAICC/2023(2)324

because of the differences in the underlying infrastructure or
runtime dependencies [12]. The consistency in this system
of the application development, testing, and deployment
processes makes it easier to achieve, reducing the number
of errors and the time it takes to be ready to be launched on
the market.

Amazon Elastic Kubernetes Service (EKS)

Amazon EKS is a completely managed Kubernetes service
that Amazon Web Services (AWS) offers to users [13]. The
EKS enables the easy deployment, managing and scaling of
containerized applications using the Kubernetes, an open-source
container orchestration platform [14]. Some of the key features
of Amazon EKS include:

Managed Kubernetes Control Plane

EKS provides a fully managed Kubernetes control plane, which
is responsible for the overall management and orchestration
of containers [15]. The control plane is broadly accessible and
automatically scales up to guarantee the dependability and
steadiness of the Kubernetes cluster [16]. This controlled plane
of management of the Kubernetes infrastructure reduced the
operational overhead connected to managing the Kubernetes
infrastructure, allowing organizations to concentrate on their
application development and deployment.

EKS is easily connected with other AWS services, making AWS
the perfect, complex ecosystem for containerized workloads [17].
EKS is a service that can easily integrate with others, such as
Amazon Elastic Container Registry (ECR) for storing container
images, Amazon Elastic Block Store (EBS) for making persistent
storage and Amazon Virtual Private Cloud (VPC) for networking
[18]. This fusion of EKS and AWS eliminates the need for complex
deployment and management of containers, as organizations can
use the familiar AWS services and tools [19].

EKS is a scalable and highly available solution for containerized
applications. It instructs the system to scale the worker nodes
according to the workload demands automatically. Hence, the
cluster has the resources to deal with the increased traffic or
processing needs [20]. Moreover, EKS splits the containers into
several Availability Zones (AZs) to increase the applications’
resilience and fault tolerance [21].

Best Practices for Deploying and Managing Containerized
Data

The Best Practices for Deploying and Managing Containerized
Data Workloads on EKS Combining the aspects of various factors
that must be considered is the main topic of deployment and
management of containerized data workloads on EKS. In the given
section, it discusses some good practices for the architecture and
operation of data-intensive applications on EKS.

Data Storage Selecting

The appropriate data storage solution for containerized data
workloads on EKS is vital [22]. EKS can cooperate with different
storage types, such as Amazon Elastic Block Store (EBS) for
durable storage, Amazon Elastic File System (EFS) for file sharing,
and Amazon S3 for object storage [23]. The selection of the storage
is based on the particularity of the workload, for example, the type
of data access, the performance demands, and the scalability [24].

For crateful applications that are based on the principle of storage
persistence, such as databases or message queues, EBS volumes

can provide dedicated storage for each container instance [25].
EBS volumes can be dynamically extended and attached to
containers, guaranteeing data persistence across container restarts
or failures [26].

The top use of EFS is for applications that need shared file storage
that can be reached from different containers. EFS can be used for
that [27]. EFS is a scalable and fully managed file system that can
be mounted at the same time by several containers, which thus
leads to easy data sharing and collaboration [28].

Amazon S3 can be the choice of object storage solution for huge
data processing and analysis workloads because of its scalability
and cost-effectiveness [29]. Containers can read from and write
to S3 buckets, thus utilizing S3’s high availability and durability
for storing and accessing big data [30].

Networking
Networking is one of the most crucial aspects of the EKS when
deploying containerized data workloads [31]. On the other
hand, Kubernetes uses the Amazon Virtual Private Cloud (VPC)
for networking. Thus, organizations can define their network
configurations and control traffic [32]. Some of the networking
best practices for EKS include:

¢ Using VPC for Network Isolation: Each EKS cluster must
be deployed in a separate VPC to maintain network isolation
and security [33]. This way, the organizations can manage
network access and impose policies at the VPC level.

e Configuring Network Policies: Kubernetes network policies
are tools that can help regulate the traffic between the
containers in the cluster [34]. The network policies regulate
the interaction between the containers that can communicate
with each other, thereby significantly contributing to the
enhancement of security and reduction of the attack surface.

e Leveraging Load Balancers: EKS supports the use of
Kubernetes load balancers such as the AWS Network Load
Balancer (NLB) or the AWS Application Load Balancer (ALB)
in the case of exposing containerized services externally
[35]. Load balancers are responsible for allocating incoming
traffic to the various container instances, which ensures high
availability and scalability.

Security

Security of the containerized data workloads on EKS is vital to

data protection and the prevention of unauthorized access [36].

Some of the security best practices for EKS include:

* Implementing Role-Based Access Control (RBAC):
EKS enables the Kubernetes RBAC system, through
which organizations can set access rights for the users and
applications within the clusters [37]. RBAC guarantees that
the users and applications have the least privilege needed to
carry out their tasks, which in turn minimizes the chances of
unauthorized access.

e Securing Container Images: Before using a container image,
one must be sure that it is scanned for vulnerabilities and
built from trusted sources [38]. Amazon ECR has image-
scanning features that can help detect possible security threats
in container images [39]. Besides, companies should insist
on policies that guarantee that only authorized and screened
container images will be allowed in the EKS cluster.

* Encrypting Data at Rest and in Transit: Data encryption
is needed to protect sensitive information [40]. EKS supports
data encryption at rest using Amazon EBS or Amazon EFS
encryption [41]. On the other hand, for data in transit, TLS/
SSL encryption should be used to secure communication

J Arti Inte & Cloud Comp, 2023

Volume 2(2): 2-5

Citation: Chandrakanth Lekkala (2023) Deploying and Managing Containerized Data Workloads on Amazon EKS. Journal of Artificial Intelligence & Cloud Computing.

SRC/JAICC-342. DOI: doi.org/10.47363/JAICC/2023(2)324

between containers and with external services.
Practical Example
The deployment and management of Kafka Cluster and Data
Stream in EKS
To illustrate the application and the handling of containerized
data workloads on EKS, let me take a real example of managing
a Kafka Cluster and Data Stream in EKS.
Kafka is a distributed streaming platform that allows the
publishing and subscribing of real-time data streams [42]. The
tool is commonly used for constructing data pipelines, real-time
analytics, and event-driven architectures, as shown by its wide use
for these purposes [43]. In this example it illustrates how to set
up a Kafka cluster on EKS and show data streaming using Kafka.

Deploying a Kafka Cluster on EKS

Deploying a Kafka cluster on EKS can be done by using the Strimzi
Katka Operator, which makes the deployment and management
of Kafka in Kubernetes simple [44]. The Strimzi Kafka Operator
gives a declarative method to setup Kafka clusters by the means
of Custom Resource Definitions (CRDs) [45].

Here is an example of deploying a Kafka cluster using the Strimzi
Katka Operator:

In this case, Kafka cluster is defined as one with three broker replicas
and three ZooKeeper replicas. The Kafka brokers are configured
with two listeners: a plain listener for internal communication
and a TLS listener for secure communication. The config section
lets you set different Kafka configuration parameters, such as
replication factors and message format versions.

The storage area specifies the storage structure of the Kaftka
brokers and ZooKeeper nodes. It uses persistent volume claims
(PVCs) to give a cluster persistent storage. After the Kafka cluster
is deployed, you can access it using the Kafka client libraries and
start producing and consuming data.

Streaming Data with Kafka

To illustrate streaming data with Kafka, a simple example of a
producer application that produces sensor data and a consumer
application that processes the data in real-time is applied.

Producer Application

In the producer application, its a constructed Kafka producer
using the Kafka Producer class from the Kafka-python library. It
specifically chooses the bootstrap servers (Kafka brokers) and set
up the value serializer to transform the sensor data to JSON format.

The loop’s cycle creates random sensor data (temperature and
humidity) with a time stamp. The producer’s production method
sends the sensor data to the desired Kafka topic. Kafka receives
the sensor data, which is continuously generated and sent to it
every second.

Consumer Annlication

The consumer application is where a Kafka consumer with the
Kafka Consumer class created. The bootstrap server, the topic to
consume from, and the consumer group ID is chosen. In addition,
it sets up the value deserializer to extract the JSON-formatted
sensor data from the sensor.

The consumer keeps receiving new messages from the specified
topic. For every received message, one is able to extract the sensor
data from the message value and process it as required. In this
case, just print the sensor data; however, in the real world, you
would carry out more advanced analysis or take actions depending
on the data.

Running the producer and consumer applications via Kafka allows
you to see the actual streaming of sensor data from the producer
to the consumer in real-time.

J Arti Inte & Cloud Comp, 2023

Volume 2(2): 3-5

Citation: Chandrakanth Lekkala (2023) Deploying and Managing Containerized Data Workloads on Amazon EKS. Journal of Artificial Intelligence & Cloud Computing.

SRC/JAICC-342. DOI: doi.org/10.47363/JAICC/2023(2)324

&

o
{
Q |
~completed-evert 2 o
—M-?« r; kafka =" ;a;Eww
. o2 rovy

Cluster
Device
Producer) J

—_
N

\—-==

Byavery

visaulisation

Figure 1: Kafka Streaming Architecture for Real-Time Data
Processing

Conclusion and Future Work

In this paper, it discusses the installing and managing containerized
data workloads on Amazon EKS. It discussed the advantages, such
as mobility, scalability, and environment coherence, which resulted
in the containerization. Besides, it presented Amazon EKS and its
key benefits, such as the managed Kubernetes control plane, the
integration with AWS services, the scalability, and the security.

The research dealt with the best practices of deploying and
managing containerized data works on EKS and discussed the
issues of data storage, networking, and security. It pointed out the
necessity of selecting the appropriate storage options, configuring
the network policies, setting up the RBAC, securing the container
images, encrypting the data, and monitoring and logging the
container ecosystem in containers. An example of the application
of a Kafka cluster on EKS was given using the Strimzi Kafka
Operator. It also demonstrated data streaming through the use of
Kafka, with the data producer application generating sensor data
and the data consumer application processing the data in real-time.

Looking ahead, there are several areas for future research and

exploration in the field of containerized data workloads on EKS:

* Serverless Computing: Researching serverless computing
frameworks, such as AWS Lambda, and their integration with
EKS to facilitate serverless and event-driven data processing
workloads [46].

* Multi-Cloud Deployments: Exploring the difficulties and
good practices for deploying and managing containerized
data workloads on the instances of several cloud platforms
leveraging the portability of containers [47].

e Machine Learning and Al: The study of the deployment and
management of machine learning and Al workloads on EKS,
based on the specific requirements and challenges associated
with these workloads, is what is being realized [48].

* Hybrid and Edge Computing: Exploring the application
of EKS in hybrid and edge computing, a scenario of data
processing in the cloud and on edge devices [49].

However, organizations are still computerizing and running
their data workloads on Amazon EKS, they need to keep up
with the current best practices, tools, and techniques. By using
containerization and EKS features, organizations can create data
workloads that are scalable, portable, and resilient to failure.

P
.. e

— romen ERS Custer ang
XS Gl AWE Resdansy ———

it v

Figure 2: Amazon EKS Architecture for Deploying and Managing
Containerized Workloads

References

1. Pahl C, Brogi A, Soldani J, Jamshidi P (2019) Cloud Container
Technologies: A State-of-the-Art Review. IEEE Transactions
on Cloud Computing 7: 677-692.

2. Sill A (2016) The Design and Architecture of Microservices.
IEEE Cloud Computing 3: 76-80.

3. Sakr S, Gounaris A, Tzoumas K (2019) A Survey of Large-
Scale Data Processing Approaches in the Era of Big Data.
Handbook of Big Data Technologies.

4. Grambow M, Lehmann F, Bermbach D (2021) Continuous
Benchmarking of Microservice Performance. Proceedings of
the 14th IEEE International Conference on Cloud Computing
(CLOUD).

5. Ebert C, Gallardo G, Hernantes J, Serrano N (2016) DevOps.
IEEE Software 33: 94-100.

6. Morabito R, Cozzolino V, Ding AY, Beijar N, Ott J (2018)
Consolidate 10T Edge Computing with Lightweight
Virtualization. IEEE Network 32: 102-111.

7. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016)
Borg, Omega, and Kubernetes. Queue 14: 70-93.

8. Kratzke N, Quint PC (2017) Understanding Cloud-native
Applications after 10 Years of Cloud Computing - A
Systematic Mapping Study. Journal of Systems and Software
126: 1-16.

9. Balalaie A, Heydarnoori A, Jamshidi P (2016) Migrating
to Cloud-Native Architectures Using Microservices:
An Experience Report. In Advances in Service-Oriented
and Cloud Computing https://link.springer.com/
chapter/10.1007/978-3-319-33313-7 15.

10. Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated
performance comparison of virtual machines and Linux
containers. Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS)
https://ieeexplore.ieee.org/document/7095802.

11. Alshugayran N, Ali N, Evans R (2016) A Systematic Mapping
Study in Microservice Architecture. In Proceedings of the
IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA) https://ieeexplore.icee.
org/document/7796008.

12. Jaramillo D, Nguyen DV, Smart R (2016) Leveraging
microservices architecture by using Docker technology.
Proceedings of the SouthEast Conference https://iceexplore.
ieee.org/document/7506647.

J Arti Inte & Cloud Comp, 2023

Volume 2(2): 4-5

Citation: Chandrakanth Lekkala (2023) Deploying and Managing Containerized Data Workloads on Amazon EKS. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-342. DOLI: doi.org/10.47363/JAICC/2023(2)324

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

(2023) Amazon EKS. Amazon Web Services https://aws.
amazon.com/eks/.

(2023) Production-Grade Container Orchestration. Kubernetes
https://kubernetes.io/.

Verma A, Pedrosa L, Korupolu MR, Oppenheimer D,
Tune E, et al. (2015) Large-scale cluster management at
Google with Borg. Proceedings of the European Conference
on Computer Systems (EuroSys) https://dl.acm.org/
doi/10.1145/2741948.2741964.

Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016)
Borg, Omega, and Kubernetes. Queue 14: 70-93.

(2023) AWS Elastic Container Registry. Amazon Web
Services https://aws.amazon.com/ect/.

(2023) Amazon Elastic Block Store (EBS). Amazon Web
Services https://aws.amazon.com/ebs/.

Zaharia M, Reynold Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, et al. (2016) Apache Spark: A Unified
Engine for Big Data Processing. Communications of the
ACM 59: 56-65.

Agneeswaran VS (2014) Big Data Analytics Beyond Hadoop:
Real-Time Applications with Storm, Spark, and More Hadoop
Alternatives. Pearson Education https://www.oreilly.com/
library/view/big-data-analytics/9780133838268/.

Armbrust M, Reynold Xin, Cheng Lian, Yin Huai, Davies
Liu, et al. (2015) Spark SQL: Relational Data Processing in
Spark. In proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD) https://
dl.acm.org/doi/10.1145/2723372.2742797.

(2023) Amazon S3. Amazon Web Services https://aws.
amazon.com/s3/.

(2023) Amazon Elastic File System (EFS). Amazon Web
Services https://aws.amazon.com/efs/.

Kreps J, Narkhede N, Rao J (2011) Kafka: A Distributed
Messaging System for Log Processing. Proceedings of the
6th International Workshop on Networking Meets Databases
(NetDB) https://martin.kleppmann.com/papers/kafka-
debulll5.pdf.

Toshniwal A, Siddarth Taneja, Amit Shukla, Karthikeyan
Ramasamy, Jignesh M Patel, et al. (2014) Storm@twitter.
Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD) https://dl.acm.org/
doi/10.1145/2588555.2595641.

Noghabi SA, Kartik Paramasivam, Yi Pan, Navina Ramesh,
Jon Bringhurst, et al. (2017) Samza: Stateful Scalable
Stream Processing at LinkedIn. Proceedings of the VLDB
Endowment 10: 1634-1645.

Gulisano V, Jiménez Peris R, Patifio Martinez M, Soriente C,
Valduriez P (2012) Stream Cloud: An Elastic and Scalable
Data Streaming System. IEEE Transactions on Parallel and
Distributed Systems 23: 2351-2365.

Akidau T, Alex Balikov, Kaya Bekiroglu, Slava Chernyak,
Josh Haberman, et al. (2013) Mill Wheel: Fault-Tolerant
Stream Processing at Internet Scale. Proceedings of the VLDB
Endowment 6: 1033-1044.

Zaharia M, Das T, Li H, Hunter T, Shenker S, et al. (2013)
Discretized Streams: Fault-Tolerant Streaming Computation
at Scale. Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (SOSP) 423-438.
Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, et al.
(2015) Apache Flink: Stream and Batch Processing in a Single
Engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 36: 28-38.

Ongaro D, Ousterhout J (2014) In Search of an Understandable
Consensus Algorithm. Proceedings of the USENIX Annual

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Technical Conference (USENIX ATC) 305-320.

(2023) Amazon Virtual Private Cloud (VPC). Amazon Web
Services https://aws.amazon.com/vpc/.

(2023) Network Policies. Kubernetes https://kubernetes.io/
docs/concepts/services-networking/network-policies/.
(2023) Ingress. Kubernetes https://kubernetes.io/docs/
concepts/services-networking/ingress/.

(2023) Elastic Load Balancing. Amazon Web Services https://
aws.amazon.com/elasticloadbalancing/.

(2023) Kubernetes Security. Kubernetes https://kubernetes.
io/docs/concepts/security/overview/.

(2023) Using RBAC Authorization. Kubernetes https://
kubernetes.io/docs/reference/access-authn-authz/rbac/.
(2023) Amazon Inspector. Amazon Web Services https://aws.
amazon.com/inspector/.

(2023) AWS Secrets Manager. Amazon Web Services https://
aws.amazon.com/secrets-managet/.

(2023) AWS Key Management Service (KMS). Amazon Web
Services https://aws.amazon.com/kms/.

(2023) Amazon EBS Encryption. Amazon Web Services
https://docs.aws.amazon.com.

(2023) The Apache Software Foundation. Apache Kafka
https://katka.apache.org/.

Garg N (2013) Apache Kafka. Packt Publishing Ltd https://
subscription.packtpub.com/search?query=Apache+Kafka.
Strimzi (2023) Strimzi: Apache Kafka on Kubernetes. Strimzi
https://strimzi.io/.

(2023) Custom Resources. Kubernetes https://kubernetes.
io/docs/concepts/extend-kubernetes/api-extension/custom-
resources/.

Baldini I, Paul Castro, Kerry Chang, Perry Cheng,
Stephen Fink, et al. (2017) Serverless Computing: Current
Trends and Open Problems. In research Advances in
Cloud Computing, Springer: https://link.springer.com/
chapter/10.1007/978-981-10-5026-8 1.

Villari M, Fazio M, Dustdar S, Rana O, Ranjan R (2016)
Osmotic Computing: A New Paradigm for Edge/Cloud
Integration. IEEE Cloud Computing 3: 76-83.

Crankshaw D, Xin Wang, Giulio Zhou, Michael Jay
Franklin, Joseph E Gonzalez, et al. (2017) Clipper: A Low-
Latency Online Prediction Serving System. Proceedings
of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) https://dl.acm.org/
doi/10.5555/3154630.3154681.

Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge Computing:
Vision and Challenges. IEEE Internet of Things Journal 3:
637-646.

Copyright: ©2023 Chandrakanth Lekkala. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

J Arti Inte & Cloud Comp, 2023

Volume 2(2): 5-5

