ISSN: 2754-6659

AN
&(@&SCIENTIFIC

RS Research and Community

Journal of Artificial Intelligence &
Cloud Computing

v

Review Article Open @ Access

Adapting Airflow for Backend Infrastructure Automation

Nikhita Kataria

USA

ABSTRACT

This paper aims to present effectiveness of Airflow for management of common infrastructure management operations such as certificate renewal,
operating system upgrades, configuration distribution and multi-region DR drill. Orchestration of these workflows are complex operations due to varied
dependencies and a mesh of conditional workflows involving dry run validation and operation execution both in a reliable manner. Key features offered
by Airflow such as DAG (Direct Acyclic Graph) based workflow execution, in-built retries, support for functional programming languages such as python
allow engineers to automate day to day tasks especially for ops teams. In this paper we present example workflows tailored to infrastructure management

operations.

*Corresponding author
NikhitaKataria, USA.

Received: July 15, 2025; Accepted: July 18, 2025; Published: July 28, 2025

Keywords: Airflow, Workflows, DAG, Certificate Renewal,
Upgrade, Failover, Configuration Distribution.

Introduction

Let’s assume we have different personas managing infrastructure
components in an organization including engineers and non-
engineers such as executives. This demands a need for orchestration
that is easy to understand, self-descriptive, offer scalability and
are easy to audit, can support a broad set of use cases. auditing
and can handle multiple scenarios.

Apache Airflow was originally developed for orchestration of
data pipelines however it is gaining importance in infrastructure
operations as well. It offers self-descriptive, visual representation
of workflows with support for retries, branching, scheduling
perfectly suited for such operations. In this paper, we present our
approach to adapting Airflow for infrastructure-centric workflows.
We demonstrate how it can be leveraged as a unified orchestration
platform across a range of operational scenarios, including:

* Configuration distribution — Distribution of a configuration
to a large number of hosts.

e Certificate Renewal — Managing SSL/TLS lifecycle to
ensure continuous secure connectivity.

e Operating System Upgrades — Executing controlled,
minimal-downtime upgrade workflows.

* Multi-region Failover or drill - orchestrating seamless
failovers to test disaster recovery strategy.

Through these use cases, we show that Airflow can effectively
serve as a central orchestrator for infrastructure workflows—
bridging the gap between operational reliability and cross-
functional accessibility.

Template Workflow

Infrastructure workflows were Modeled as Airflow DAGs,

with the Following Typical Phases

e Validation: Making sure everything’s ready to go before
we start.

e Pre-checks: Running quick health checks—like confirming
the app is healthy, the OS version is approved, and that the
host actually needs work.

e Execution: Doing the main work of the task, broken down
into manageable phases.

¢ Audit Logging: Keeping detailed logs so we can track what
happened.

* Monitoring and Notification: Watching the process and
sending updates or alerts when needed.

e Cleanup: Wrapping things up and tidying after everything
finishes, using Airflow’s TriggerRule. ALL. DONE to know
when to start.

The DAG form for these steps will look like as depicted in Figure.
1. and in the subsequent sections we present implementation of
these steps for various infrastructure use cases.

metries_and_logaing__1

@Task

pre_checks notification
@ Tank BTask

validation

@Task

matrics_and_logaing cleanup
mTask 0 Task

| |
execution metrics_and_legging__2
3 Task Task

() First 4 tasks simulated via
Aiarflow version 3.0.1

(b) Tasks continued after first
4 tasks

Figure 1: DAG Example for Template Workflow with Tasks for
Each Required Step.

J Arti Inte & Cloud Comp, 2025

Volume 4(4): 1-5

Citation: Nikhita Kataria (2024) Adapting Airflow for Backend Infrastructure Automation. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-492.

DOI: doi.org/10.47363/JAICC/2025(4)451

Configuration Distribution Workflow

Validation

Validation would consist of tasks ensuring configuration format
is correct, schema is valid for underlying configuration and is
semantically valid. This could depend also on application side
validation. For instance on the application side a configuration of
rate limit set to 0 might be invalid although a plain integer value
of rate limit is syntactically valid.

Pre-Checks

This step is all about making sure the environment is actually
ready to support the configuration we’re about to roll out. For
example, if we’re changing a kernel parameter, we need to make
sure the hosts are running an OS version that supports it. These
kinds of checks happen during the pre-checks phase, so we can
catch any issues early.

Execution

This is where the main logic for rolling out the configuration
lives—and it runs in a phased manner. Inspired by patterns like
those used in Zookeeper, the rollout starts with a small canary
set, then gradually expands to a larger percentage of nodes. In

Airflow, the best way to handle this is using a TaskFlow-based
operator, which supports retries and lets you batch the rollout
with controlled delays between batches. This helps reduce risk
and gives time to catch issues early.

Audit Logging
It is essential to log changes to a distributed logging service to
ensure logs can be manipulated or filtered quickly in case a task
throws an error.

Monitoring & Notification

Airflow automatically logs each task and tracks a basic set of
metrics out of the box. In this step, we build on top of that by
integrating with either proprietary or open-source monitoring
systems. The goal is to make sure any errors trigger alerts and the
right service owners get notified—so issues don’t go unnoticed.

Cleanup

This step handles the final cleanup—removing any temporary
files, marking the DAG as complete, and recording the final set
of metrics.

Figure 2: Summarizes The Workflow into a Skeleton Airflow DAG for Configuration Distribution as Described in This Section.

validate_config

prochacks

checks
(b)

1task

check_os_version []

(a) Validation and Pre-

- 2 tasks

execution
-

distribute_canary

distribute_in_batchos

(b) Execution via

canary and batches

monor_deployment

wend_naotification

(c) Logging, monitoring and cleanup steps.

Figure 2: Sample Airflow Workflow for Configuration Distributions Simulated on Airflow version 3.0.1.

Operating System Upgrades
Validation

Validation an operating system is not a simple task as it involves plain vanilla system level validation and validation post running
sample application and then probably by replaying customer traffic. This step is to validate if necessary, checks have happened, and

a release is certified.

Pre-Checks

OS upgrades are generally more complex than simple configuration rollouts and require multiple layers of pre-checks. For instance, we
need to verify that the target host is reachable, hasn’t previously failed an upgrade, and isn’t currently handling a critical workload—
such as a long-running Al process—to avoid any risk of disruption or data loss.

J Arti Inte & Cloud Comp, 2025

Volume 4(4): 2-5

Citation: Nikhita Kataria (2024) Adapting Airflow for Backend Infrastructure Automation. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-492.

DOI: doi.org/10.47363/JAICC/2025(4)451

Execution

Once all the checks are out of the way, the upgrade itself is routine.
It starts with a canary host to test the waters, then rolls out in
batches to the rest. Each host handles the usual steps—grab the
OS image, run the upgrade, reboot, and then we make sure it
comes back up and is reachable. It’s a repeatable flow once things
are in motion.

Logging

Logging at this stage is important—it helps us track exactly when
each upgrade starts and when it finishes. These timestamps aren’t
just for show; they give us insight into how long the process is
taking. If there’s a noticeable delay on a single host, it could point
to a local issue. But if a bunch of hosts are slow or stuck, it might
signal a broader problem with the OS itself. Keeping a close eye
on timing helps catch these patterns early before they snowball
into real downtime.

Monitoring

A key part of the monitoring will be to ensure that the host is
coming back healthy after each step of the upgrade. Recording
timestamp, hostname, percentage of the data center rolled out
over time are key metadata metrics.

Audit and Logging

Most certainly we need a final notification to record a host is done
with the upgrade and this notification or alert can be aggregated
across entire data center to gather success rate of the upgrade as
well. In terms of the DAG visualization, the skeleton would look
similar to the one described for configuration validation with certan
tweaks especially in an additional step of rollback if any of the
tasks fails via TriggerRule. ONE_FAILED. Figure 3. illustrates
the template DAG for this scenario.

validate_target_os

prachecks + 1task
execution + 4 tagks
- L + .
bog_ausdit
rollback manitor_all
In

notify
K

cleanup
Task

Figure 3: Sample Airflow Workflow for OS Upgrade Simulated
on Airflow Version 3.0.1.

Certificate Renewal

Validation

Validation for certificate renewal is generally easier than the first
two use cases we examined. It involves steps such as ensuring the
certificate has not expired and it is signed by a trusted certificate
authority. A few metadata hecks such as the service principals
are the intended ones and match the correct target domains. We
can use tools like openssl or some handy Python libraries to do
this automatically.

Pre-Checks

Once the certificate itself looks good, we need to make sure the
machines we’re updating are ready. This means making sure we
can actually reach each host over the network, there’s enough
disk space to put the new certificate, and the right folders and
permissions are in place. It’s also smart to back up the existing
certificates before we start, just in case something goes wrong.
Plus, we want to be sure that restarting the services that use these
certificates (like NGINX or Envoy) won’t cause any downtime
or trouble.

Execution

The actual execution has a very high impact for certificate renweal
because service principals might be in-use by multiple applications
serving critical traffic. We follow the same rollout pattern however
canarying here means we start small with a couple of less critical
machines. We copy over the new certificates and perform restarts
if needed. Next, we ensure that the services are able to take and
there is no regression in certificate requests. This could mean
running a quick HTTPS check to confirm the new certificate is
in use. If all goes well, we move on to the rest of the machines
in batches, carefully updating and verifying each group to keep
things safe and steady.

Audit Logging

During this process there could be multiple levels of failures due
to wide impact and logging key critical metadata such as certificate
fingerprint, hosts that got the new certificate successfully vs the
ones that errored are essential. These logs are super helpful—not
just for keeping track of what happened, but also if we need to
troubleshoot or prove compliance later.

Monitoring and Notification

After the certificates are deployed, we need to monitor the services
to ensure they’re still running properly and serving the new
certificates. Automated checks can help catch any problems early.
If something goes wrong during this task, we’ll send notifications
to the appropriate teams—most likely a central team responsible
for certificate renewal—via Slack or email, so everyone stays in
the loop.

Cleanup

In the final step, once the rollout is complete, we clean up any
temporary files created during the process and remove old
certificates—after making sure it’s safe to do so. We also update
our records to reflect which certificates are currently in use and
clear any locks or flags we set during deployment to signal that
the job is finished.

J Arti Inte & Cloud Comp, 2025

Volume 4(4): 3-5

Citation: Nikhita Kataria (2024) Adapting Airflow for Backend Infrastructure Automation. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-492.

DOI: doi.org/10.47363/JAICC/2025(4)451

wvalidate_certificate audit_logging

PythonDpeérator

run_pre_checks

monitor_and_notify

canary_distribution

cleanup
I?-I.l:h_:l.i-lrlh.llbﬂ PythonOperatos
(a) WValidation, Pre-| (b) Logging,
checks, Execution via | Monitoring and
canary and batched | Cleanup

distribution

Figure 4: Sample Airflow Workflow for Certificate Renewal
Simulated on Airflow Version 3.0.1.

Multi-Region Failover or Drill

Validation

Disaster Recovery plan might be different depending on the scope
of failover. In this pase, we focus on verifying if the strategy is
comprehensive and well suited for the scenario. We verify is all
scope specific configurations and network setups are in place.
For instance if it’s a regional ourage, we validate that all region
configurations are in place, verify network reachability and ensure
infrastructure definitions are correctly in place. We validate if
DNS settings, routing rules and replication mechanisms are run
in a dry run mode to validate semantic functionality, and we are
ready for failover.

Pre-Checks

Post validation, we need to run readiness checks to ensure the
current state and target state post the DR is intended. This means
confirming that both the primary and secondary regions are healthy
and meeting their service commitments. We validate the network
to ensure its stable and reachable and has needed backups. We
also need to ensure there are no other maintenances or incidents
on going that might impact the DR flow or cause degradations
of any kind.

Execution

This phase is basically executing the actual failover. We consider
adding the steps in execution into a TaskGroup. Essentially
execution consists of 3 tasks. First is canarying to redirect a
small portion of traffic to the new DR region. Second step is to
run exhaustive test suite to ensure there is no degradation from
user perspective and services in all tiers are responding correctly.
Last step is to ensure the rollout is done in a batched manner.

Audit Logging

After the failover is complete, a thorough audit logging needs to
be ensured to capture everything that happened. This step is tricky
because as part of the failover we might loose the original region
from where the redirection is happening. We need to gather logs
in phased approach as well to ensure and note any incidents or
alerts for quick discovery and audit trail.

Monitoring and Notification
We keep everyone in the loop by sending out notifications that
recap how the drill went and share any important takeaways. After

the failover, monitoring stays on to catch any late or new issues
in the backup region. Alerts are set up to go off if performance
or uptime drops below certain levels, so we can jump on any
problems quickly.

Cleanup

During cleanup, we figure out if it’s time to switch back to the
primary region or keep things running in the backup. We get rid
of any temporary stuff like test deployments or traffic routes so
nothing gets messy or causes problems. If we’re switching back,
we reset routing and DNS to how they usually are.

validate_dr_plan
PyihenOpers
precheck_region_status

(a) Validation and Pre-checks

e, e audit_logging

PythonOperator

initiate_canary_failov...
Py —
notify_and_maonitor
I PythonOparator
werify_canary_health

Bateh_failover cleanup

e PythonOperator
(b) Execution via|(® Logging,
canary and batches monitoring and

cleanup steps.

Figure 5: Sample Airflow Workflow for Multi-Region DR Drill
Simulated on Airflow Version 3.0.1.

Other Use Cases

In this paper we present a couple of use cases however there exist

multiple other use cases onto which same pattern as outlined in

this paper can be applied which include and is not limited to:

* Application relocation from one host to another—ensuring
smooth transfer and minimal downtime.

* Remediation of a data center host along with seamless
application movement—maintaining service continuity.

* Mass restarts and reboots—coordinating large-scale reboot
events with safety and observability.

* Host remediation—resolving hardware or software issues
without impacting service availability.

Conclusion

Throughout this paper, we’ve looked at a few routine infrastructure
tasks that software teams handle regularly. Airflow really stands
out as a solid tool for day-to-day automation. It’s easy to get up
and running, and it gives you just enough structure to manage
things like certificate renewals, OS upgrades, and config rollouts
without getting in your way. What makes it especially useful is
how it brings visibility, built-in retries, and a clear sense of flow
to otherwise complex processes. For many teams, it hits that sweet
spot between simplicity and capability—making it a go-to choice
for keeping infrastructure running smoothly.

J Arti Inte & Cloud Comp, 2025

Volume 4(4): 4-5

Citation: Nikhita Kataria (2024) Adapting Airflow for Backend Infrastructure Automation. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-492.
DOI: doi.org/10.47363/JAICC/2025(4)451

References

1.

Apache Airflow, “Getting Started,” Apache Software
Foundation (2024) https://airflow.apache.org/docs/apache-
airflow/stable/start.html

Apache Airflow, “Logging and Monitoring Metrics,” Apache
Software Foundation (2024) https://airflow.apache.org/docs/
apache-airflow/stable/administration-and-deployment/
logging-monitoring/metrics.html

Apache ZooKeeper, “Documentation: Release 3.5.9,” Apache
Software Foundation (2020) https://zookeeper.apache.org/
doc/r3.5.9/index.html

Mozilla Foundation, “Web Security Guidelines: TLS,” (2023)
https://infosec.mozilla.org/guidelines/web _security#tls
Let’s Encrypt, “Documentation,” Internet Security Research
Group (2024) https://letsencrypt.org/docs/

Google SRE, “Site Reliability Engineering Books,” Google
(2022) https://sre.google/books/

OpenSSL Project, “openssl-x509 - Certificate Display and
Signing Utility,” (2021) https://www.openssl.org/docs/
manl.l.1/manl/openssl-x509.html

National Institute of Standards and Technology (NIST), “SP
1800-16: Securing Web Transactions,” Final (2022) https://
csrc.nist.gov/publications/detail/sp/1800-16/final

G. Kim, P. Debois, J. Willis, and J. Humble (2016) *The
DevOps Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations™®, IT
Revolution Press https://dl.acm.org/doi/10.5555/3044729.

Copyright: ©2025 Nikhita Kataria. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Arti Inte & Cloud Comp, 2025

Volume 4(4): 5-5

