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ABSTRACT
Misconfigurations in software systems are a persistent source of security vulnerabilities, particularly within static architectures that fail to adapt over time. 
Moving Target Defense (MTD) offers a proactive approach by dynamically altering the system’s attack surface, thereby reducing exposure. This paper 
builds upon an MTD model, RL-MTD, which leverages Reinforcement Learning (RL) to generate adaptive secure configurations. Although effective, 
RL-MTD faces limitations due to an unoptimized and sparse search space. To address this, two hybrid models—GA-RL and PSO-RL—are proposed, 
integrating Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) into the RL-MTD framework. Experiments on four misconfigured SUTs 
show both models outperform the baseline. Notably, PSO-RL yields the most secure configurations in most scenarios. The authors present a prototype 
demonstrating how PSO-RL could be applied on a constrained Windows 10 system to defend against an attack. These findings enhance MTDbased 
adaptive cybersecurity via optimized search. 

Keywords: System Security, Software Configuration, Moving Target 
Defense (MTD), Reinforcement Learning (RL), Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO) 

Introduction
In today's digital era, software applications are integral to every 
aspect of our lives, from powering our smartphones to driving 
complex business operations, driving innovation and efficiency. 
However, such highly configurable applications if not configured 
properly can lead to security misconfiguration in software making 
the system vulnerable to attacks like data breaches. In 2021, Twitch, 
an interactive livestreaming platform, suffered a massive 125GB 
data and source code leak due to server misconfiguration [1]. The 
Open Web Application Security Project (OWASP) lists "Security 
misconfiguration" among the top 5 web application security risks as of 
2021 [2]. Misconfigurations stem from the static nature of application 
configurations, persisting over time. This static characteristic can 
result in improper security settings due to missed updates, human 
errors, or incomplete configurations, leaving systems vulnerable to 
attacks or unauthorized access by attackers [3].  

To counter such threats, we require a dynamic defensive strategy to 
overcome the static nature of configurations. Traditional solutions like 
costly antivirus software, which focuses on detection and reaction, 
are ineffective against evolving attack strategies. A proactive dynamic 
defense is a more effective approach. 

In our preliminary work, we introduced a model for generating 
dynamic secure configurations using Moving Target Defense 
(MTD) as our proactive defense solution. We implemented MTD 
via Reinforcement Learning (RL), termed RL-MTD. However, the 
performance of our RL-MTD base model was impacted by sparse 
search space issues. In this paper, we address the performance issue 

of non-optimized search space by enhancing our base model through 
integration with bio-inspired algorithms (GA-RL and PSO-RL) to 
improve performance. 

MTD: According to the Department of Homeland Security (DHS), 
MTD is a military strategy translated to the cybersecurity world that 
involves dynamically manipulating various system configurations to 
alter and manage the attack surface, thereby increasing uncertainty 
and complexity for attackers [4]. This approach reduces opportunities 
for attackers to identify vulnerable system components and raises the 
cost of launching attacks or scans. Ultimately, the goal is to make 
attackers expend time and effort without gaining valuable intelligence 
about the system [5]. 

To the best of our knowledge, our work represents the initial endeavor 
to introduce a proof-of-concept MTD defense strategy focused on 
software configuration at the individual application level. This 
paper builds upon preliminary research that laid the groundwork 
for developing the RL-MTD framework to address software 
misconfiguration as follows
•	 We briefly discussed building our foundation work which is 

base RL-MTD framework.
•	 The optimization issue of the search space in the RL-MTD 

model is examined. 
•	 We propose the integration of RL-MTD with bio-inspired 

algorithms (GA, PSO) to create GA-RL and PSO-RL, offering 
a solution for optimizing the search space problem. 

•	 A quantitative analysis is conducted to compare the performance 
of RL-MTD, GA-RL, and PSO-RL across four misconfigured case 
studies of (SUTs) in terms of generating secure configurations. 

•	 Demonstrative demo on Windows 10. 

School of Computing and Informatics, University of Louisiana at Lafayette, USA



Citation: Niloofar Heidarikohol, Shuvalaxmi Dass (2025) Advancing Moving Target Strategy with Bio-Inspired Reinforcement Learning to Secure Misconfigured 
Software Applications. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-523. DOI: doi.org/10.47363/JAICC/2025(4)502

J Arti Inte & Cloud Comp, 2025       Volume 4(5): 2-15

The paper follows this structure:
An overview of prior work on RL-MTD model (Section 2), addressing 
the search space issue (Section 3), integrating PSO and GA to RL-
MTD (Section 5) after providing background on PSO and GA (Section 
4), experimental setup and results (Section 6), discussion of results, 
attack - defense demo, related work, and conclusion with future work 
(Sections 7-10).

Preliminary Work 
In this section, we will first briefly discuss our preliminary work which 
forms the foundation of the initial work done in the field of Moving 
Target Defense for software misconfiguration [6]. 

We will divide this section into 2 parts where the first part talks briefly 
about the motivating example/problem statement and the second part 
demonstrates the MTD approach designed for the problem. 

Motivating Scenario
Consider a host machine in an organization running a specific 
software system with its own configuration space. If some settings 
were accidentally tampered with due to manual intervention, static 
analysis tools can detect these misconfigurations using techniques like 
taint analysis, propagation policy studies, and inconsistency detection 
[7]. For example, ConfTainter analyzes the impact of configuration 
options on program behavior, considering data and control flow, and 
achieves high accuracy in detecting misconfigurations [8]. If the tool 
identifies a misconfiguration, it could make the system vulnerable to 
attacks like brute force, code injection, buffer overflow, and cross-
site scripting (XSS). Attackers exploit these vulnerabilities by first 
conducting reconnaissance to understand the misconfiguration. To 
counter this, the proposed solution uses a Moving Target Defense 
(MTD) strategy that frequently changes the configuration settings. This 
approach aims to create a dynamic, secure environment, rendering 
the attacker's knowledge obsolete and preventing effective exploit 
development [9]. The goal is to move towards secure configurations 
via dynamically changing the configurations from misconfigured 
state to a secure state as a dynamic defensive measure (MTD) 
using Reinforcement Learning (RL). This will confuse the attackers 
who rely on outdated or constantly evolving information.

RL-MTD Approach 
The idea is to develop a proof-of-concept of a defense approach inspired 
by the Moving Target Defense (MTD) to defend misconfigured SUT. 
We modeled MTD in the form of a single-player game implemented 
using the model-free Monte-Carlo method in Reinforcement Learning 
(RL) where the goal is to convert a misconfigured SUT to a secure-
configured SUT to defend it from potential attacks. This section first 
talks about the attack surface used in our MTD strategy followed by 
the game model description using RL.

Attack Surface
We represent the attack surface of a SUT as a configuration C which 
is composed of a series of P parameters that belong to SUT. We 
denote C as: 
                    C: = {P₁: S₁, P₂: S₂, …, P: Sₙ }

where n represents the number of parameters and Si is the setting 
value associated with parameter Pi in a configuration space of SUT. 
We collected the configuration information of different SUT from 
the Security Technical Implementation Guide (STIG). The STIG 
guidelines offer proper checklists to view the “compliance status” 
of the system’s security settings. In other words, the STIG checklists 
enable us to test whether the underlying system configuration complies 
with standards (i.e., secure system settings regulations. Figure 1 lists 
some of the parameters of Windows 10 along with their default values 
and the domain of values it belongs to. However, the key goal of the 
MTD technique is to rearrange or randomize system configurations 
to increase confusion and uncertainty for attackers [5]. Therefore, 
the attack surface that we use for the RL-MTD model, starts with a 
misconfigured SUT and the task of the agent is to learn to navigate 
towards the securely configured SUT.

A misconfigured attack surface would have all the parameter's settings 
improperly set (i.e randomly drawn from domain of (P))

For instance, C for misconfigured Windows would look like:

C: = { ACSettingIndex: 5, AllowBasic:3, …, DoDownloadMode:4}

where the settings are a finding as these parameters are not securely set

Figure 1: Windows 10 Configuration Parameters
                                                                
Note:  A subset of Windows 10 configuration parameters associated with default secure settings
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RL-Based Game Description of MTD 
MTD is modeled as a single-player game played by an RL agent which acts as a defender focusing on the security of misconfigured 
system. Imagine SUT's attack surface as a board game where the MTD RL agent has a start state, a goal state, and multiple dynamic 
intermediate states which are dynamically generated and traversed based on the RL agent's action. The overall objective of the MTD-
RL agent is to dynamically transition from an insecure state (start) of the misconfigured SUT towards a nearly secure state(goal) of 
the SUT by taking some actions. Figure 2 shows the RL environment elements used in our MTD approach and how RL elements 
interact with the environment which is the attack surface of a misconfigured SUT. 

Figure 2: RL-elements and MTD-RL Interaction with Misconfigured SUT

Note: (Left) RL elements: The environment is the misconfigured SUT's attack surface, an agent is the Monte-Carlo-based RL agent, 
the State represents the configuration (C) instance/state of the misconfigured SUT, actions taken by an agent are to either change 
a particular parameter setting or hold back and rewards are given based on the improvement(+,- or none) of configuration security 
score from its previous state. (Right) The MTD-RL agent interacts with a misconfigured SUT environment (eg Windows), where 
the state s is the current config (C) it is in, and it takes an action (0 or 1) based on which the SUT moves the agent to the next state 
s' and returns a reward (0,1,-1) based on the actions 

Starting from the initial state, at every step, the agent must decide whether to alter (action = change (1)) or keep some parameter 
settings as is (action = Hold (0)) of the current config state. The action taken is based on the fitness score of the current config state, 
where if it is below a certain threshold value, action = 1 is chosen, other 0. Subsequently, a reward is generated which indicates how 
good the action is which helps the maximize its choices to progressively achieve a more secure intermediate next config state until 
it reaches the goal state. Figure 3 shows how the game is played where the ultimate strategy is to continuously and dynamically 
modify the attack surface towards the direction of the finish/secure state, thereby reducing/changing vulnerabilities in the process and 
confusing the attackers by increasing the uncertainty. The game's dynamics are implemented through the model-free RL-based Monte 
Carlo Prediction method, which guides the decision-making process for optimizing security configurations through a defined policy.

Figure 3: Snapshot of What an RL-MTD Game Looks Like When Played
Note: Initially, it starts from an insecure state (Top-left), takes an action based on the config fitness score, gets a reward, and moves 
to the next intermediate steps (Top-right). This series of operations is followed in every step until the agent reaches the near-optimal 
secure config finish state (Bottom).
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RL-MTD Game Algorithm
This section outlines a procedure and a series of step-by-step 
algorithms for implementing the environment required to execute 
model-free RL Monte Carlo (MC) prediction method in the context 
of the RL-MTD game. The Monte Carlo method can help improve 
a supplied policy that is effective at making decisions that lead 
to winning the game which in our case is reaching as close to 
the terminal state as possible. In other words, the purpose of this 
method is to generate secure configurations for a misconfigured 
SUT platform by assessing the quality of a given policy. 

Technically, in MC prediction, the objective is to estimate the state-
value function V(s), which represents the expected return from a 
state S under a given policy. Instead of using the term "expected 
return" (which is the discounted sum of rewards), we employ the 
concept of "empirical return." Essentially, MC prediction assesses 
how well a fixed predefined policy performs by predicting the 
mean total rewards from any given state, assuming the policy 
remains constant [10]. The MC prediction pseudocode is shown 
in Algorithm 1. 

Our RL- MTD algorithm is also supplied with a fixed policy and 
aims to evaluate its performance in terms of the value function. In 
other words, our goal is to predict the expected total reward from 
the most secure state it has reached. Consequently, we measure 
the reward using the fitness score of each model configuration, 
where higher fitness indicates a more secure configuration. 
Moreover, we chose a modelfree MC prediction method as 
the probability of transitioning (i.e., transition probabilities) to 
the next configuration/state (different set of settings) cannot be 
gauged from the environment as there is no predefined domain 
of knowledge known to measure the likelihood of moving from 
one configuration to another. As a result, the agent learns through 
running multiple episodes, constantly collecting samples (random 
values of settings), getting rewards, and thereby evaluating the 
value function.

RL-MTD approach explained in the previous subsection can be 
divided into the following steps
1.	 Step 1: Set Initial State: Initial state is a configuration C of 

the underlying system initialized with random settings for 
its parameters.

2.	 Step 2: Compute Config/Fitness Score: The fitness score 
of a configuration state is the total sum of individual fitness 
scores of the parameters. A parameter receives a definite 
HIGH = 800 score if it is associated with its secure setting 
according to the STIG website. Otherwise, a LOW = 8 
score is assigned. The fitness score indicates how secure 
a configuration is. The higher the fitness score, the more 
secure it is. These are hyperparameter values used to score 
the severity of these settings. 

3.	 Step 3: Set Action Policy: If the overall fitness score of the 
configuration is below a certain threshold value, then the 
agent chooses action a either 0(hold) or 1(change) based on 
the probability distribution p(a) as follows:

 

where a = hold (0) or Change (1). This ensures the agent chooses 
action 1 more if the fitness score of the C is not up to the mark 
(threshold) and vice versa.              

1.	 Step 4: Generate tuple. This tuple is indicative of the current 
position of the agent in the attack surface. Rewards measure 
how good of an action was taken by calculating the fitness 
improvement (Fit (new S) - Fit (old S)) 

2.	 Step 5: Generate Episodes. Collection of tuples used for 
training the agent. 

3.	 Step 6: Execute RL MC prediction with the given action 
policy. This is executed with multiple episodes and eventually 
captures the best fitness scores in the form of the value of 
state V which indicates how secure a given state is: 

                                                                              
                Vs = Epi [Rt+1 + γ Rt+2+ γ2 Rt+3...| St =s]
 
Where E is the expected mean of the reward for the state s.

As there was no pre-existing environment for our problem domain 
in OpenAI gym at our disposal, we had to create our environment 
using Step 4 which required Steps 1, 2, and 3 [11]. 

Step 5 is used to generate an episode of 100 tuples that are used 
for training the MC prediction algorithm as shown in Algorithm 
1 which is a standard algorithm used in literature. Figure 4 shows 
a highlevel overview of how Steps 1-4 are implemented. 

In short, RL-MTD model is composed of 3 main parts: 
environment(), generate_episode() and MC_prediction method () 

Algorithm 1 
Monte Carlo Prediction Pseudocode [10]. 
1.	 Procedure mc_prediction(policy, num_ep, df) 
2.	 returns_sum ← { } // Keeps track of the sum of returns for 

each state to calculate an average. 
3.	 returns_count ← { } // Keeps track of the count of returns 

for each state to calculate an average. 
4.	 V ← { } // The final value function 
5.	 For i in range (1, num_ep + 1) 
6.	 episode ← generate_episode(policy) 
7.	 states_in_episodes ← Find all states visited in this episode 

and convert them into tuples 
8.	 For state in states_in_episodes 
	  a. first_occurrence ← First occurrence of the state in the
           episode 
	  b. G ← Sum up all rewards since the first occurrence 
	  c. returns_sum[state] += G 
	  d. returns_count[state] += df 
	  e. V[state] = returns_sum[state] / returns_count[state] 
9.	 End For 
10.	 End For 
11.	 Return V 
12.	 End Procedure
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Figure 5 shows the complete execution process flow of our RL-MTD algorithm.

Figure 5: The Execution Flow of Base RL-MTD

Note: The execution flow of base RL-MTD model where Steps 1-4 make up the environment(), step 5 is generate_episode () and 
step 6 is MC prediction method ().

Search Space Issue in RL-MTD 
In the RL-MTD work, there are two instances where the RL agent has to draw random setting values from the search space range of 
every parameter P present in a configuration: once during the start state (initial state) of the game when it has generated a random 
configuration state, other times whenever the action = 1 is chosen and it has to change settings of low score parameters. 

As per the STIG website, the permissible default settings are defined for any parameter P belonging to a particular SUT. In our work, 
as this is proof-of-concept, we handpicked only those parameters that mostly had integer values and/or 'None' as their settings for 
ease of computation. 

Figure 6 shows how we designed the search space range for the agent to choose from during the RL-MTD operation for any particular 
SUT. The agent has to learn to eventually choose the permissible secure setting for every parameter P in configuration C from the 
given search range to ensure C is close to being secure (goal state). We set the custom space range as follows depending on the data 
type of setting(P):

1. Numeric: (v-lim, v+lim), and 
2. List: choice between [(0, max(v1,v2,v3..) +lim] and None

where v is the default setting value as per the STIG website for any SUT, max(List) is the maximum setting value if it is a list type, 
and lim is an arbitrary integer value. We set lim = 10 based on multiple experiments we conducted, and this value seemed to give 
better secure configurations (as we also covered in the Results section). 

Issue: However, finding the right value of lim to define the search space range from where the RL agent picks up random values 
for parameters can be a time-consuming task and often requires us to play around with a bunch of different values before we can 
find a good enough candidate. As this search space range is majorly responsible for the performance of RL in terms of generating 
secure configurations, there is a need to find an optimized search space for RL that is best for agents to generate diverse yet secure 
configurations. 

The solution to this problem is to use search optimization algorithms. In section 5, we describe how we integrate the bio-inspired 
search optimization algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) into RL-MTD and develop 
Evolutionary RL(E-RL) algorithms for better performance. 

We integrate both GA and PSO in our approach because they are widely recognized optimization techniques. PSO operates as a 
population-based stochastic optimization algorithm, focusing on the collective behavior of swarms, while GA functions as a heuristic 
search-based algorithm, simulating evolutionary processes like crossover and mutation [12,13]. Our study aims to compare and assess 
the performance of these two algorithms to determine which one surpasses the base model in effectiveness. 
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            Figure 6: The Diagrammatic View of Search Space in RL-MTD Algorithm

Note: (Left) RL-MTD Algo shows the diagrammatic view of all the important functions that use the search space/domain corresponding 
to a particular SUT. This search range is used by the agent to randomly draw settings from either during the initial config state or 
when action=1 is chosen. (Right) shows the search space range for 2 types of parameter settings where the agent has to pick a setting 
from {v-lim,v+lim} if default setting(P) is a single integer value v and lim is a hyperparameter for a limit of int type; and if default 
setting(P) could be any value from a list consisting of permissible non-neg integers (v1,v2,v3,...) and/or 'None', it gets to choose 
either a numerical val from {0, max( (v1.v2,v3,.)+lim} or the string value 'None'.

Issue: How to effectively choose value of lim that will optimize the search space range for better performance?

Background 
In this section, we briefly discuss the general working of bio-inspired algorithms: Genetic Algorithm and Particle Swarm optimization.

Genetic Algorithm
Genetic Algorithms (GA) are based on the biological process of evolution. The idea is that over time, a pool of chromosomes will evolve 
to be even better (i.e., better fitness value) than the previous generation. A new generation (equal to the pool size) of chromosomes 
(i.e., configurations) is created with any iteration of the algorithm. This is achieved by the processes of selection, crossover, and 
mutation [14]. A fitness score metric is adopted as a measure to select the two fittest chromosomes from the pool that are called parent 
chromosomes. Then crossover takes place between the parents to produce a new child chromosome, which will have the best traits 
from both the parents followed by mutating of some of the characteristics of the child to introduce new traits. This process is repeated 
until an entirely new generation gets created. Figures 7 and 8 show the elements and the process of GA respectively. 

Figure 7: The Elements of Genetic Algorithm

Figure 8: Genetic Algorithm Process
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Particle Swarm Optimization
The Particle Swarm Optimization approach is based on natural 
bio-inspired systems, including bird flocks or schooling fish [15]. 
Each particle follows certain fundamental rules to navigate the 
search space effectively or reach optimal values [16]. Individuals 
should maintain an appropriate distance in standard scenarios, 
avoid collisions, and remain very close when confronted with 
threats [15].

PSO stands as an iterative, random, and population-based 
optimization algorithm for determining the optimal value. This 
is accomplished by assigning a particle to locate the ideal location 
or answer within the search space. Each particle's dynamics 
is influenced by social movements as well as its own internal 
dynamic. Originally, each particle, irrespective of its peers, can 
be considered to behave independently to ameliorate its behavior. 
However, swarms attempt to adjust to the behavior of other 
particles as the algorithm processes. Consequently, each particle 
adjusts updates iteratively with other particles to observe the 
optimal value. Furthermore, the characteristics of each swarm 
can be determined by the interaction of position and velocity [17]. 
Figure 9 shows the workflow of a general PSO process [18]. The 
algorithm starts by initializing a swarm of particles with random 
positions and velocities. It then enters a loop where it evaluates 
the fitness of each particle, updates their personal best positions 
and the global best position, and then adjusts their velocities and 
positions accordingly. This loop continues until a termination 
criterion, such as a maximum number of iterations or a satisfactory 
fitness level, is met. 

Figure 9: Standard PSO Flowchart Process

Bio-Insoired RL-MTD Modeling
In this section, we delve into the design of the RL-MTD strategy 
through an integrated approach using a Genetic Algorithm 
with Reinforcement Learning (GA-RL) and Particle Swarm 
Optimization with RL (PSORL). We will elucidate how the 
components of each algorithm - GA-RL, and PSO-RL - are adapted 
to our specific context of generating an optimized search space 
for our RL-MTD algorithm to perform better in generating secure 
configuration. This is followed by a detailed flowchart presentation, 
illustrating how these individual strategies are operationalized. 

Elements Representation for GA-RL, PSO-RL
Before we dive into the algorithm flow of how MTD is realized 

using each of these methods, we will first show the element 
representation used for each bio-inspired algorithm. 

GA-RL Figure 10 illustrates how the Genetic Algorithm's (GA) 
components are represented to be integrated into the RL-MTD(RL) 
framework. In this model, we have: 
•	 Gene: It's an initial random lim int value used to define the 

Lower Limit (LL) and Upper Limit (UL) of a search space 
corresponding to the datatype of setting(P) as mentioned in 
section 3. 

•	 Chromosome: It's an individual search space whose range 
is composed be gene values. 

•	 Population: It is a pool made up of different RL-MTD agents 
each characterized by its search space range. (where each RL 
agent acts as a chromosome) 

Figure 10: Representation of Genetic Algorithm Elements in Our 
GA-RL Formulation for MTD.

Note: The search space is considered a chromosome, its range 
limits (Lower limit, Upper limit) are its gene values. The 
population is a collection of different GA-RL Agents each with 
a different search space consisting of the configuration for the 
same misconfigured SUT. 

The objective is to evolve these different search spaces through 
the GA with multiple generations. Each RL agent draws from 
its unique settings search space range to generate random initial 
configuration states, which are then utilized by the RL algorithm. 
This algorithm encompasses environment setup, episode 
generation, and Monte Carlo (MC) prediction functionalities. 
The initial population consists of a variety of RL agents. Through 
the iterative processes of Selection, Crossover, and Mutation, 
this population undergoes evolution across generations. At the 
culmination of these generations, we identify and select the most 
effective RL agent from this pool. The selection criteria focus on 
the agent that achieves the maximum rewards or creates the most 
secure configurations. 

A step-by-step construction of incorporating GA into our RL 
-MTD is mentioned below. We follow the logic for Selection and 
Crossover steps similar to the neuroevolution algorithm described 
in [19]: 
1.	 Treat the search space the agent draws from as a chromosome. 

(We will address the agent's search space as an entire agent 
for ease of use and consistency throughout the paper) 

2.	 Agent's parameter, lim of search range will act as its genes. 
3.	 The fitness score of secure configurations generated will act 
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as the chromosome’s fitness (i.e. higher the fitness score, the 
higher the likelihood of survival). 

4.	 The first iteration starts with n number of agents (search 
range), all with randomly initialized parameters. 

5.	 Selection: By pure chance, some of them will perform 
better than others. The survival of the fittest option is then 
implemented by simply excluding the weakest agents from 
consideration and considering a certain percentage of agents. 

6.	 Crossover: It is quite risky to swap parameters/genes for 
the simple reason that it might disturb the best-performing 
agents' search space range limits. Hence, we would rather 
replicate the selected agents for the next iteration until we 
reach n agents again for the next iteration. 

7.	 Mutation: We modify agents produced during the crossover 
step, by adding or subtracting a small noise (value) to its 
parameter(limit). This step ensures we get to explore the 
neighborhood around the parameters of the best agents in 
the next iteration.

8.	 To secure the best agents from a probable reduction in 
performance due to the mutation step, we decided to keep 
the top-performing agent as is (without adding noise). 

PSO-RL 
The components in our PSO-RL model as shown in Figure 11 
are as follows: 
•	 Particles / Swarm: In analogy to Figure 10, a particle 

corresponds to a chromosome in GA, representing a limit 
lim used to define the search space range. Similarly, akin to 
the population in GA, a swarm, comprised of a collection 
of particles, represents a list of limit values defining various 
search space ranges, thus forming a swarm of distinct RL 
agents. 

•	 Particle Position: Particle represents an individual search 
space. We denote the particle's position in terms of its fitness. 
Here fitness is measured by the performance of the RL-MTD 
model when supplied with that particle. 

        Fitness(particle) = performance (RL-MTD[particle)]

	 where performance is the agent’s average performance (fitness 
score) over 60 episodes. 

•	 Global Best: In its simplest form, global best refers to the 
best value of a fitness score among a set of particles. Each 
particle updates its position at the final stage of the search 
space exploration, with the best position being identified as 
the global best. 

•	 Particle Velocity: This represents how far a particle position 
is from the ideal position (fitness). This indicates the moving 
rates for each particle within the search space. Our study takes 
advantage of this part to determine the distance between the 
best particle position and the ideal secure position.

Figure 11: PSO elements in our PSO-RL Formulation for MTD

Note: Representation of Particle, particle position and particle 
velocity used in PSO-RL MTD. 

Just like GA, the goal here is to find the most optimal particle 
(search space) for our RL-MTD algorithm. The PSO-RL algorithm 
uses the particle's position, velocity, and global best and is run 
for 100 generations as per the standard PSO flowchart shown in 
Figure 9 to find the most optimal search space for the RLMTD 
model to generate more secure configurations.

Bio-inspired MTD Algorithm Design 
In this section, we describe the E-RL algorithms for finding the 
best-performing agent (search space) to generate a more secure 
configuration. 

GA-RL 
Algorithm 2 shows how the GA-RL was adapted to find the best 
RL agents in generating secure configuration. (https://github.
com/paraschopra/deepneuroevolution/blob/master/openai-gym-
cartpoleneuroevolution.ipynb) 

Algorithm 2 
GA_RL Algorithm to find best RL agents 

Procedure perform_GA() // Initialize n number of agents 
1. num_agents ← n 
2. agents ← generate_random_agents(num_agents) 
3. top_limit ← k // # of top agents to consider as parents 
4. For gen in range(X) // Run evolution for X generations 
             a. rewards ← run_agent(agents) // Return rewards of agents
          b. selected_agents ← Select agents of top k rewards //   
             Selection
          c. children_agents ← Randomly choose k-1 agents from   
              selected_agents // Crossover
           d. mutated_agents ← Mutate(children_agents) // Children  
            agents after mutation
       e. agents ← mutated_agents // Replace all agents with 
mutated children
5. End For 
6. Best_agent ← Select agent from agents with maximum reward 
7. Return Best_agent 
End Procedure 

Algorithm 2 follows the pseudo-code mentioned in the previous 
section. 
•	 With population size set to n (num_agents), we generate 

agents randomly in the first iteration using the function: 
generate_random_agents described in Algorithm 3. 
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•	 We set the maximum number of generations to run the loop 
to X. 

•	 The run_agent function is used in each generation to run all 
randomly generated agents and get their performance (mean 
fitness score). (Algorithm 4) 

•	 Selection: Out of n, select only top k as parents (top_limit) 
where k<n

•	 Crossover: As mentioned before, we replicate the selected 
agents instead of swapping parameters. Among top k parent 
agents, k-1 agents are randomly chosen to make children for 
the next iteration. 

•	 Mutation: In the mutate function, we add or subtract a small 
noise(value) to the parameter if the value of the agent is 
greater than a random number. (Algorithm 4) 

•	 After we have child agents as parents, we iterate over the 
loop again until all generations are done or we find a good 
performing agent.

Algorithm 3 
Generate Agents
Procedure generate_random_agents(num_agents)
1.agents ← [ ]
2.For i from 1 to num_agents 
     a. lim ← Pick random number from range (1, N) // N is an
        integer 
     b. agents.append(lim) 
3.End For 
4.Return agents 
5.End Procedure

In Algorithm 3, function generate random agents is used to 
generate num agents number of agents. Here the agent represents 
limit value lim which is an integer value randomly drawn between 
1 and N (hyperparameter). This lim decides the search space range 
from which the agent picks from.

Algorithm 4 
RUN AGENT

Procedure run_agent(agents)
1. reward_agents ← [ ]
2. For ag in agents do
        a. rwrd = run_RL_MTD(ag) // Call the run_RL_mc function 

which takes the agent (i.e., lim) as input
       b. reward_agents.append(rwrd)
3. End For
4. Return reward_agents
End Procedure

In Algorithm 4, the procedure run_agent takes a list of agents 
agents as input. For each agent ag in agents list, run_RL_MTD() 
(Figure 5) is called which takes the agent as input and runs the 
base RL-MTD model with the new search space (ag). The MC 
prediction (Algorithm 1) method in the RL-MTD model returns 
the agent's average performance (fitness score) over 60 episodes 
which is stored in rwrd.

Algorithm 5 
MUTATION 
Procedure mutate(children_agent) 
1. mutate_agent ← children_agent 
2. If child_agent > random.random() 
        a. mutate_agent -= noise // hyperparameter 
3. Else 
        a. mutate_agent += noise 

4. End If 
5. Return mutate_agent 
End Procedure 

PSO-RL 
In Algorithm 6, we initialize all the N particles in a swarm with 
random integers. Each particle's starting position will have the 
same random integer and the same goes for the particle's velocity. 
The optimal difference is the hyperparameter we experiment 
with which indicates the threshold value. This threshold value 
is to check how far the particle search space is from the optimal 
one in terms of fitness scores generated from their corresponding 
RL-MTD agents. 

Algorithm 6 
Initializing N Particles 
Procedure initialize() 
1. swarm ← Pick N random integers // These are the limit values 
representing each particle 
2. For each particle in swarm 
      a. particle_position ← Start with random integer 
      b. particle_velocity ← Start with random integer 
3. End For
4. global_best ← 0 
5. generations ← 100 
6. optimal_difference ← d 
7. ideal_fitness ← Fitness Score Ideal C // The score of a fully 
secure configuration 
End Procedure 

The primary goal of Algorithm 7 is to calculate each particle's 
current position and update the gbest with the maximum value. 
The procedure run_RL_MTD() (base MTD-RL algorithm) is called 
for each value in the swarm. The obtained value is then contrasted 
with the preceding value. The global best receives the new value 
if the outcomes attained are the highest value.

Algorithm 7 
Particle Position 

Procedure maximum_particle_position() 
1. For each particle in swarm 
2. new_pp = run_RL_MTD(particle) // Call the run_RL_mc
    function 
3. If new_pp > particle_position[particle]
      a. particle_position[particle] = new_pp 
4. End If 
5. global_best = max(new_pp) 
6. End For 
7. Return global_best 
8. End Procedure

The distance between the ideal fitness and the particle's current 
position (search space's fitness) is represented by particle velocity. 
The lesser the distance, the more optimal the particle as it makes 
the base RL-MTD model generate an almost secure configuration. 
In Algorithm 8, we are trying to calculate the current distance of 
the particle (line 3) and we update the particle's old velocity with 
the current one if the latter is less than the former even though 
it's still greater than optimal difference (line 4,5). This means it's 
slowly approaching optimal difference.

Algorithm 8 
Particle Velocity Algorithm 
Procedure minimum_particle_velocity ()
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1. For each particle in swarm 
    a. new_pv = ideal_fitness - particle_position[particle] 
    b. If (new_pv > optimal_difference) and (new_pv < particle_ 
       velocity[particle]) 
i. particle_velocity[particle] = new_pv 
    c. End If 
2. End For 
3. Return new_pv 
End Procedure

In Algorithm 9, social_influence seeks to improve the particle 
value in regard to the intermediate best particle via social influence 
in a particular generation. It attempts to deduct social influence 
value) or add it depending on whether the current particle is 
greater or less than the intermediate best particle, thereby trying 
to converge all the particles to the near-optimal particle.

Algorithm 9 
Social Influence 
Procedure social_influence() // Particle value learning to be closer 
to the best one via social influence 
1. For each particle in swarm 
        a. If particle > best_particle 
              i. particle -= influence // Random float social influence 
                 value 
       b. Else 
             i. particle += influence 
       c. End If 
2. End For 
End Procedure 

To determine the optimal particle (search space), Algorithm 10 
which is the PSO algorithm is run over 100 generations.

Algorithm 10 
Run PSO Generations 
1. For each gen in generation // 100 iterations for finding the 
best limit_value 
    a. maximum_particle_position() 
    b. minimum_particle_velocity() 
    c. social_influence() 
2. End For 
3. Return particle 

Experiments and Results 
In this section, we elucidate the experimental setup for each 
algorithm used in implementing MTD: RLMTD, GA-RL and 
PSO-RL where we ran each of them on 4 SUT case studies and 
compared their performance results. We intend to compare each 
of these models to determine the most effective approach to 
generating secure configuration using the MTD approach. 

Experiment Set Up
RL-MTD We implemented the algorithm using python 3.6 with 
libraries numpy and pandas. After much experimentation, we set 
the following hyperparameters: 
• lim = 10 (section 3) 
• parameter score = HIGH(secure): 800; LOW(not secure): 8 
(Section 2.2.3) 
• Threshold= any value in range: (max_score - val,max_score) 

where val is a hyperparameter set to 800 and max_score is the 
ideal total fitness score of C where all parameters are securely 
set (goal state). In action policy, we discourage the agent to not 
choosing action change if the fit(C) falls in the threshold fitness 

range as the range indicates that all parameters of C are securely 
set except 1. Hence, ensuring the likelihood of the agent taking 
action 0 is high (0.8) in this case.

GA-RL 
We implemented GA-RL algorithm using Python 3.6 with libraries 
numpy and pandas. After much experimentation, we set the 
following hyperparameters: 
•	 number of agents n = 25 
•	 number of top agents k = 5 
•	 number of generations X = 100 
•	 N = 25 
•	 noise = 0.05 

Fitness Function for Chromosome: To calculate rewards for 
different RL agents, we used the entire Rl-MTD algorithm as the 
fitness function which returns the average of the scores generated 
from the MC prediction function for the episode count for 20 
and 60.

PSO-RL 
We implemented PSO-RL algorithm using Python 3.6 with libraries 
numpy and pandas. We set the hyperparameters as follows: 
•	 Swarm size = 30 
•	 Particle values (lim): integers = [1....30] 
•	 Initial Particle position = 0 
•	 Idea Fitness = Maximum fitness score of the most secure 

configuration based on the selected SUT. 
•	 number of generations = 100 
•	 influence = 0.05 

Given that configuration C varies across different SUTs due to its 
diverse parameters, it became evident that employing identical 
optimal difference and initial particle velocity values to be 
implemented for all case studies was inappropriate. This is because 
the values depended on the specific parameters and their quantity 
within each SUT's configuration. Consequently, we undertook an 
exploration of various optimal particle and initial particle velocity 
values to identify the most effective combinations tailored to 
each SUT. The ultimate goal is to recognize the optimum balance 
between Particle Velocity and the Optimal Difference. This leads 
to the attainment of maximum or highly improved results within 
the PSO-RL framework.

We elaborate on the ideal set of hyper-parameters examined 
for PSO, which comprises the Optimal Difference and Particle 
Velocity for each case study.

The ideal set refers to the optimal combination of parameters that 
led to the most secure and effective results in our experiments.

Considering these two hyper-parameter values as a tuple (Optimal 
Difference, Particle Velocity), our best combinations for each case 
study are as follows: 
•	 Window 10: (20, 300) 
•	 McAfee: (300, 500) 
•	 Microsoft Excel 2016: (160, 200) 
•	 Microsoft Office 2007: (120, 1000) 

As mentioned in Section 5-1 and Figure 11, we deemed the search 
space to correspond to particle position and particle fitness. 

We considered the initial search space for the first iteration to be 
set to zero. 
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Following running the experiment for over approximately 5000 
generations, the optimal search space or optimal particle fitness 
in the most effective pairing of (Optimal Difference, Particle 
Velocity) for each scenario was presented as follows: 
•	 Window 10: 34924.0 
•	 McAfee: 7240.0 
•	 Microsoft Excel 2016: 14812.0
•	 Microsoft Office 2007: 16800.0 
 
Results on Case Studies 
This section demonstrates the performance of all three models: 
RL-MTD, GA-RL, PSO-RL, in generating secure configurations 
and reports the results. Once we get the optimal search space 
range for both GARL and PSO-RL, we run the base RL-MTD 
with those optimized search spaces and capture their results. We 
then compare their performance with the base RL-MTD with no 
optimization. 

We selected 4 SUT case studies and the corresponding parameters 
from the STIG website namely: 
1.	 Windows 10 (59 parameters) 
2.	 McAfee (14 parameters) 
3.	 MS Excel (20 parameters) 
4.	 MS Office (21 parameters) 

These SUTs contain a good number of configuration parameters 
whose domains are diverse enough. 

We executed our developed scripts for various number of episodes 
and captured the best fitness scores (i.e., value of state V that 
indicates how secure a given state is). Figures 12 illustrate the trend 
of fitness scores obtained through the episodes where the x-axis 
is the episode counts (i.e., between 20-500 episodes); whereas 
the y-axis holds the normalized values of fitness scores. More 
specifically, the normalized fitness score value of 0.0 represents 
the least secure attained by the agent; whereas the value 1.0 is the 
most secure fitness score. The normalization on fitness scores is 
performed as follows:

   

where min(fs) for a given fitness score fs is the minimum fitness 
score of the configuration which is equal to the total sum of the 
fitness scores for all parameters when they are all set to LOW. 
Similarly, min(fs) for a given fitness score fs is the maximum 
fitness score of the configuration which is equal to the total sum 
of the fitness scores for all parameters when they are all set of 
HIGH. More specifically,

where Si is the ith parameter and n is the total number of parameters. 

We now analyze the results for each case study which is also 
summarized in Table 1. 

Window 10 Case Study 
Upon examining Figure 14a an initial observation reveals that 
RL-MTD demonstrates the least security performance. However, 
an instant competition unfolds between GA-RL and PSO-RL 
(labeled ERL). Ultimately, it becomes evident that in this context, 
PSO-RL outperforms GA-RL, although a slight difference can be 
depicted. Moreover, in this case study, PSO-RL outperformed 17 
times in comparison to GA-RL. 

McAfee Case Study
In this case study, substantial fluctuations are observed across all 
experiments; however, RL-MTD consistently exhibits inadequate 
performance compared to the other two methods. Upon initial 
glance of GA-RL and PSO-RL (labeled ERL) in Figure 14b, 
notable oscillations are evident. Furthermore, both PSO and 
GA equally performed better than base model for a count of 8 
episodes. A distinct pattern emerges in these two methods, while 
they promote similar performance. Specifically, in corresponding 
episodes, both methods experience periods of insecurity, followed 
by episodes where performance improves. For instance, in episode 
number 40, the performance of neither algorithm is remarkable, 
but in the subsequent episode, a notable improvement can be 
illustrated. 

Microsoft Excel 2016 Case Study 
In this case study, illustrated in Figure 14c, RL-MTD and GA-
RL (labeled ERL) display predominantly similar and fluctuating 
behaviors. The frequency of episodes where each outperforms 
the other is comparable. Although RL-MTD may exhibit better 
performance in specific episodes, the reverse occurs for GA. 

Despite the oscillations perceived in PSO-RL as a third graph, it 
consistently surpasses the other two methods in most instances. 
Moving to the episode counts analysis, it becomes evident that 
the results are outstanding when employing the PSO-RL model 
in the Microsoft Excel 2016 case study. 

In the majority of episodes, PSO-RL demonstrates upper-level 
performance compared to other methods. 

Microsoft Office 2007 Case Study
As depicted in Figure 14d, a clear distinction is evident in the 
performance between RL-MTD and Bioinspired methods (labeled 
ERL), including GA-RL and PSO-RL, upon initial glance. 

Although RL-MTD attempts to reach Bio-inspired methods, 
within one episode, there is a substantial difference in subsequent 
episodes. A slight discrepancy is observed by moving to the GA-
RL and PSO-RL methods. In most episodes, GA-RL and PSO-RL 
demonstrate approximate performance. 

However, GA-RL slightly exhibits less security in a few instances. 
It is evident that Bio-inspired methods which are GA-RL and 
PSO-RL, achieve the highest level of security performance in 
almost all episodes iteratively. This underlines that both GA-RL 
and PSO-RL attain higher-rank secure performance.
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Figure 12: Performance Comparison of the 3 Models: MTD-RL(labeled RL), GA-RL (ERL-GA), and PSO-RL (ERL-PSO) in 
generating secure configurations for 4 case studies. The x-axis shows the number of episodes each of the models were trained on 
and the y-axis shows the normalized fitness each of these models was able to achieve. 1 being the max fitness score: (all parameters 
securely set) and 0 being the most insecure. From the trend, we see both bio-inspired algorithms outperformed the base RL-MTD 
model for most of the SUTs reaching almost the most secure config across all episodes. However, between GA-Rl and PSORL, it's 
a close call but as per our analysis in Table 1, PSO-RL was the best performing model by a margin.}

Table 1
This table summarizes the results/analysis (Figure 12) of the 3 models on each SUT and shows PSO-RL was the clear winner among 
all 3. We considered 25 episodes for each model namely, RL-MTD, GA-RL, and PSO-RL. The values in tuples illustrate the total 
count of episodes in which each model outperformed the rest two. For instance, for the Windows 10 case study, PSO-RL outperformed 
others 17 times, while GARL did better 6 times. Having said that, in contrast to PSO-RL and GA-RL, base RL-MTD did not achieve 
better in generating configuration far nay SU. When the cumulative number of episodes is less than 25, the rest of the episodes show 
equal values between the methods.

Case Studies Count of Episodes (RL, GA-RL, PSO-RL) Best Algorithm
WINDOW 10 (0, 6, 17) PSO-RL
MCAFEE (0, 8, 8) GA-RL, PSO-RL
MS EXCEL 2016 (0, 2, 21) PSO-RL
MS OFFICE 2007 (0, 0, 12) PSO-RL

 
Attack-Defense Model Demo Using Our MTD Approach 
For demonstration purposes, consider a Windows 10 installation on a PC, where the attack surface is defined by three key parameters: 
•	 ACSettingIndex: Enforces automatic screen locking (e.g., a short display timeout) to mitigate unauthorized wakeups or physical 

access risks. 
•	 AllowBasic: Controls whether Windows allows remote logins using simple, unencrypted passwords, a method similar to writing 

your password on a postcard. 
•	 AllowDigest: Controls whether Windows permits slightly more secure, but still weak, remote logins that use scrambled passwords. 
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Reconnaissance 
Imagine an attacker targeting the Windows 10 PC. At time t, the 
attacker performs reconnaissance and discovers that the following 
three parameters are misconfigured: 
•	 ACSettingIndex = 0: This results in overly long screen 

timeout values, increasing the potential for unauthorized 
access when the system is left unattended. 

•	 AllowBasic = 1: This setting enables remote login with 
unencrypted passwords, which can be exploited by attackers 
to reuse credentials and break into the system. 

•	 AllowDigest = 1: This enables digest authentication, which 
is vulnerable to credential replay attacks. 

These misconfigurations create a vulnerable attack surface, 
allowing the attacker to exploit the combination of vulnerabilities 
v1, v2, and v3. This leads to the formulation of an attack strategy 
A, based on the identified vulnerabilities. A can be ransomware 
deployment, data exfiltration, etc 

Defense Approach Using MTD 
Most system administrators (sys admins) are reluctant to change 
default settings, as doing so can interfere with system functionality 
and user experience [20]. This resistance often results in the 
persistence of a vulnerable attack surface (v1, v2, v3), which 
attackers can exploit for a successful attack A. 

To mitigate this, we propose using PoC Evolutionary MTD 
(Moving Target Defense). This defense mechanism dynamically 
shifts the attack surface by changing the configuration of the 
three parameters, effectively changing the vulnerabilities at time 
t+1. As the system continuously evolves, it forces the attacker to 
deal with an ever-changing landscape, making the attack futile. 

For example, with each change in the configuration, the 
vulnerabilities v1, v2, and v3 transform into v1', v2', and v3', 
creating new but different vulnerabilities which are no longer 
exploitable to the attacks A as the types/properties of the 
vulnerabilities changed causing the attack to fail. By constantly 
shifting these settings over t+2, t+3 constantly to outsmart the 
attackers with new exploits, vulnerabilities also change without 
being static. Hence the MTD defense mitigates attacks like 

ransomware deployment, data exfiltration, and others that depend 
on static vulnerability combinations.

Deployment Process: Overlay Configuration Setting 
This defense is not implemented directly at the OS level but 
through an overlay configuration setting stage, called authoring. 
During this phase, sys admins create different configuration 
profiles, choosing which parameters to harden. These profiles can 
include fake configuration keys that act as an intermediary attack 
surface, shielding the original surface and misleading attackers. 

Mechanism of Evolutionary RL-MTD Defense 
The evolutionary RL-MTD algorithm optimizes the attack surface 
through a dynamic search space, which it learns using PSO-RL 
(Particle Swarm Optimization-Reinforcement Learning). For 
the ACSettingIndex, the system creates decoy registry entries 
with similar names but different fake values that fetches from 
the optimized search space through the profiling stage near the 
original keys, making it harder for attackers to discern legitimate 
settings. This approach not only disrupts the attacker’s ability to 
exploit the initial vulnerability but also continuously alters it. The 
following command is used to create a decoy key with a dummy 
path where the fake value is assigned in d0 (placeholder) by our 
algorithm periodically. 

reg add "HKLM\Software\DummyPath\ACSettingIndex" /v 
"FakeValue" /t REG_DWORD /d 0

The algorithm performs the same transformation for the other two 
parameters—AllowBasic and AllowDigest—by selecting random 
values from their respective domains, adding an additional layer 
of confusion for attackers. Figure 13 also shows how you can 
create duplicate variables graphically. 

Results: Wasteful Effort for Attackers 
Through continuous profiling and dynamic changes in the settings, 
the evolutionary MTD approach renders the attacker’s efforts 
futile by directing them toward fake keys. The attacker wastes 
significant time and resources analyzing and attempting to exploit 
these decoys, effectively neutralizing the potential for a successful 
attack.

Figure 13

Note: Shows how you can create decoy variables for ACSettingIndex in Windows 10
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Discussions 
As seen in the results, the base RL-MTD approach exhibits less 
secure performance across all case studies. The incorporation 
of the optimal search space derived from both GA and PSO 
significantly enhanced the performance of our base RL-MTD 
model compared to its performance without the optimal search 
space. Interestingly, our analysis revealed that while there was 
a notable performance improvement when utilizing the optimal 
search space from either GA or PSO, the difference in performance 
between GA and PSO was marginal. This suggests that both GA 
and PSO were effective in searching for an optimal search space 
to enhance the base model's performance. However, the clear 
winner was PSO-RL. Our findings underscore the efficacy of 
both optimization techniques in facilitating the identification of 
an optimal search space conducive to generating more secure 
configurations within the RL framework. 

In some illustrations, such as Windows 10 and Microsoft Office 
2007, minor improvements prevailed. Nevertheless, PSO 
ultimately proves better results in other cases like Microsoft Excel 
2016, despite slight fluctuation. It should be noted that in certain 
case studies, such as McAfee, significant performance fluctuations 
lead to equal outcomes for GA and PSO. A key point to consider 
is that in each case study, optimization drives experimentation to 
enhance outcomes and performance. 

Note: As previously noted, the application of MTD to address 
security challenges in misconfigured software is relatively 
novel, resulting in the absence of an established benchmark for 
comparison in existing literature. This study aims to be viewed 
as the construction of a proof-of-concept (POC), showcasing 
the potential of an MTD defense strategy from the defender's 
standpoint in generating dynamic secure configuration. It is 
crucial to acknowledge that further research and refinement 
are imperative to bolster this strategy and guarantee its overall 
effectiveness.

Related Work
Examining the relevant literature closely reveals that there hasn't 
been adequate discussion of the intended motivation. By scrutinizing 
the related work can be noticed that the targeted motivation 
has not been addressed much. C. Gao and Wang countered the 
moving target defense method by implementing Reinforcement 
Learning to address the DDoS attack [21]. The findings of their 
experiments advocate that the reinforcement learning adjustment 
on MTD affects the results more successfully and enhances the 
algorithm performance. T Zhang et al., generated the Moving 
target defense method draws on deep reinforcement learning to 
protect from cyber security attacks [22]. The Markov decision 
process (MDP)model was used to design the MTD technique 
to train on scanning behavior. The analysis of the developed 
model revealed that the scanning time was diminished effectively. 
Eghtesad et al. applied the reinforcement learning technique to 
ameliorate the MTD method performance in their study [23]. 
The authors evaluated the numerical results demonstrating the 
performance of the trained model. The outcomes depict that the 
developed model has the exceptional ability to recognize the 
optimal policies in a defined environment. Li et al. utilized the 
MTD technique to mitigate the potential threats and attacks that 
might be encountered in the container cloud environment [24]. 
The proposed model exploits the advantage of deep reinforcement 
learning along with the Markov decision process in the optimized 
MTD. The model demonstrates the improvement of the efficacy 
of defense significantly. The authors of John et al, implemented 
the Genetic Algorithm in Moving Target Defense to find the 

optimized secure configuration [25]. John et al. stated that the 
variety of configurations is potentially improved over time 
regarding the environment. The experiment findings confirm that 
the GA method is sufficiently capable of identifying the optimal 
secure configuration. Zhang, et al., introduced the Moving Target 
Threeway Evolutionary Game Defense Model in network security 
[26]. The model, which concentrates on offering adjustable defense 
decisions, combines evolutionary games and signal games. The 
authors employed the action and rewards strategy to optimize 
the defense. Findings and analyses reveal that the Monte Carlo 
simulation performs better compared to former designs. However, 
defending from various attack behaviors is still ongoing. 

Conclusion and Future Work 
In conclusion, our in-depth research tackles the pervasive challenge 
of security misconfiguration within software systems—a problem 
that leaves systems open to exploitation. By integrating bio-
inspired algorithms, specifically the Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO), into our previously 
established RL-MTD model, we've advanced the model's 
proficiency in continuously generating secure and dynamic 
configurations. Through rigorous comparative analysis, we've 
ascertained that both the GA-RL and PSO-RL enhancements not 
only refine the search space for potential configurations but also 
surpass the original RL-MTD framework in their ability to produce 
robust configurations against an array of software systems put to 
the test (SUTs). Noteworthy is the slightly superior performance 
of PSORL in the majority of these scenarios, making it the best-
performing model due to a nuanced edge in its search strategy. 
Our findings represent a significant contribution to the domain of 
proactive cybersecurity measures. By employing Moving Target 
Defense (MTD) enriched with machine learning and bio-inspired 
algorithms, we present an innovative and efficacious strategy to 
proactively MTD defense strategy from a defender perspective, 
thereby reinforcing the security posture of software configurations 
against the dynamic landscape of cyber threats. 

For future work, we envision expanding our research to transform 
the current game model into a more complex and realistic scenario. 
The next step is to develop a two-player version of the game, where 
one player is the defender, maintaining secure configurations, 
while the other acts as an attacker, probing and exploiting 
vulnerabilities. Additionally, since software applications do not 
operate in isolation but interact with each other, it is crucial to 
examine these interactions and how they may impact the Moving 
Target Defense (MTD) strategy. Furthermore, we will run our 
proposed conceptual MTD framework and measure its efficiency in 
terms of the perspectives of an attacker and a defender at real time 
together in ab bigger setup with all SUTs. The attacker’s metric 
estimates its attack performance, indicating that the attacker’s 
high performance refers to the defender’s low performance, and 
vice versa. The defender’s metric measures its performance in 
achieving security and defense goals of a given system. 

(1) Attack success probability (ASP): This metric refers to the 
probability that attacks are successfully performed. In our case, 
it refers to the probability that an attack surface is compromised 
or freezes by an attacker. 
(2) Defense success probability (DSP): This metric measures 
the success of the defender agent in the MTD model by its ability 
to avoid vulnerability chains, attaining low score interruptions 
score (QoS high) and number of times it reached the terminal 
state (secure configuration state). 
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We also need to study how different configuration parameters 
influence each other. Ultimately, this research is a stepping stone 
towards a deeper understanding of how to protect software from 
misconfiguration threats using MTD, aiming to build a more 
resilient digital infrastructure. 
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