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ABSTRACT

adaptive cybersecurity via optimized search.

Misconfigurations in software systems are a persistent source of security vulnerabilities, particularly within static architectures that fail to adapt over time.
Moving Target Defense (MTD) offers a proactive approach by dynamically altering the system’s attack surface, thereby reducing exposure. This paper
builds upon an MTD model, RL-MTD, which leverages Reinforcement Learning (RL) to generate adaptive secure configurations. Although effective,
RL-MTD faces limitations due to an unoptimized and sparse search space. To address this, two hybrid models—GA-RL and PSO-RL—are proposed,
integrating Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) into the RL-MTD framework. Experiments on four misconfigured SUTs
show both models outperform the baseline. Notably, PSO-RL yields the most secure configurations in most scenarios. The authors present a prototype
demonstrating how PSO-RL could be applied on a constrained Windows 10 system to defend against an attack. These findings enhance MTDbased
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Introduction

In today's digital era, software applications are integral to every
aspect of our lives, from powering our smartphones to driving
complex business operations, driving innovation and efficiency.
However, such highly configurable applications if not configured
properly can lead to security misconfiguration in software making
the system vulnerable to attacks like data breaches. In 2021, Twitch,
an interactive livestreaming platform, suffered a massive 125GB
data and source code leak due to server misconfiguration [1]. The
Open Web Application Security Project (OWASP) lists "Security
misconfiguration” among the top 5 web application security risks as of
2021 [2]. Misconfigurations stem from the static nature of application
configurations, persisting over time. This static characteristic can
result in improper security settings due to missed updates, human
errors, or incomplete configurations, leaving systems vulnerable to
attacks or unauthorized access by attackers [3].

To counter such threats, we require a dynamic defensive strategy to
overcome the static nature of configurations. Traditional solutions like
costly antivirus software, which focuses on detection and reaction,
are ineffective against evolving attack strategies. A proactive dynamic
defense is a more effective approach.

In our preliminary work, we introduced a model for generating
dynamic secure configurations using Moving Target Defense
(MTD) as our proactive defense solution. We implemented MTD
via Reinforcement Learning (RL), termed RL-MTD. However, the
performance of our RL-MTD base model was impacted by sparse
search space issues. In this paper, we address the performance issue

of non-optimized search space by enhancing our base model through
integration with bio-inspired algorithms (GA-RL and PSO-RL) to
improve performance.

MTD: According to the Department of Homeland Security (DHS),
MTD is a military strategy translated to the cybersecurity world that
involves dynamically manipulating various system configurations to
alter and manage the attack surface, thereby increasing uncertainty
and complexity for attackers [4]. This approach reduces opportunities
for attackers to identify vulnerable system components and raises the
cost of launching attacks or scans. Ultimately, the goal is to make
attackers expend time and effort without gaining valuable intelligence
about the system [5].

To the best of our knowledge, our work represents the initial endeavor
to introduce a proof-of-concept MTD defense strategy focused on
software configuration at the individual application level. This
paper builds upon preliminary research that laid the groundwork
for developing the RL-MTD framework to address software
misconfiguration as follows

*  We briefly discussed building our foundation work which is
base RL-MTD framework.

»  The optimization issue of the search space in the RL-MTD
model is examined.

*  We propose the integration of RL-MTD with bio-inspired
algorithms (GA, PSO) to create GA-RL and PSO-RL, offering
a solution for optimizing the search space problem.

*  Aquantitative analysis is conducted to compare the performance
of RL-MTD, GA-RL, and PSO-RL across four misconfigured case
studies of (SUTSs) in terms of generating secure configurations.

*  Demonstrative demo on Windows 10.
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The paper follows this structure:

An overview of prior work on RL-MTD model (Section 2), addressing
the search space issue (Section 3), integrating PSO and GA to RL-
MTD (Section 5) after providing background on PSO and GA (Section
4), experimental setup and results (Section 6), discussion of results,
attack - defense demo, related work, and conclusion with future work
(Sections 7-10).

Preliminary Work

In this section, we will first briefly discuss our preliminary work which
forms the foundation of the initial work done in the field of Moving
Target Defense for software misconfiguration [6].

We will divide this section into 2 parts where the first part talks briefly
about the motivating example/problem statement and the second part
demonstrates the MTD approach designed for the problem.

Motivating Scenario

Consider a host machine in an organization running a specific
software system with its own configuration space. If some settings
were accidentally tampered with due to manual intervention, static
analysis tools can detect these misconfigurations using techniques like
taint analysis, propagation policy studies, and inconsistency detection
[7]. For example, ConfTainter analyzes the impact of configuration
options on program behavior, considering data and control flow, and
achieves high accuracy in detecting misconfigurations [8]. If the tool
identifies a misconfiguration, it could make the system vulnerable to
attacks like brute force, code injection, buffer overflow, and cross-
site scripting (XSS). Attackers exploit these vulnerabilities by first
conducting reconnaissance to understand the misconfiguration. To
counter this, the proposed solution uses a Moving Target Defense
(MTD) strategy that frequently changes the configuration settings. This
approach aims to create a dynamic, secure environment, rendering
the attacker's knowledge obsolete and preventing effective exploit
development [9]. The goal is to move towards secure configurations
via dynamically changing the configurations from misconfigured
state to a secure state as a dynamic defensive measure (MTD)
using Reinforcement Learning (RL). This will confuse the attackers
who rely on outdated or constantly evolving information.

RL-MTD Approach

The idea is to develop a proof-of-concept of a defense approach inspired
by the Moving Target Defense (MTD) to defend misconfigured SUT.
We modeled MTD in the form of a single-player game implemented
using the model-free Monte-Carlo method in Reinforcement Learning
(RL) where the goal is to convert a misconfigured SUT to a secure-
configured SUT to defend it from potential attacks. This section first
talks about the attack surface used in our MTD strategy followed by
the game model description using RL.

Attack Surface

We represent the attack surface of a SUT as a configuration C which
is composed of a series of P parameters that belong to SUT. We
denote C as:

C.' = {PJ.' S1, P Sz, veey P: Sn}

where n represents the number of parameters and S, is the setting
value associated with parameter P, in a configuration space of SUT.
We collected the configuration information of different SUT from
the Security Technical Implementation Guide (STIG). The STIG
guidelines offer proper checklists to view the “compliance status”
of'the system’s security settings. In other words, the STIG checklists
enable us to test whether the underlying system configuration complies
with standards (i.e., secure system settings regulations. Figure 1 lists
some of the parameters of Windows 10 along with their default values
and the domain of values it belongs to. However, the key goal of the
MTD technique is to rearrange or randomize system configurations
to increase confusion and uncertainty for attackers [5]. Therefore,
the attack surface that we use for the RL-MTD model, starts with a
misconfigured SUT and the task of the agent is to learn to navigate
towards the securely configured SUT.

A misconfigured attack surface would have all the parameter's settings
improperly set (i.e randomly drawn from domain of (P))

For instance, C for misconfigured Windows would look like:
C: = { ACSettinglndex: 5, AllowBasic:3, ..., DoDownloadMode:4}

where the settings are a finding as these parameters are not securely set

Parameter Name Secure Default Values Domain
ACSettinglndex 1 Integer
AllowBasic 1] Integer, ‘None'
AllowDigest 0 Integer
AllowTelemelry {0, 1) Integer
AllowUnencryptedTraffic 0 Integer
AlwaysInstallElevated 4] Integer
AutoConnectAllowedOEM 0 Integer
CachedLogonsCount [1,2,3,4,5 6,7, 8, 8, 10] Integer
ConsentPromptBehaviorAdmin 2 Integer
DCSettingindex 1 Integer
DODownloadMode [0,1,2, 99 100] Integer

Figure 1: Windows 10 Configuration Parameters

Note: A subset of Windows 10 configuration parameters associated with default secure settings
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RL-Based Game Description of MTD

MTD is modeled as a single-player game played by an RL agent which acts as a defender focusing on the security of misconfigured
system. Imagine SUT's attack surface as a board game where the MTD RL agent has a start state, a goal state, and multiple dynamic
intermediate states which are dynamically generated and traversed based on the RL agent's action. The overall objective of the MTD-
RL agent is to dynamically transition from an insecure state (start) of the misconfigured SUT towards a nearly secure state(goal) of
the SUT by taking some actions. Figure 2 shows the RL environment elements used in our MTD approach and how RL elements
interact with the environment which is the attack surface of a misconfigured SUT.
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Figure 2: RL-elements and MTD-RL Interaction with Misconfigured SUT

Note: (Left) RL elements: The environment is the misconfigured SUT's attack surface, an agent is the Monte-Carlo-based RL agent,
the State represents the configuration (C) instance/state of the misconfigured SUT, actions taken by an agent are to either change
a particular parameter setting or hold back and rewards are given based on the improvement(+,- or none) of configuration security
score from its previous state. (Right) The MTD-RL agent interacts with a misconfigured SUT environment (eg Windows), where
the state s is the current config (C) it is in, and it takes an action (0 or 1) based on which the SUT moves the agent to the next state
s' and returns a reward (0,1,-1) based on the actions

Starting from the initial state, at every step, the agent must decide whether to alter (action = change (1)) or keep some parameter
settings as is (action = Hold (0)) of the current config state. The action taken is based on the fitness score of the current config state,
where if it is below a certain threshold value, action = 1 is chosen, other 0. Subsequently, a reward is generated which indicates how
good the action is which helps the maximize its choices to progressively achieve a more secure intermediate next config state until
it reaches the goal state. Figure 3 shows how the game is played where the ultimate strategy is to continuously and dynamically
modify the attack surface towards the direction of the finish/secure state, thereby reducing/changing vulnerabilities in the process and
confusing the attackers by increasing the uncertainty. The game's dynamics are implemented through the model-free RL-based Monte
Carlo Prediction method, which guides the decision-making process for optimizing security configurations through a defined policy.
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Figure 3: Snapshot of What an RL-MTD Game Looks Like When Played

Note: Initially, it starts from an insecure state (Top-left), takes an action based on the config fitness score, gets a reward, and moves
to the next intermediate steps (Top-right). This series of operations is followed in every step until the agent reaches the near-optimal
secure config finish state (Bottom).
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RL-MTD Game Algorithm

This section outlines a procedure and a series of step-by-step
algorithms for implementing the environment required to execute
model-free RL Monte Carlo (MC) prediction method in the context
of the RL-MTD game. The Monte Carlo method can help improve
a supplied policy that is effective at making decisions that lead
to winning the game which in our case is reaching as close to
the terminal state as possible. In other words, the purpose of this
method is to generate secure configurations for a misconfigured
SUT platform by assessing the quality of a given policy.

Technically, in MC prediction, the objective is to estimate the state-
value function V(s), which represents the expected return from a
state S under a given policy. Instead of using the term "expected
return" (which is the discounted sum of rewards), we employ the
concept of "empirical return." Essentially, MC prediction assesses
how well a fixed predefined policy performs by predicting the
mean total rewards from any given state, assuming the policy
remains constant [10]. The MC prediction pseudocode is shown
in Algorithm 1.

Our RL- MTD algorithm is also supplied with a fixed policy and
aims to evaluate its performance in terms of the value function. In
other words, our goal is to predict the expected total reward from
the most secure state it has reached. Consequently, we measure
the reward using the fitness score of each model configuration,
where higher fitness indicates a more secure configuration.
Moreover, we chose a modelfree MC prediction method as
the probability of transitioning (i.e., transition probabilities) to
the next configuration/state (different set of settings) cannot be
gauged from the environment as there is no predefined domain
of knowledge known to measure the likelihood of moving from
one configuration to another. As a result, the agent learns through
running multiple episodes, constantly collecting samples (random
values of settings), getting rewards, and thereby evaluating the
value function.

RL-MTD approach explained in the previous subsection can be

divided into the following steps

1. Step 1: Set Initial State: Initial state is a configuration C of
the underlying system initialized with random settings for
its parameters.

2. Step 2: Compute Config/Fitness Score: The fitness score
of a configuration state is the total sum of individual fitness
scores of the parameters. A parameter receives a definite
HIGH = 800 score if it is associated with its secure setting
according to the STIG website. Otherwise, a LOW = §
score is assigned. The fitness score indicates how secure
a configuration is. The higher the fitness score, the more
secure it is. These are hyperparameter values used to score
the severity of these settings.

3. Step 3: Set Action Policy: If the overall fitness score of the
configuration is below a certain threshold value, then the
agent chooses action a either O(hold) or 1(change) based on
the probability distribution p(a) as follows:

{probg = low, proby = high} : &
if fitness_score < Threshold

pla) =
{probg = high, prob; = low} : &

if fitness_score >= Threshold

where a = hold (0) or Change (1). This ensures the agent chooses
action 1 more if the fitness score of the C is not up to the mark
(threshold) and vice versa.

1. Step 4: Generate tuple. This tuple is indicative of the current
position of the agent in the attack surface. Rewards measure
how good of an action was taken by calculating the fitness
improvement (Fit (new S) - Fit (old S))

2. Step 5: Generate Episodes. Collection of tuples used for
training the agent.

3. Step 6: Execute RL MC prediction with the given action
policy. This is executed with multiple episodes and eventually
captures the best fitness scores in the form of the value of
state V which indicates how secure a given state is:

Vs = Epi [Rt+1 + y Rt+2+ y2 Rt+3...| St =s]
Where E is the expected mean of the reward for the state s.

As there was no pre-existing environment for our problem domain
in OpenAl gym at our disposal, we had to create our environment
using Step 4 which required Steps 1, 2, and 3 [11].

Step 5 is used to generate an episode of 100 tuples that are used
for training the MC prediction algorithm as shown in Algorithm
1 which is a standard algorithm used in literature. Figure 4 shows
a highlevel overview of how Steps 1-4 are implemented.

In short, RL-MTD model is composed of 3 main parts:
environment(), generate episode() and MC_prediction method ()

Algorithm 1
Monte Carlo Prediction Pseudocode [10].
1. Procedure mc_prediction(policy, num_ep, df)
2. returns_sum <« { } // Keeps track of the sum of returns for
each state to calculate an average.
3. returns_count < { } // Keeps track of the count of returns
for each state to calculate an average.
V «— { } // The final value function
For i in range (1, num_ep + 1)
episode «— generate_episode(policy)
states_in_episodes «— Find all states visited in this episode
and convert them into tuples
8. For state in states_in_episodes
a. first_occurrence « First occurrence of the state in the
episode
b. G «— Sum up all rewards since the first occurrence
c. returns_sum([state] += G
d. returns_count[state] += df
e. V[state] = returns_sum[state] / returns_count[state]
9. End For
10. End For
11. Return V
12. End Procedure

Nk
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Figure 5 shows the complete execution process flow of our RL-MTD algorithm.
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Figure 5: The Execution Flow of Base RL-MTD

Note: The execution flow of base RL-MTD model where Steps 1-4 make up the environment(), step 5 is generate episode () and
step 6 is MC prediction method ().

Search Space Issue in RL-MTD

In the RL-MTD work, there are two instances where the RL agent has to draw random setting values from the search space range of
every parameter P present in a configuration: once during the start state (initial state) of the game when it has generated a random
configuration state, other times whenever the action = 1 is chosen and it has to change settings of low score parameters.

As per the STIG website, the permissible default settings are defined for any parameter P belonging to a particular SUT. In our work,
as this is proof-of-concept, we handpicked only those parameters that mostly had integer values and/or 'None' as their settings for
ease of computation.

Figure 6 shows how we designed the search space range for the agent to choose from during the RL-MTD operation for any particular
SUT. The agent has to learn to eventually choose the permissible secure setting for every parameter P in configuration C from the
given search range to ensure C is close to being secure (goal state). We set the custom space range as follows depending on the data
type of setting(P):

1. Numeric: (v-lim, v+lim), and
2. List: choice between [(0, max(vi,v2,v3..) +lim] and None

where v is the default setting value as per the STIG website for any SUT, max(List) is the maximum setting value if it is a list type,
and /im is an arbitrary integer value. We set /im = 10 based on multiple experiments we conducted, and this value seemed to give
better secure configurations (as we also covered in the Results section).

Issue: However, finding the right value of /im to define the search space range from where the RL agent picks up random values
for parameters can be a time-consuming task and often requires us to play around with a bunch of different values before we can
find a good enough candidate. As this search space range is majorly responsible for the performance of RL in terms of generating
secure configurations, there is a need to find an optimized search space for RL that is best for agents to generate diverse yet secure
configurations.

The solution to this problem is to use search optimization algorithms. In section 5, we describe how we integrate the bio-inspired
search optimization algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) into RL-MTD and develop
Evolutionary RL(E-RL) algorithms for better performance.

We integrate both GA and PSO in our approach because they are widely recognized optimization techniques. PSO operates as a
population-based stochastic optimization algorithm, focusing on the collective behavior of swarms, while GA functions as a heuristic
search-based algorithm, simulating evolutionary processes like crossover and mutation [12,13]. Our study aims to compare and assess
the performance of these two algorithms to determine which one surpasses the base model in effectiveness.
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Figure 6: The Diagrammatic View of Search Space in RL-MTD Algorithm
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Note: (Left) RL-MTD Algo shows the diagrammatic view of all the important functions that use the search space/domain corresponding
to a particular SUT. This search range is used by the agent to randomly draw settings from either during the initial config state or
when action=1 is chosen. (Right) shows the search space range for 2 types of parameter settings where the agent has to pick a setting
from {v-lim,v+lim} if default setting(P) is a single integer value v and /im is a hyperparameter for a limit of int type; and if default
setting(P) could be any value from a list consisting of permissible non-neg integers (v1,v2,v3,...) and/or 'None', it gets to choose
either a numerical val from {0, max( (vI.v2,v3,.)+lim} or the string value 'None'.

Issue: How to effectively choose value of /im that will optimize the search space range for better performance?

Background
In this section, we briefly discuss the general working of bio-inspired algorithms: Genetic Algorithm and Particle Swarm optimization.

Genetic Algorithm

Genetic Algorithms (GA) are based on the biological process of evolution. The idea is that over time, a pool of chromosomes will evolve
to be even better (i.e., better fitness value) than the previous generation. A new generation (equal to the pool size) of chromosomes
(i.e., configurations) is created with any iteration of the algorithm. This is achieved by the processes of selection, crossover, and
mutation [14]. A fitness score metric is adopted as a measure to select the two fittest chromosomes from the pool that are called parent
chromosomes. Then crossover takes place between the parents to produce a new child chromosome, which will have the best traits
from both the parents followed by mutating of some of the characteristics of the child to introduce new traits. This process is repeated
until an entirely new generation gets created. Figures 7 and 8 show the elements and the process of GA respectively.
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Figure 7: The Elements of Genetic Algorithm
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Figure 8: Genetic Algorithm Process
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Particle Swarm Optimization

The Particle Swarm Optimization approach is based on natural
bio-inspired systems, including bird flocks or schooling fish [15].
Each particle follows certain fundamental rules to navigate the
search space effectively or reach optimal values [16]. Individuals
should maintain an appropriate distance in standard scenarios,
avoid collisions, and remain very close when confronted with
threats [15].

PSO stands as an iterative, random, and population-based
optimization algorithm for determining the optimal value. This
is accomplished by assigning a particle to locate the ideal location
or answer within the search space. Each particle's dynamics
is influenced by social movements as well as its own internal
dynamic. Originally, each particle, irrespective of its peers, can
be considered to behave independently to ameliorate its behavior.
However, swarms attempt to adjust to the behavior of other
particles as the algorithm processes. Consequently, each particle
adjusts updates iteratively with other particles to observe the
optimal value. Furthermore, the characteristics of each swarm
can be determined by the interaction of position and velocity [17].
Figure 9 shows the workflow of a general PSO process [18]. The
algorithm starts by initializing a swarm of particles with random
positions and velocities. It then enters a loop where it evaluates
the fitness of each particle, updates their personal best positions
and the global best position, and then adjusts their velocities and
positions accordingly. This loop continues until a termination
criterion, such as a maximum number of iterations or a satisfactory

fitness level, is met.
Hlarl :'

‘ Ininalize particle swarm ‘

Compute individual fimess value of
population

i

Update individual optimal location and
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Figure 9: Standard PSO Flowchart Process

Bio-Insoired RL-MTD Modeling

In this section, we delve into the design of the RL-MTD strategy
through an integrated approach using a Genetic Algorithm
with Reinforcement Learning (GA-RL) and Particle Swarm
Optimization with RL (PSORL). We will elucidate how the
components of each algorithm - GA-RL, and PSO-RL - are adapted
to our specific context of generating an optimized search space
for our RL-MTD algorithm to perform better in generating secure
configuration. This is followed by a detailed flowchart presentation,
illustrating how these individual strategies are operationalized.

Elements Representation for GA-RL, PSO-RL
Before we dive into the algorithm flow of how MTD is realized

using each of these methods, we will first show the element
representation used for each bio-inspired algorithm.

GA-RL Figure 10 illustrates how the Genetic Algorithm's (GA)
components are represented to be integrated into the RL-MTD(RL)
framework. In this model, we have:

e Gene: It's an initial random /im int value used to define the
Lower Limit (LL) and Upper Limit (UL) of a search space
corresponding to the datatype of setting(P) as mentioned in
section 3.

e Chromosome: It's an individual search space whose range
is composed be gene values.

e Population: It is a pool made up of different RL-MTD agents
each characterized by its search space range. (where each RL
agent acts as a chromosome)
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Figure 10: Representation of Genetic Algorithm Elements in Our
GA-RL Formulation for MTD.

Note: The search space is considered a chromosome, its range
limits (Lower limit, Upper limit) are its gene values. The
population is a collection of different GA-RL Agents each with
a different search space consisting of the configuration for the
same misconfigured SUT.

The objective is to evolve these different search spaces through
the GA with multiple generations. Each RL agent draws from
its unique settings search space range to generate random initial
configuration states, which are then utilized by the RL algorithm.
This algorithm encompasses environment setup, episode
generation, and Monte Carlo (MC) prediction functionalities.
The initial population consists of a variety of RL agents. Through
the iterative processes of Selection, Crossover, and Mutation,
this population undergoes evolution across generations. At the
culmination of these generations, we identify and select the most
effective RL agent from this pool. The selection criteria focus on
the agent that achieves the maximum rewards or creates the most
secure configurations.

A step-by-step construction of incorporating GA into our RL
-MTD is mentioned below. We follow the logic for Selection and
Crossover steps similar to the neuroevolution algorithm described
in [19]:

1. Treat the search space the agent draws from as a chromosome.
(We will address the agent's search space as an entire agent
for ease of use and consistency throughout the paper)
Agent's parameter, /im of search range will act as its genes.
The fitness score of secure configurations generated will act

i
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as the chromosome’s fitness (i.e. higher the fitness score, the
higher the likelihood of survival).

4. The first iteration starts with n number of agents (search
range), all with randomly initialized parameters.

5. Selection: By pure chance, some of them will perform
better than others. The survival of the fittest option is then
implemented by simply excluding the weakest agents from
consideration and considering a certain percentage of agents.

6. Crossover: It is quite risky to swap parameters/genes for
the simple reason that it might disturb the best-performing
agents' search space range limits. Hence, we would rather
replicate the selected agents for the next iteration until we
reach n agents again for the next iteration.

7. Mutation: We modify agents produced during the crossover
step, by adding or subtracting a small noise (value) to its
parameter(limit). This step ensures we get to explore the
neighborhood around the parameters of the best agents in
the next iteration.

8. To secure the best agents from a probable reduction in
performance due to the mutation step, we decided to keep
the top-performing agent as is (without adding noise).

PSO-RL

The components in our PSO-RL model as shown in Figure 11

are as follows:

e Particles / Swarm: In analogy to Figure 10, a particle
corresponds to a chromosome in GA, representing a limit
lim used to define the search space range. Similarly, akin to
the population in GA, a swarm, comprised of a collection
of particles, represents a list of limit values defining various
search space ranges, thus forming a swarm of distinct RL
agents.

*  Particle Position: Particle represents an individual search
space. We denote the particle's position in terms of its fitness.
Here fitness is measured by the performance of the RL-MTD
model when supplied with that particle.

Fitness(particle) = performance (RL-MTD[particle)]

where performance is the agent’s average performance (fitness
score) over 60 episodes.

*  Global Best: In its simplest form, global best refers to the
best value of a fitness score among a set of particles. Each
particle updates its position at the final stage of the search
space exploration, with the best position being identified as
the global best.

e Particle Velocity: This represents how far a particle position
is from the ideal position (fitness). This indicates the moving
rates for each particle within the search space. Our study takes
advantage of this part to determine the distance between the
best particle position and the ideal secure position.

~ ™
\._ Search space )

Particle

e

RL Agent
Particle position = Particle Fitness = performance of o -
{ Particle )

Environment }
Generate Eplsode( )
MC Prediction{ 60 ep }

Particle velocity = Particle current position Ideal fitness score of configuration C

Distance

Figure 11: PSO elements in our PSO-RL Formulation for MTD

Note: Representation of Particle, particle position and particle
velocity used in PSO-RL MTD.

Just like GA, the goal here is to find the most optimal particle
(search space) for our RL-MTD algorithm. The PSO-RL algorithm
uses the particle's position, velocity, and global best and is run
for 100 generations as per the standard PSO flowchart shown in
Figure 9 to find the most optimal search space for the RLMTD
model to generate more secure configurations.

Bio-inspired MTD Algorithm Design

In this section, we describe the E-RL algorithms for finding the
best-performing agent (search space) to generate a more secure
configuration.

GA-RL

Algorithm 2 shows how the GA-RL was adapted to find the best
RL agents in generating secure configuration. (https.//github.
com/paraschopra/deepneuroevolution/blob/master/openai-gym-
cartpoleneuroevolution.ipynb)

Algorithm 2
GA_RL Algorithm to find best RL agents

Procedure perform_GA() // Initialize n number of agents
1. num_agents < n
2. agents «— generate_random_agents(num_agents)
3. top_limit < k // # of top agents to consider as parents
4. For gen in range(X) // Run evolution for X generations
a. rewards «— run_agent(agents) // Return rewards of agents
b. selected agents «— Select agents of top k rewards //
Selection
c. children_agents < Randomly choose k-1 agents from
selected _agents // Crossover
d. mutated _agents «— Mutate(children_agents) // Children
agents after mutation
e. agents <— mutated_agents // Replace all agents with
mutated children
5. End For
6. Best_agent < Select agent from agents with maximum reward
7. Return Best_agent
End Procedure

Algorithm 2 follows the pseudo-code mentioned in the previous

section.

*  With population size set to n (num_agents), we generate
agents randomly in the first iteration using the function:
generate random_agents described in Algorithm 3.
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*  We set the maximum number of generations to run the loop
to X.

e The run_agent function is used in each generation to run all
randomly generated agents and get their performance (mean
fitness score). (Algorithm 4)

e Selection: Out of n, select only top k as parents (top_limit)
where k<n

e Crossover: As mentioned before, we replicate the selected
agents instead of swapping parameters. Among top k parent
agents, k-1 agents are randomly chosen to make children for
the next iteration.

e Mutation: In the mutate function, we add or subtract a small
noise(value) to the parameter if the value of the agent is
greater than a random number. (Algorithm 4)

*  After we have child agents as parents, we iterate over the
loop again until all generations are done or we find a good
performing agent.

Algorithm 3
Generate Agents
Procedure generate_random_agents(num_agents)
l.agents <[]
2.Fori from I to num_agents
a. lim < Pick random number from range (1, N) // N is an
integer
b. agents.append(lim)
3.End For
4.Return agents
5.End Procedure

In Algorithm 3, function generate random agents is used to
generate num agents number of agents. Here the agent represents
limit value /im which is an integer value randomly drawn between
1 and N (hyperparameter). This /im decides the search space range
from which the agent picks from.

Algorithm 4
RUN AGENT

Procedure run_agent(agents)

1. reward_agents «— [ ]

2. For ag in agents do
a. rwrd =run_RL _MTD(ag) // Call the run_RL _mc function
which takes the agent (i.e., lim) as input
b. reward_agents.append(rwrd)

3. End For

4. Return reward_agents

End Procedure

In Algorithm 4, the procedure run_agent takes a list of agents
agents as input. For each agent ag in agents list, run RL _MTD()
(Figure 5) is called which takes the agent as input and runs the
base RL-MTD model with the new search space (ag). The MC
prediction (Algorithm 1) method in the RL-MTD model returns
the agent's average performance (fitness score) over 60 episodes
which is stored in rwrd.

Algorithm §
MUTATION
Procedure mutate(children_agent)
1. mutate _agent «<— children_agent
2. If child_agent > random.random()
a. mutate_agent -= noise // hyperparameter
3. Else
a. mutate_agent += noise

4. End If
5. Return mutate _agent
End Procedure

PSO-RL

In Algorithm 6, we initialize all the N particles in a swarm with
random integers. Each particle's starting position will have the
same random integer and the same goes for the particle's velocity.
The optimal difference is the hyperparameter we experiment
with which indicates the threshold value. This threshold value
is to check how far the particle search space is from the optimal
one in terms of fitness scores generated from their corresponding
RL-MTD agents.

Algorithm 6
Initializing N Particles
Procedure initialize()
1. swarm < Pick N random integers // These are the limit values
representing each particle
2. For each particle in swarm
a. particle_position < Start with random integer
b. particle velocity < Start with random integer
3. End For
4. global best — 0
5. generations < 100
6. optimal_difference «— d
7. ideal_fitness <« Fitness Score Ideal C // The score of a fully
secure configuration
End Procedure

The primary goal of Algorithm 7 is to calculate each particle's
current position and update the gbest with the maximum value.
The procedure run_ RL_MTD() (base MTD-RL algorithm) is called
for each value in the swarm. The obtained value is then contrasted
with the preceding value. The global best receives the new value
if the outcomes attained are the highest value.

Algorithm 7
Particle Position

Procedure maximum_particle position()

1. For each particle in swarm

2. new_pp =run_RL MTD(particle) // Call the run_RL mc
function

3. If new_pp > particle_position[particle]

a. particle_position[particle] = new_pp

4. End If

5. global best = max(new_pp)

6. End For

7. Return global best

8. End Procedure

The distance between the ideal fitness and the particle's current
position (search space's fitness) is represented by particle velocity.
The lesser the distance, the more optimal the particle as it makes
the base RL-MTD model generate an almost secure configuration.
In Algorithm 8, we are trying to calculate the current distance of
the particle (line 3) and we update the particle's old velocity with
the current one if the latter is less than the former even though
it's still greater than optimal difference (line 4,5). This means it's
slowly approaching optimal difference.

Algorithm 8
Particle Velocity Algorithm
Procedure minimum_particle velocity ()
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1. For each particle in swarm
a. new_pv = ideal_fitness - particle_position[particle]
b. If (new_pv > optimal_difference) and (new_pv < particle_
velocity[particle])
i. particle_velocity[particle] = new_pv
c. End If
2. End For
3. Return new_pv
End Procedure

In Algorithm 9, social influence seeks to improve the particle
value in regard to the intermediate best particle via social influence
in a particular generation. It attempts to deduct social influence
value) or add it depending on whether the current particle is
greater or less than the intermediate best particle, thereby trying
to converge all the particles to the near-optimal particle.

Algorithm 9
Social Influence
Procedure social_influence() // Particle value learning to be closer
to the best one via social influence
1. For each particle in swarm
a. If particle > best _particle
i. particle -= influence // Random float social influence
value
b. Else
i. particle += influence
c. End If
2. End For
End Procedure

To determine the optimal particle (search space), Algorithm 10
which is the PSO algorithm is run over 100 generations.

Algorithm 10
Run PSO Generations
1. For each gen in generation // 100 iterations for finding the
best limit_value
a. maximum_particle_position()
b. minimum_particle velocity()
c. social_influence()
2. End For
3. Return particle

Experiments and Results

In this section, we elucidate the experimental setup for each
algorithm used in implementing MTD: RLMTD, GA-RL and
PSO-RL where we ran each of them on 4 SUT case studies and
compared their performance results. We intend to compare each
of these models to determine the most effective approach to
generating secure configuration using the MTD approach.

Experiment Set Up

RL-MTD We implemented the algorithm using python 3.6 with
libraries numpy and pandas. After much experimentation, we set
the following hyperparameters:

* lim = 10 (section 3)

 parameter score = HIGH(secure): 800; LOW(not secure): 8
(Section 2.2.3)

* Threshold= any value in range: (max_score - val,max_score)

where val is a hyperparameter set to 800 and max_score is the
ideal total fitness score of C where all parameters are securely
set (goal state). In action policy, we discourage the agent to not
choosing action change if the fit(C) falls in the threshold fitness

range as the range indicates that all parameters of C are securely
set except 1. Hence, ensuring the likelihood of the agent taking
action 0 is high (0.8) in this case.

GA-RL

We implemented GA-RL algorithm using Python 3.6 with libraries
numpy and pandas. After much experimentation, we set the
following hyperparameters:

*  number of agents n = 25

* number of top agents k=5

* number of generations X = 100

« N=25

*  noise =0.05

Fitness Function for Chromosome: To calculate rewards for
different RL agents, we used the entire RI-MTD algorithm as the
fitness function which returns the average of the scores generated
from the MC prediction function for the episode count for 20
and 60.

PSO-RL

We implemented PSO-RL algorithm using Python 3.6 with libraries

numpy and pandas. We set the hyperparameters as follows:

*  Swarm size = 30

*  Particle values (lim): integers =[1....30]

* Initial Particle position = 0

* Idea Fitness = Maximum fitness score of the most secure
configuration based on the selected SUT.

*  number of generations = 100

* influence = 0.05

Given that configuration C varies across different SUTs due to its
diverse parameters, it became evident that employing identical
optimal difference and initial particle velocity values to be
implemented for all case studies was inappropriate. This is because
the values depended on the specific parameters and their quantity
within each SUT's configuration. Consequently, we undertook an
exploration of various optimal particle and initial particle velocity
values to identify the most effective combinations tailored to
each SUT. The ultimate goal is to recognize the optimum balance
between Particle Velocity and the Optimal Difference. This leads
to the attainment of maximum or highly improved results within
the PSO-RL framework.

We elaborate on the ideal set of hyper-parameters examined
for PSO, which comprises the Optimal Difference and Particle
Velocity for each case study.

The ideal set refers to the optimal combination of parameters that
led to the most secure and effective results in our experiments.

Considering these two hyper-parameter values as a tuple (Optimal
Difference, Particle Velocity), our best combinations for each case
study are as follows:

*  Window 10: (20, 300)

*  McAfee: (300, 500)

*  Microsoft Excel 2016: (160, 200)

*  Microsoft Office 2007: (120, 1000)

As mentioned in Section 5-1 and Figure 11, we deemed the search
space to correspond to particle position and particle fitness.

We considered the initial search space for the first iteration to be
set to zero.
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Following running the experiment for over approximately 5000
generations, the optimal search space or optimal particle fitness
in the most effective pairing of (Optimal Difference, Particle
Velocity) for each scenario was presented as follows:

*  Window 10: 34924.0

*  McAfee: 7240.0

e Microsoft Excel 2016: 14812.0

e Microsoft Office 2007: 16800.0

Results on Case Studies

This section demonstrates the performance of all three models:
RL-MTD, GA-RL, PSO-RL, in generating secure configurations
and reports the results. Once we get the optimal search space
range for both GARL and PSO-RL, we run the base RL-MTD
with those optimized search spaces and capture their results. We
then compare their performance with the base RL-MTD with no
optimization.

We selected 4 SUT case studies and the corresponding parameters
from the STIG website namely:

1. Windows 10 (59 parameters)

2. McAfee (14 parameters)

3.  MS Excel (20 parameters)

4. MS Office (21 parameters)

These SUTs contain a good number of configuration parameters
whose domains are diverse enough.

We executed our developed scripts for various number of episodes
and captured the best fitness scores (i.e., value of state " that
indicates how secure a given state is). Figures 12 illustrate the trend
of fitness scores obtained through the episodes where the x-axis
is the episode counts (i.e., between 20-500 episodes); whereas
the y-axis holds the normalized values of fitness scores. More
specifically, the normalized fitness score value of 0.0 represents
the least secure attained by the agent; whereas the value 1.0 is the
most secure fitness score. The normalization on fitness scores is
performed as follows:

normalized(fs) = ﬁ%
where min(fs) for a given fitness score fs is the minimum fitness
score of the configuration which is equal to the total sum of the
fitness scores for all parameters when they are all set to LOW.
Similarly, min(fs) for a given fitness score f5 is the maximum
fitness score of the configuration which is equal to the total sum
of the fitness scores for all parameters when they are all set of
HIGH. More specifically,

min(fs)=z_’$i:1LOW ; max(fs) = _3}1_:1HIGH

where S; is the i parameter and 7 is the total number of parameters.

We now analyze the results for each case study which is also
summarized in Table 1.

Window 10 Case Study

Upon examining Figure 14a an initial observation reveals that
RL-MTD demonstrates the least security performance. However,
an instant competition unfolds between GA-RL and PSO-RL
(labeled ERL). Ultimately, it becomes evident that in this context,
PSO-RL outperforms GA-RL, although a slight difference can be
depicted. Moreover, in this case study, PSO-RL outperformed 17
times in comparison to GA-RL.

McAfee Case Study

In this case study, substantial fluctuations are observed across all
experiments; however, RL-MTD consistently exhibits inadequate
performance compared to the other two methods. Upon initial
glance of GA-RL and PSO-RL (labeled ERL) in Figure 14b,
notable oscillations are evident. Furthermore, both PSO and
GA equally performed better than base model for a count of 8
episodes. A distinct pattern emerges in these two methods, while
they promote similar performance. Specifically, in corresponding
episodes, both methods experience periods of insecurity, followed
by episodes where performance improves. For instance, in episode
number 40, the performance of neither algorithm is remarkable,
but in the subsequent episode, a notable improvement can be
illustrated.

Microsoft Excel 2016 Case Study

In this case study, illustrated in Figure 14c, RL-MTD and GA-
RL (labeled ERL) display predominantly similar and fluctuating
behaviors. The frequency of episodes where each outperforms
the other is comparable. Although RL-MTD may exhibit better
performance in specific episodes, the reverse occurs for GA.

Despite the oscillations perceived in PSO-RL as a third graph, it
consistently surpasses the other two methods in most instances.
Moving to the episode counts analysis, it becomes evident that
the results are outstanding when employing the PSO-RL model
in the Microsoft Excel 2016 case study.

In the majority of episodes, PSO-RL demonstrates upper-level
performance compared to other methods.

Microsoft Office 2007 Case Study

As depicted in Figure 14d, a clear distinction is evident in the
performance between RL-MTD and Bioinspired methods (labeled
ERL), including GA-RL and PSO-RL, upon initial glance.

Although RL-MTD attempts to reach Bio-inspired methods,
within one episode, there is a substantial difference in subsequent
episodes. A slight discrepancy is observed by moving to the GA-
RL and PSO-RL methods. In most episodes, GA-RL and PSO-RL
demonstrate approximate performance.

However, GA-RL slightly exhibits less security in a few instances.
It is evident that Bio-inspired methods which are GA-RL and
PSO-RL, achieve the highest level of security performance in
almost all episodes iteratively. This underlines that both GA-RL
and PSO-RL attain higher-rank secure performance.
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Figure 12: Performance Comparison of the 3 Models: MTD-RL(labeled RL), GA-RL (ERL-GA), and PSO-RL (ERL-PSO) in
generating secure configurations for 4 case studies. The x-axis shows the number of episodes each of the models were trained on
and the y-axis shows the normalized fitness each of these models was able to achieve. 1 being the max fitness score: (all parameters
securely set) and 0 being the most insecure. From the trend, we see both bio-inspired algorithms outperformed the base RL-MTD
model for most of the SUTs reaching almost the most secure config across all episodes. However, between GA-RI and PSORL, it's
a close call but as per our analysis in Table 1, PSO-RL was the best performing model by a margin. }

Table 1

This table summarizes the results/analysis (Figure 12) of the 3 models on each SUT and shows PSO-RL was the clear winner among
all 3. We considered 25 episodes for each model namely, RL-MTD, GA-RL, and PSO-RL. The values in tuples illustrate the total
count of episodes in which each model outperformed the rest two. For instance, for the Windows 10 case study, PSO-RL outperformed
others 17 times, while GARL did better 6 times. Having said that, in contrast to PSO-RL and GA-RL, base RL-MTD did not achieve
better in generating configuration far nay SU. When the cumulative number of episodes is less than 25, the rest of the episodes show
equal values between the methods.

Case Studies Count of Episodes (RL, GA-RL, PSO-RL) Best Algorithm
WINDOW 10 0,6,17) PSO-RL
MCAFEE (0,8, 8) GA-RL, PSO-RL
MS EXCEL 2016 0,2,21) PSO-RL
MS OFFICE 2007 0,0, 12) PSO-RL

Attack-Defense Model Demo Using Our MTD Approach

For demonstration purposes, consider a Windows 10 installation on a PC, where the attack surface is defined by three key parameters:

e ACSettingIndex: Enforces automatic screen locking (e.g., a short display timeout) to mitigate unauthorized wakeups or physical
access risks.

e AllowBasic: Controls whether Windows allows remote logins using simple, unencrypted passwords, a method similar to writing
your password on a postcard.

e AllowDigest: Controls whether Windows permits slightly more secure, but still weak, remote logins that use scrambled passwords.
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Reconnaissance

Imagine an attacker targeting the Windows 10 PC. At time t, the

attacker performs reconnaissance and discovers that the following

three parameters are misconfigured:

*  ACSettinglndex = 0: This results in overly long screen
timeout values, increasing the potential for unauthorized
access when the system is left unattended.

e AllowBasic = 1: This setting enables remote login with
unencrypted passwords, which can be exploited by attackers
to reuse credentials and break into the system.

e AllowDigest = 1: This enables digest authentication, which
is vulnerable to credential replay attacks.

These misconfigurations create a vulnerable attack surface,
allowing the attacker to exploit the combination of vulnerabilities
vl, v2, and v3. This leads to the formulation of an attack strategy
A, based on the identified vulnerabilities. A can be ransomware
deployment, data exfiltration, etc

Defense Approach Using MTD

Most system administrators (sys admins) are reluctant to change
default settings, as doing so can interfere with system functionality
and user experience [20]. This resistance often results in the
persistence of a vulnerable attack surface (v1, v2, v3), which
attackers can exploit for a successful attack A.

To mitigate this, we propose using PoC Evolutionary MTD
(Moving Target Defense). This defense mechanism dynamically
shifts the attack surface by changing the configuration of the
three parameters, effectively changing the vulnerabilities at time
t+1. As the system continuously evolves, it forces the attacker to
deal with an ever-changing landscape, making the attack futile.

For example, with each change in the configuration, the
vulnerabilities v1, v2, and v3 transform into v1', v2', and v3',
creating new but different vulnerabilities which are no longer
exploitable to the attacks A as the types/properties of the
vulnerabilities changed causing the attack to fail. By constantly
shifting these settings over t+2, t+3 constantly to outsmart the
attackers with new exploits, vulnerabilities also change without
being static. Hence the MTD defense mitigates attacks like

ransomware deployment, data exfiltration, and others that depend
on static vulnerability combinations.

Deployment Process: Overlay Configuration Setting

This defense is not implemented directly at the OS level but
through an overlay configuration setting stage, called authoring.
During this phase, sys admins create different configuration
profiles, choosing which parameters to harden. These profiles can
include fake configuration keys that act as an intermediary attack
surface, shielding the original surface and misleading attackers.

Mechanism of Evolutionary RL-MTD Defense

The evolutionary RL-MTD algorithm optimizes the attack surface
through a dynamic search space, which it learns using PSO-RL
(Particle Swarm Optimization-Reinforcement Learning). For
the ACSettingIndex, the system creates decoy registry entries
with similar names but different fake values that fetches from
the optimized search space through the profiling stage near the
original keys, making it harder for attackers to discern legitimate
settings. This approach not only disrupts the attacker’s ability to
exploit the initial vulnerability but also continuously alters it. The
following command is used to create a decoy key with a dummy
path where the fake value is assigned in dO (placeholder) by our
algorithm periodically.

reg add "HKLM\Software\DummyPath\ACSettinglndex" /v
"FakeValue" /t REG DWORD /d 0

The algorithm performs the same transformation for the other two
parameters—AllowBasic and AllowDigest—Dby selecting random
values from their respective domains, adding an additional layer
of confusion for attackers. Figure 13 also shows how you can
create duplicate variables graphically.

Results: Wasteful Effort for Attackers

Through continuous profiling and dynamic changes in the settings,
the evolutionary MTD approach renders the attacker’s efforts
futile by directing them toward fake keys. The attacker wastes
significant time and resources analyzing and attempting to exploit
these decoys, effectively neutralizing the potential for a successful
attack.
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Note: Shows how you can create decoy variables for ACSettingIndex in Windows 10
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Discussions

As seen in the results, the base RL-MTD approach exhibits less
secure performance across all case studies. The incorporation
of the optimal search space derived from both GA and PSO
significantly enhanced the performance of our base RL-MTD
model compared to its performance without the optimal search
space. Interestingly, our analysis revealed that while there was
a notable performance improvement when utilizing the optimal
search space from either GA or PSO, the difference in performance
between GA and PSO was marginal. This suggests that both GA
and PSO were effective in searching for an optimal search space
to enhance the base model's performance. However, the clear
winner was PSO-RL. Our findings underscore the efficacy of
both optimization techniques in facilitating the identification of
an optimal search space conducive to generating more secure
configurations within the RL framework.

In some illustrations, such as Windows 10 and Microsoft Office
2007, minor improvements prevailed. Nevertheless, PSO
ultimately proves better results in other cases like Microsoft Excel
2016, despite slight fluctuation. It should be noted that in certain
case studies, such as McAfee, significant performance fluctuations
lead to equal outcomes for GA and PSO. A key point to consider
is that in each case study, optimization drives experimentation to
enhance outcomes and performance.

Note: As previously noted, the application of MTD to address
security challenges in misconfigured software is relatively
novel, resulting in the absence of an established benchmark for
comparison in existing literature. This study aims to be viewed
as the construction of a proof-of-concept (POC), showcasing
the potential of an MTD defense strategy from the defender's
standpoint in generating dynamic secure configuration. It is
crucial to acknowledge that further research and refinement
are imperative to bolster this strategy and guarantee its overall
effectiveness.

Related Work

Examining the relevant literature closely reveals that there hasn't
been adequate discussion of the intended motivation. By scrutinizing
the related work can be noticed that the targeted motivation
has not been addressed much. C. Gao and Wang countered the
moving target defense method by implementing Reinforcement
Learning to address the DDoS attack [21]. The findings of their
experiments advocate that the reinforcement learning adjustment
on MTD affects the results more successfully and enhances the
algorithm performance. T Zhang et al., generated the Moving
target defense method draws on deep reinforcement learning to
protect from cyber security attacks [22]. The Markov decision
process (MDP)model was used to design the MTD technique
to train on scanning behavior. The analysis of the developed
model revealed that the scanning time was diminished effectively.
Eghtesad et al. applied the reinforcement learning technique to
ameliorate the MTD method performance in their study [23].
The authors evaluated the numerical results demonstrating the
performance of the trained model. The outcomes depict that the
developed model has the exceptional ability to recognize the
optimal policies in a defined environment. Li et al. utilized the
MTD technique to mitigate the potential threats and attacks that
might be encountered in the container cloud environment [24].
The proposed model exploits the advantage of deep reinforcement
learning along with the Markov decision process in the optimized
MTD. The model demonstrates the improvement of the efficacy
of defense significantly. The authors of John et al, implemented
the Genetic Algorithm in Moving Target Defense to find the

optimized secure configuration [25]. John et al. stated that the
variety of configurations is potentially improved over time
regarding the environment. The experiment findings confirm that
the GA method is sufficiently capable of identifying the optimal
secure configuration. Zhang, et al., introduced the Moving Target
Threeway Evolutionary Game Defense Model in network security
[26]. The model, which concentrates on offering adjustable defense
decisions, combines evolutionary games and signal games. The
authors employed the action and rewards strategy to optimize
the defense. Findings and analyses reveal that the Monte Carlo
simulation performs better compared to former designs. However,
defending from various attack behaviors is still ongoing.

Conclusion and Future Work

In conclusion, our in-depth research tackles the pervasive challenge
of security misconfiguration within software systems—a problem
that leaves systems open to exploitation. By integrating bio-
inspired algorithms, specifically the Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO), into our previously
established RL-MTD model, we've advanced the model's
proficiency in continuously generating secure and dynamic
configurations. Through rigorous comparative analysis, we've
ascertained that both the GA-RL and PSO-RL enhancements not
only refine the search space for potential configurations but also
surpass the original RL-MTD framework in their ability to produce
robust configurations against an array of software systems put to
the test (SUTs). Noteworthy is the slightly superior performance
of PSORL in the majority of these scenarios, making it the best-
performing model due to a nuanced edge in its search strategy.
Our findings represent a significant contribution to the domain of
proactive cybersecurity measures. By employing Moving Target
Defense (MTD) enriched with machine learning and bio-inspired
algorithms, we present an innovative and efficacious strategy to
proactively MTD defense strategy from a defender perspective,
thereby reinforcing the security posture of software configurations
against the dynamic landscape of cyber threats.

For future work, we envision expanding our research to transform
the current game model into a more complex and realistic scenario.
The next step is to develop a two-player version of the game, where
one player is the defender, maintaining secure configurations,
while the other acts as an attacker, probing and exploiting
vulnerabilities. Additionally, since software applications do not
operate in isolation but interact with each other, it is crucial to
examine these interactions and how they may impact the Moving
Target Defense (MTD) strategy. Furthermore, we will run our
proposed conceptual MTD framework and measure its efficiency in
terms of the perspectives of an attacker and a defender at real time
together in ab bigger setup with all SUTs. The attacker’s metric
estimates its attack performance, indicating that the attacker’s
high performance refers to the defender’s low performance, and
vice versa. The defender’s metric measures its performance in
achieving security and defense goals of a given system.

(1) Attack success probability (ASP): This metric refers to the
probability that attacks are successfully performed. In our case,
it refers to the probability that an attack surface is compromised
or freezes by an attacker.

(2) Defense success probability (DSP): This metric measures
the success of the defender agent in the MTD model by its ability
to avoid vulnerability chains, attaining low score interruptions
score (QoS high) and number of times it reached the terminal
state (secure configuration state).
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We also need to study how different configuration parameters
influence each other. Ultimately, this research is a stepping stone
towards a deeper understanding of how to protect software from
misconfiguration threats using MTD, aiming to build a more
resilient digital infrastructure.
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