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Introduction
Background
The emergence of Industry 4.0 has transformed time-consuming, 
inefficient traditional manufacturing into interconnected, intelligent 
environments known as smart factories. These have AI, IIoT, 
and edge computing shift needed paradigms underlying real-
time decision-making and automation. Among these, predictive 
maintenance is of paramount importance that has crept into 
managing machine breakdowns as a basic strategy toward life 
enhancement of assets and smooth unregistered production [1,2].

This GE data collection from sensors and can thereby predict signs 
of failure at an earlier stage. In the cloud hinge, AI-based models 
interpret the sensor data. However, a failure in the cloud narrows 
down to limitations and latency in connectivity and security. Edge 
computing governances closer data to the substantial physical 
areas, avoiding the disvalued servitude of centralized servers 
[3,4]. Advanced AI models, in particular, are preferred for real-
time industrial operations that burden with very less latency and 
very much happening privacy preservation.

However, implementing this process means that many constraints 
must be accommodated by an AI. They include low power 
consumption, memory, availability of power usage, and the fenced 
position that lack of good-quality labeled failure data is probably 
as a result of infrequent failure examples to learn from for training 
efficient predictive models [5,6].

Role of Generative AI
Generative AI (GenAI) offers a novel solution to the scarce data 
problem by creating synthetic high-fidelity data that mimics real-
world sensor signals. Models like Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs) have shown the 
ability to create diverse and realistic datasets that can be used to 
train the predictive maintenance systems underfitting them [7,8]. By 
allowing GenAI to be embedded in edge computing, it can perform 
real-time streaming data augmentation, thus add value to model 
performance and reduce dependence on massive labeled datasets.

In the examples above, the trend would segue into the relativeness 
between Generative AI and Edge AI with a prospect for possible 
application in industry. With the emergence of such areas, we can 
leave out the fact that an optimized-for-constrained-edge-smart-
manufacturing GenAI framework cannot be found anywhere. 

Aim of the Article
The main aim of this article is therefore to propose a lightweight 
Generative AI model for predictive maintenance, for deployment 
on the edge within most industrial Internet of Things systems, 
capable of producing synthetic sensor data, thus improving fault 
prediction algorithm accuracy without breaking the confines of 
edge hardware quota.

The main objectives of this article are:
•	 To design the lightweight generative model for effective 

execution in edge devices.
•	 To demonstrate the behavior of synthetic data in improving 

prediction accuracy in very low-data situations.
•	 To outline the system architecture wherein GenAI will be 

integrated with edge-based real-time predictive maintenance 
workflows.

ISSN: 2754-6659

ABSTRACT
In this article, we introduce a lightweight AI system named GenAI, predestined for industrial IoT devices to enable proactive predictive maintenance at the 
edge. The proposed technique for monitoring and generating synthetic sensor data tries to rebuild the meaningful signal variation in the small common 
datasets and transfer it into sensor signals that represent the actual data variability regarding equipment operation. Reducing downtime to avoid maintenance 
requirements is especially critical in advanced factory settings, where equipment failures are too costly. Furthermore, the local processing of generative 
bidding at the edge does not need to be connected to the main network, meaning that data must be protected from neighbor interference. Through our 
new platform strategy, the apparent issue of the acute underdevelopment of local data within a distributed and hugely scalable system is explained in order 
to prove its applicability within big industrial applications.

Independent Researcher, USA



Citation: Nirup Kumar Reddy Pothireddy (2025) Generative AI for Edge-Based Predictive Maintenance in Smart Factories. Journal of Artificial Intelligence & Cloud 
Computing. SRC/JAICC-473. DOI: doi.org/10.47363/JAICC/2025(4)444 

J Arti Inte & Cloud Comp, 2025             Volume 4(1): 2-8

•	 To evaluate the performance of the model based on latency, 
accuracy, and capability on edge against its deployed 
resources.

Importance and Value Addition
The proposed model adds values for smart production, including:
•	 Data Efficiency: The model can create synthetic data, 

consequently reducing dependency over massive labeled 
datasets.

•	 Platform for Edge Devices: Framework for Real-Time 
Inference on Edge Devices with minimal consumption of 
power and memory.

•	 Reduced Downtime: The ability to correctly predict and flag 
off a potential future failure or a decent time for a machine 
outage.

•	 Scalability: This architecture should effortlessly plug and 
play legal into the IIoT ecosystem at spotless zero cost.

By extension, it is beneficial in line with forthcoming self-reliant 
AI-led maintenance systems, and thus contributes to ideations and 
propositions favored in an AI-centric edge environment [9-11].

Background and Related Work
Predictive Maintenance in Industrial IoT (IIoT)
Predictive maintenance (PdM) means anticipating machine failures 
by analyzing sensor data in real time, calling for preemptive 
servicing and minimizing unscheduled downtime. In Industrial IoT 
(IIoT), sensor-rich working environments, available as continuous 
streams from working data like temperature readings, pressure 
readings, and vibrational readings, are constantly evaluated to 
detect anomalies and degradation patterns [6,9].

The traditional PdM approach normally rest on statistical models 
or supervised machine learning algorithms, with the projected 
mode utilizing very large datasets of historical failure instances for 
suitable training. However, in industrial environments, historical 
failure data is as a rule difficult to acquire owing to the rarity of 
failures, generation of imprecise measurement, and diversity of 
machine types [1]. This last leads to the lack of scalability and also 
adaptability of these traditional models throughout the different 
factory settings.

In order to combat these limitations, research is increasingly 
perceiving the superiority of deep learning and AI-driven 
methods, which are supportive in learning about the complicated 
and nonlinear patterns within multivariable time series 
data. Despite their superior performance, these models often 
necessitate considerable computational resources and access to 
cloud infrastructure, which might not always be viable in IIoT 
deployments where latencies and bandwidth are a challenge [2,12].

Generative AI Paradigms for Synthetic Data Production
Generative Artificial Intelligence, or GenAI, is a class of models 
that is capable of learning the underlying data distribution 
and producing new examples resembling the original data set. 
Well-known GenAI techniques include Generative Adversarial 
Networks, Variational Autoencoders (VAEs), and diffusion 
models-being efficient at generating high-fidelity synthetic data 
across domains [7,13].

In the context of predictive maintenance, GenAI allows for the 
augmentation of data when the labeled failure data is scarce. By 
creating synthetically generated sensor signals representing real-
life operational conditions, GenAI augments model generalization 

and reduces overfitting. This is particularly useful during training 
of classifiers and anomaly detectors in an industrial setup where 
actual fault events are scarce [14,15].

At the moment, research on GANs has witnessed their rise in 
simulation of time series data in cyber-physical systems, whereas 
some studies have turned to the benefits of VAEs in modulating 
complex dependencies between machinery parameters. The 
deployment of these models on edge devices requires model 
compression and architectural optimization for addressing resource 
constraints [8,9]. And these challenges have served as a thrust for 
research on lightweight GenAI frameworks accomplishing real-
time synthesis of data on low-power hardware.

Edge Computing and Edge AI in Smart Manufacturing
Edge computing uses the concept of handling data processing and 
AI inference closest to the data source, which is usually at the 
sensor or gateway level. In smart factories, the edge devices serve 
as mediators that collate the sensor data, perform local analytics, 
and forward only the essentials onto the cloud. This majorly lowers 
down the latencies, the need for bandwidth, and dangers to data 
privacy—the all-killer stuff for any industrial environment [10,16].

But with Edge AI on the move, everything is integrated in a way 
where machine learning models run directly on the edge devices, 
which allows for real-time calls without any cloud dependence. 
Unfortunately, many AI models designed for cloud execusions 
are too large and computationally intensive to be deployed at the 
edge. As a result, specific model optimization components, i.e., 
quantization, pruning, knowledge distillation techniques, and 
plenty more, have been developed to enable such models to be 
compatible with the hardware available [5,11].

While underutilized, various model or AI-based PdM solutions, 
even with the emergence of the mainstream machine learning 
environment, still continue to rely heavily on cloud servers 
for model training and inference, potentially amplifying the 
bottlenecking and failure points. This epoch may be transcended 
through GenAI deployment on the edge where on-device data 
generation, retraining of models, and autonomous fault detection 
would be possible to thereby equip the system with superior 
resilience and scalability [17,3].

Research Gaps and Motivation
The discovery and integration of AI-driven PdM, GenAI, and edge 
computing advanced individually in the literature, but as yet has 
limited integration of these technologies into a unified framework 
for edge PdM. Past studies that have looked at generative models 
in edge devices have also, in the best-case scenario, assessed the 
impact of synthetic data generated on the same devices in view of 
predictive accuracy and maintenance efficiency [4,18].

One more aspect which conventional researches have largely 
failed to look at is the challenges of system orchestration, energy 
efficiency, latency in the generation, and implementation of 
GenAI models on the edge. Since the complexity of the smart 
factory ecosystem was growing stronger, there is an urgent need 
to establish a lightweight, scalable, privacy-preserving solution 
that blends generative modeling with edge intelligence [10,19].

To plug these gaps, this research proposes the GenAI model for 
the edge that creates synthetic, high-quality sensor data to boost 
PM models. Our emphasis is on real-time capability, hardware 
efficiency, and seamless integration in the IIoT workflow.
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Proposed Methodology
The methodology used in this study is based on the in-house 
development and deployment of Generative AI (GenAI) 
model for predictive maintenance assured in the smart factory 
ecosystem. This model was designed specifically to work at the 
edge, with billed manipulation of sensor data augmentation and 
fault prediction without reliance on cloud infrastructure. This 
section will present the components, strategies, and optimization 
techniques that transform the system into a reality, catering to 
working on challenges around real-world data scarcity, latency, 
resource constraints, and deployment feasibility.

System Overview
Putting together edge computing, Generative AI, and predictive 
maintenance models in one large framework is the system we 
propose to deploy out at the industrial edge. Essentially, synthetic 
sensor data is generated on-device to improve the training and 
adaptability of predictive maintenance models. This scenario is 
particularly crucial where genuine sensor data would be scarce/
balanced, which is typically true for fault or anomaly datasets [5,6].

The system contains the following layers:
•	 Data Collection Layer: The layer includes the real-time 

collection of operational signals (temperature, vibration, 
pressure) from machines.

•	 Generative Layer: A lightweight GenAI model is fined to 
generate synthetic sensor signals mimicking the rare kind of 
fault signatures.

•	 Predictive Layer: The edge-based prediction model for 
faults. It uses both real and synthetic data to figure out whether 
equipment will break.

•	 Maintenance Response Layer: This is where a local alerting 
system generates flash warnings or logs all events related 
to maintenance whenever the predictive thresholds are 
surpassed.

Through the architecture, it boosts the on-device augmentation, 
reducing the accuracy error while attending virtualization 
independence, consistent with the fourth industrial revolution 
[1,11].

Generative AI Model Design
For on-device data augmentation, we used a Conditional 
Generative Adversarial Network (cGAN) generating time-series 
sensor signals conditioned on equipment state labels. The generator 
network accepts a vector noise and a label (e.g., "healthy" or 
"overheating") to return realistic sensor readings representing that 
state. The discriminator identifies valid from false signals, which 
subsequently suggests the generator in order to synthesize reality.
In contrast to the usual GANs of large capacity used in the domain 
of imagery, our model is compressed, making it tailored to edge 
computing. Consequent optimizations include:
•	 Depthwise separable convolutions to reduce computation 

cost.
•	 Model pruning to eliminate redundant parameters post-

training.
•	 Quantization to reduce floating-point weights to integer 

precision.
•	 ONNX Runtime and TensorFlow Lite for deployment on 

hardware including NVIDIA Jetson Nano and Raspberry Pi 4.

The arrangement ensures the high fidelity of signal reproduction 
whilst also adhering to memory and power constraints of edge 
hardware [4,8].

Predictive Maintenance Model at the Edge
The suggested Lifelong Maintenance Model is a lightweight 
Long Short Term Memory (LSTM) that can predict or classify the 
probability of a fault happening given multivariate time series data. 
The model is built first trained with real sensor data, then retrained 
periodically using real and synthetic data that has been generated 
on the edge. This interim model updating creates a more robust 
model, especially under conditions of scarce or filled faults [7,12].
Key training concepts observed in model training include:
•	 Adaptive learning rates for lifelong training.
•	 Smoothing of labels gives the ultimate benefit of a more stable, 

error-tolerant, and generalizable classification regulation.
•	 The ability to keep updating the model-to keep learning on-

the-fly, from both real data and on-the-edge synthetic data 
generated by the model-x-supports long-term performance 
without back-and-forth retraining from the cloud in order to 
adapt incrementally with more context [17].

Edge Optimization Strategies
The deployment of deep learning models on edge hardware 
requires careful optimization. The following strategies were 
deployed to reduce model complexities and ensure performance 
concurrent:

Table 1: Model Components and Optimization Techniques 
[5,11].
Component Function Optimization 

Strategy
Generator Network Synthesize sensor 

signal time series
Depthwise conv., 
pruning, quantization

Discriminator Evaluate signal 
authenticity

Low-complexity 
convolutional layers

LSTM Classifier Predict fault status Layer-wise dropout, 
batch normalization

Edge Deployment Runtime 
environment

TensorRT (Jetson), 
TFLite (Raspberry 
Pi)

To quantify the performance saving on various industrial edge 
devices which have more or less generic computational resources, 
the intermediate implementation optimizations succeeded in 
reducing an inference latency ranging from 30–50% in comparison 
to the uncompressed model while it also enabled savings of up to 
60% in terms of memory usage [10,16].

Figure 1: Edge-Integrated GenAI System for Predictive 
Maintenance [11,17].

The diagram is about a closed-loop pipeline with data, which flows 
from sensors to the edge device for synthetic signal generation 
and real-time forecasting applications. The proposed architecture 
is aimed at providing minimal latency, high adaptability, and true 
autonomous operation characteristics making this a perfect suit 
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for real-world smart factory settings [15].

System Architecture
An efficient edge deployment platform for GenAI for predictive 
maintenance largely depends on a strong, modular system 
architecture. Within this section, the various components, data 
flow, and software-hardware integration of the proposed system 
are described in detail. The made-up architecture subtly sums the 
challenge of latency, scalability, data scarcity, energy efficiency, 
industrial environments [3,11].

Architectural Landscape
The structure can be divided into four crucial layers: each catering 
to one significant feature of predictive maintenance workflow 
are, Sensing Layer: providing real-time data from the industrial 
sensors; Edge Intelligence Layer: hosting GenAI models and 
predictive fault classifiers; Control and Alert Layer: generating 
alerts and logs based on the predictive faults; and Interface Layer: 
connects with dashboards, operators, or automated maintenance 
agents, respectively. These blocks interact with each other via a 
lightweight communication framework, endorsed by MQTT or 
CoAP, promoting low amounts of overhead for communication 
and relatively fast notification times.

The Hardware and Software Stack
Both hardware and software are chosen carefully to best suit real-
time performance within a resource-constrained environment. The 
edge devices used include NVIDIA Jetson Nano, whereas other 
low-power RPi devices come coupled with the Coral Edge TPU 
accelerators. The software stack further consists of pre-trained 
models converted using ONNX and optimized with TensorRT 
and TFLite fast inference. 

Table 2: Hardware and Software Standpoints [10,16].
Component Specification / Tool Purpose
Sensor Devices Accelerometers, 

Thermocouples, 
Vibration Monitors

Real-time data 
acquisition

Edge Device NVIDIA Jetson 
Nano / Raspberry Pi 

4 + Coral TPU

Local processing, 
inference, and 

GenAI generation
GenAI Framework Conditional GAN 

(Quantized) + 
TensorFlow Lite

Synthetic data 
generation

Predictive Model Pruned LSTM + 
ONNX Runtime

Fault forecasting

Communication 
Protocol

MQTT / CoAP Lightweight edge-
cloud and edge-
operator comms

Deployment Tools Docker, EdgeML 
SDK, TensorRT

Model 
containerization and 

acceleration

Such a blend makes it possible for our models to generate high 
throughput with low power consumption, hence making them 
fitting for possible real-time industrial deployment [12].

Data Flow and Component Interaction
The architecture enables a closed-loop data flow. Raw sensor 
signals are born out through edge devices, get pre-processed and 
stored temporarily. GenAI then generates synthetic data based on 
current equipment state. This data, along with real-time sensor 
readings, are fed into a predictive model to infer the probability 
of failure.

Below is a flow diagram that presents the system-level interaction:

Figure 2: Detailed System Architecture for Edge-Based GenAI 
Predictive Maintenance [11,17].

System Scalability and Security Considerations
The modular architecture provides room for being scalable across 
different production floors through the deployment of some 
identical edge nodes interfacing with a central logging system at 
the north end of the edge processing. The messages are kept unread 
and secures, using communication through publish-subscribe such 
as MQTT, activated between the nodes and central servers [20].

Regarding privacy of data, only summaries of data or fault labels 
are sent to the cloud. Thus, raw sensor data and the reports do not 
leave the premises. This reduces the risk of data leaking from the 
edge to the cloud, greatly increasing their compliance with the 
data governance of the industry [15]. 

In conclusion, the system presented here allows for real-time, 
scalable, privacy-aware predictive maintenance in a factory 
whereby Generative AI is operated on the edge. Its modularity, 
extremely low latency, and operation independent of the cloud 
make it an excellent fit for the modern smart factory environment.

Experimental Setup and Evaluation
Experiments have been conducted aiming at investigating the 
efficiency and effectiveness of the proposed Generative AI-
enhanced edge-based predictive maintenance system. This chapter 
represents the dataset characteristics, experimental environment, 
model configuration, performance matrices. The results were also 
compared. The experiment aims to analyze the benefits in terms 
of model precision, latency and memory efficiency concerning 
deployment platforms, and provide a representation of the proposed 
model's practical applicability in real smart factory conditions. 

Dataset and Experimental Setup
We used time-series data generated by industrial sensors, such 
as vibration, pressure, and temperature data. These sensors 
were installed on multiple machines in the smart factory testbed 
environment. Accordingly, we used 4, 500 labeled sequences, each 
set comprised of normal operating data and an early-stage fault 
data indicator. However, fault data is highly underrepresented, 
which is less than 12%, creating substantial imbalance in training 
and testing the model against fault early-symptom indicators [6,9].

Addressing this issue, conditional Generative Adversarial Network 
(cGAN) was trained on all available real sensor data. These 
datasets were used to condition an offline generator that has been 
then put into deployment on edge devices, producing real-time and 
realistic synthetic signals. Including synthetic data, the fault class 
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is increased in number and hence also increasing the robustness 
of the predictive method itself [7,8].

All the experiments were performed across three platforms: 
cloud infrastructure (AWS EC2), uncompressed edge deployment 
(Jetson Nano), and optimization edge deployment (Raspberry 
Pi 4 + Coral TPU). Instrumentation included TensorFlow Lite, 
ONNX Runtime, and Docker container-compatibility of fine-tuned 
efficient edge-inference frameworks [4,11].

Performance Metrics and Accuracy Benchmarking
To assess these predictive maintenance models' performance, we 
achieved their measured performance:
•	 LSTM baseline model trained from the real data only.
•	 LSTM-enhanced model trained on both the real and GenAI-

simulated datasets.
•	 CNN-LSTM hybrid model trained on the augmented dataset.

Each model was evaluated using accuracy, precision, and recall 
as metrics. The results are presented in Table 3:

Table 3: Model Performance Comparison [6,9].
Model Type Accuracy 

(%)
Precision 

(%)
Recall 
(%)

LSTM (Real Data Only) 81.2 79.8 77.5
LSTM (With GenAI 
Data)

92.6 91.2 90.7

CNN-LSTM Hybrid 
(With GenAI)

94.3 93.0 92.5

The model trained only on real data achieved an accuracy of 
81.2%. Using GenAI-generated samples, the error rate dropped 
to 7.4%, reaching 92.6%. Furthermore, the CNN-LSTM hybrid 
further hiked it to 94.3%. It amounted to significant progress that 
some experiments endorsed synthetic data impact in bug prediction 
in the data-scarce scenario [5,12].

The figure below shows the graphical comparison of the result:

Figure 3: Model Accuracy Comparison (Real vs GenAI Data) 
[4,11].

Analysis of Latency and Memory Consumption
In industrial environments, real-time performance is of high 
priority. Thus, for the predictive maintenance pipeline, we assess 
the latency and memory overhead under cloud-based deployment, 
uncompressed deployment on the edge, and an optimized 
deployment on the edge with model pruning and quantization.

The results-measured are illustrated in Table 4.

Table 4: Latency and Memory Usage Comparison [10,16].
Deployment Platform Inference 

Latency (ms)
Memory Usage (MB)

Cloud-Based 620 1024
Edge (Uncompressed) 180 512
Edge (Optimized) 95 198

In the case that configurations were almost 6 times slower in the 
cloud than at the edge, processed memory usage at least was over 
1 GB and is unfit for edge hardware running on low energy. These 
findings underline the benefit of local inferencing in settings in 
which a few milliseconds of delay could lead to safety-critical 
harm [15,17].

To stress that, we put down a pie chart detailing the latency by 
deployment system:

Figure 4: Inference Latency Distribution Across Platforms [8,12].

This visualization shows that the optimized edge model accounts 
for the smallest latency share, reinforcing its suitability for real-
time industrial deployments.

Evaluation Summary
In brief, the effectiveness of GAI integrated with edge-based 
predictive maintenance systems highly reflects improved values 
for both the accuracy and system responsiveness. Synthetic data, 
thus, alleviates the problem of bounded and imbalanced datasets, 
while keeping in mind the deployment options customizable to 
the hardware restrictions that often come with the territory in the 
edge space [1,11]. The prospects for upscaling such deployment 
into smart factories built around IIoT networks come out evidently 
strong. 

Discussion
Interpretations of Model Accuracy Improvements
Here results of the experiments provided clear evidence to 
support the claim that the combination of Generative AI and 
edge computing can naturally result in an increased accuracy of 
predictive maintenance systems in smart factory settings. Arguably 
one of the most important results was the clear improvement 
in model accuracy when the synthetic data created by GenAI 
becomes part of the training set. An LSTM baseline model trained 
on real-world data achieved an average accuracy of 81.2%. Yet, 
with an additional 11.4%, the overall accuracy increased to 92.6% 
when more synthetic data was added with the help of GenAI. 
And on top of these, we even reached 94.3% with a CNN-LSTM 
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hybrid model. These are big strides. They suggest a possibility 
of the Generative AI addressing the long-standing issue of data 
deficiency in predictive maintenance scenarios. Generative models 
can simulate high-fidelity fault scenarios that are not common 
in normally occurring datasets, thereby exposing the predictive 
model to a more well-rounded and diverse training experience.

Benefits of Edge-Based Deployment
Besides, the layer of reality and scalability edged in the suggested 
architecture can be important. This infrastructure of edge 
processing, making it irrelevant on cloud connectivity, and trusted 
data distribution through the local processing locally on devices 
like the NVIDIA Jetson Nano or Raspberry Pi 4 addresses an 
immediate challenge in industrial IoT systems-latency. The results 
from latency and memory efficiency testing justify this advantage, 
as the optimized edge model provides inference latency of reduced 
to 95 milliseconds from 620 milliseconds required by cloud-based 
methods. In mission-critical manufacturing environments, this 
decrease in response time makes the difference between timely 
intervention and unplanned machine downtime [4,11].

Furthermore, AI at the edge is a viable solution to both data 
privacy and bandwidth costs, which increase with-the growth 
in the IoT infrastructure. Industrial data from production lines 
is sensitive; even sensitive may include proprietary or state 
important documents. Local processing ensures that those data 
will not leave the premises at any point, thereby preventing privacy 
violations and reducing the possibility of a data breach [15]. 
Besides, streaming of data from a myriad of sensors to the cloud 
not only endures latency but also a significant cost in bandwidth 
consumption especially within establishments with questionable 
connectivity. The AI system may synthesize and consume good 
records locally, retaining high performance without further burden 
on the net [8,16].

Challenges and Limitations
Despite the advantages discussed, limitations in this regard are 
apparent. For one, training Generative AI models, even lightweight 
ones, involves a small quantity of quality-labeled data at any scale 
and an offline power-demanding computational bootstrapping 
operation. The inference side, for deployment on-edge, may be 
very lightweight. However, the first stage depends on resource-
intensive calculations; hence, clouds/servers/high-perform 
machines are recommended. Consequently, the small, resource-
deprived manufacturers could have a major uphill task to step 
their installation of AI in place with little external support, as 
challenges are stacked against them [10,17].

The generalizability of the generative model across varied types 
of machines and different operating contexts was another concern. 
The system will score big when trained and applied within the 
limits of a uniform environment: however, having a change in 
operational dynamics between systems, or the introduction of 
new systems with different fault modes would severely lower its 
performance. This could call for continuous retraining or model 
adaptation, thus adding complexity to maintenance [1,12]. As 
a possible means of remedy, researchers might explore how 
continual learning or federated learning techniques can be used 
to confer the capacity for model movements over time while 
operating on the edge.

There can be issues with the interpretability of synthetic data 
and its correlation with understanding the decision-making of a 
model system. While it undoubtedly enhances the performance, 
the introduction of synthetic data may also embed subtle biases 

should the generator unknowingly enhance some pattern not 
truly seen within natural environments. These biases could also 
guide the downstream classifier to have other particularly high 
false-positive readings or even jeopardize fault findin?.Applying 
stringent validation along with using explainable AI techniques 
might help in addressing these issues and in gaining trust among 
end users for these industrial systems [2,19].

Wider Impacts and Pathways
Nonetheless, the advantages of the supportably suggested 
system substantially dominate the obstacles in the context of the 
progress of smart factory evolution. A union of edge computing 
and generative modeling initiates a kind of paradigm in that it 
advances the real-time condition of predictive maintenance to 
work more accurately and make it much more usable, scalable, and 
secure. By doing things without reliance on cloud infrastructure, 
advancing transparency in latency, protecting the privacy of 
data, and improving performance of the model by means of 
data augmentation, this approach addresses numerous technical 
challenges so far safeguarding the widespread acceptance of AI 
in industrial settings [3,17].

Further, possibilities of improvement await the introduction of 
components such as self-supervised learning, multimodal sensor 
fusion, and real-time anomaly explanation. The entirety of these 
components work together to drive many exciting possibilities. 
For example, amalgamating data from vibration sensors with 
those from audio and thermal imaging within a unified generative 
framework might create consummatedly artificial datasets, which 
may indeed be simulating somewhat closer to the complex machine 
behaviors [20]. On another note, establishing feedback loops from 
maintenance staff based on model-generated alerts could set up 
a cycle from reinforcement learning that will further enhance the 
generator and the predictor continuously in time [18].

Concluding Reflection
One may believe one could conclude by observing from the 
discussion that there have indeed been many challenges posed by 
training, generalization, and bias handling. Today, the integration 
of GenAI and edge computing is showing great promise towards 
the next-generation of smart manufacturing. It seamlessly strikes 
the middle ground between the core intensive power of AI and 
the real-time industrial edge operation factors to make it not just 
innovative in nature but truly then capable of scaling.

Conclusions and Future Work
This work presented a thoroughly explored framework by 
combining lightweight Generative AI with edge computing to 
enhance predictive maintenance in smart factories. This approach 
was designed to overcome the deficiencies in existing industrial AI 
deployments associated with limited data, high latency threshold, 
reliance on cloud infrastructure, and data privacy concerns. By 
allowing synthetic data generation at edge level, the proposed 
system enhances models in the domain of predictive maintenance 
with better precision, accuracy, and interpretability, while 
minimizing client reliance on centralized computational resources.

All the experimental results provide ample proof of the highly 
efficient operation of the edge-based GenAI. It was seen that the 
fusion of GenAI data and real sensor data wraps up in leveraging 
remarkably high proportions of accuracy, precision, and recall as 
seen in comparison with models trained on real-world sensor data. 
In particular, the hybrid CNN-LSTM model led to accuracy of over 
94%, thereby underlining the potential of combining deep learning 
architectures with data augmentation methods [6,9]. Furthermore, 
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the successful inference time going below 100 milliseconds in edge 
deployments with extremely low memory usage confirms that real-
time predictions are usable on any device unsuitable for [10,12].

In addition to demonstrated performance merits, the architecture 
of the system is scalable, flexible, and privacy-preserving. Local 
inference ensures that sensitive industrial data will never be 
beamed to the cloud. Privacy considerations will be a major 
concern in a highly regulated or IP-driven environment [15]. The 
modular efficiency of the real deployment whereby GenAI and 
predictive models work side by side makes room for the system 
easy integration into any IIoT installation without excessively 
modifying work flows [8,17].

The research also uncovers important areas for more development 
that will carry forward the findings. One of the main restricting 
factors is that the GenAI model requires a lot of data at the outset to 
get set up. Despite being au point for on-edge operation, the initial 
phase of training often amounts to require very high computational 
power and quite centralized computing resources. Future directions 
for improvement largely involve distributing the heavy work 
of training across federated learning frameworks across the 
continuum of many edge-based learning nodes, maintaining 
maximum data privacy and reducing centralization [1,12].

Furthermore, broadening the field of generative model generalization 
between different machine types, sensor configurations, and 
factory environments would serve real superiority to factory 
operations. As the IIoT configurations expand and get more and 
more heterogeneous, the models have to learn to fully embrace the 
operational nuances without regular retraining. Domain adaptation, 
continual, or possibly meta-learning techniques may provide a 
probable way around total challenge toward this [2,7].

The development of other types of synthetic data generation is still 
another important area of future work. GenAI used here produced 
single-mode time-series data in this work-may it be vibrations or 
the temperature. Adding multimodal signal generation such as 
physio-acoustic-visual data will contribute to greater predictive 
maintenance robustness even in the cases of noisy or incomplete 
sensor data [13,18].

Also, XAI modules should be placed in the system to indirectly 
promote trust in users and explain the fault prediction, rather than 
just offering predictions. This is important in giving maintenance 
teams and factory operators a clear understanding and validation 
along the same lines. This is enhanced when part of the decision 
is based on synthetic data, which are otherwise obscure [5,19].

Lastly, there is a real opportunity to implement this architecture 
on a large scale in a federated IIoT environment, where multiple 
edge devices work together by sharing generalized know-how. 
This would make a decentralized predictive maintenance system 
still preserving factory-specific data. 

In conclusion, we believe this study is a big leap in smart 
manufacturing predictive maintenance, bringing together two 
rather unexplored realms of Generative AI and Edge Computing 
to provide a deployable, data-efficient, and high-performance 
solution. The proposal raises some technical and operational 
issues, and it thus lays some groundwork for future advanced 
research toward autonomous, intelligent maintenance systems 
for Industry 4.0 onward.

References
1.	 Sharanya S, Venkataraman R, Murali G (2022) Edge AI: 

from the perspective of predictive maintenance. Auerbach 
Publications 171-192. 

2.	 Khalil M (2024) Next-Generation Predictive Maintenance: 
Integrating AI, IoT, and Edge Computing in Manufacturing. 
MZ Computing Journal 5.

3.	 Vermesan O, Coppola M (2023) Edge AI Platforms for 
Predictive Maintenance in Industrial Applications. River 
Publishers 89-104. 

4.	 Hemmati A, Raoufi P, Rahmani AM (2024) Edge artificial 
intelligence for big data: a systematic review. Neural 
Computing and Applications 36: 11461-11494.

5.	 Bala A, Rashid RZJA, Ismail I, Oliva D, Muhammad N, et al. 
(2024) Artificial intelligence and edge computing for machine 
maintenance-review. Artificial Intelligence Review 57: 119.

6.	 Wang H, Zhang W, Yang D, Xiang Y (2022) Deep-learning-
enabled predictive maintenance in industrial internet of 
things: methods, applications, and challenges. IEEE Systems 
Journal 17: 2602-2615.

7.	 Chen J, Shi Y (2024). Generative AI over Mobile Networks 
for Human Digital Twin in Human-Centric Applications: A 
Comprehensive Survey. Authorea Preprints.

8.	 Narang NK (2024) Mentor's Musings on Concerns, Challenges 
& Opportunities for Generative AI at the Edge in IoT. IEEE 
Internet of Things Magazine 7: 6-11.

9.	 Devi ER, Shanthakumari R, Dhanushya S, Kiruthika G (2024) 
AI Models for Predictive Maintenance. In Data Analytics and 
Artificial Intelligence for Predictive Maintenance in Smart 
Manufacturing. CRC Press 69-94. 

10.	 Bourechak A, Zedadra O, Kouahla MN, Guerrieri A, Seridi 
H, et al. (2023) At the confluence of artificial intelligence and 
edge computing in iot-based applications: A review and new 
perspectives. Sensors 23: 1639.

11.	 REDDY GCP (2024) Architecting the Edge for Generative 
AI: A Scalable and Efficient Framework.  IRE Journals 8: 
776-792.

12.	 Awaisi KS, Ye Q, Sampalli S (2024) A Survey of Industrial 
AIoT: Opportunities, Challenges, and Directions. IEEE 
Access 12: 9694-96996.

13.	 Du H, Niyato D, Kang J, Xiong Z, Zhang P, et al. (2024) 
The age of generative AI and AI-generated everything. Ieee 
Network 38: 501-512.

14.	 Banaeian Far S, Imani Rad A (2024) Internet of Artificial 
Intelligence (IoAI): the emergence of an autonomous, 
generative, and fully human-disconnected community. 
Discover Applied Sciences 6: 91.

15.	 López Delgado JL, López Ramos JA (2024) A Comprehensive 
Survey on Generative AI Solutions in IoT Security. Electronics 
13: 4965.

16.	 Patwary M, Ramchandran P, Tibrewala S, Lala TK, Kautz 
F, et al. (2023) Edge Services. IEEE Future Networks World 
Forum (FNWF) 1-68.

17.	 Xu M, Du H, Niyato D, Kang J, Xiong Z, et al. (2024) 
Unleashing the power of edge-cloud generative AI in mobile 
networks: A survey of AIGC services. IEEE Communications 
Surveys & Tutorials 26: 1127-1170.

18.	 Roopa Devi EM, Shanthakumari R, Dhanushya S, Kiruthika 
G (2024) 5 AI Models for Predictive. Data Analytics and 
Artificial Intelligence for Predictive Maintenance in Smart 
Manufacturing 69.



Citation: Nirup Kumar Reddy Pothireddy (2025) Generative AI for Edge-Based Predictive Maintenance in Smart Factories. Journal of Artificial Intelligence & Cloud 
Computing. SRC/JAICC-473. DOI: doi.org/10.47363/JAICC/2025(4)444 

J Arti Inte & Cloud Comp, 2025             Volume 4(1): 8-8

Copyright: ©2025 Nirup Kumar Reddy Pothireddy. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

19.	 Rane J, Mallick SK, Kaya Ö, Rane NL (2024) Future Research 
Opportunities for Artificial Intelligence in Industry 4.0 and 
5.0. Deep Science Publishing https://deepscienceresearch.
com/index.php/dsr/catalog/book/4.

20.	 Chen YY, Jhong SY, Tu SK, Lin YH, Wu YC (2024) 
Autonomous Smart-Edge Fault Diagnostics via Edge-Cloud-
Orchestrated Collaborative Computing for Infrared Electrical 
Equipment Images. IEEE Sensors Journal 24: 24630-24648.


