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Introduction
Non-point source (NPS) pollution refers to diffuse contamination, 
which is not discharged from a few localized points or single 
indefinable sources. Sources of NPS pollution include agricultural, 
mining, forest logging, urban runoff and stream bank erosion 
[1]. NPS pollution resulting from land runoff, precipitation, 
atmospheric deposition, drainage, seepage or hydrologic 
modification is commonly intermittent and generally correlated 
with meteorological events, including precipitation and runoff, and 
land characteristics such as soil properties, and topography [2-4].

NPS pollution, in contrast to point source pollution, is characterized 
by unpredictable occurrence, complicated mechanisms and 
processes, variable spatial and temporal pollution, and challenges 
in monitoring, simulation, and control. These properties and 
characteristics of NPS pollution makes modeling of it complex 
and challenging [5,6]. Nonpoint source (NPS) pollution is the 
major cause of impairment of US surface waters It harms the 
aquatic ecosystem and greatly reduces water quality which leads 
to a decrease the capacity of natural water resources for drinking 
water and recreation purposes On the other hand, controlling 
this type of pollution is difficult, and NPS pollution is usually 
controlled through prevention rather than treatment [7,8]. With the 
rapid development of agricultural technology and urbanization in 
the previous decades, NPS pollution has turned into an important 

side effect of agricultural production and urbanization [9-12]. 
The amount of NPS pollution and its grave consequences on the 
environment and human health increase yearly around the globe 
due to the development of agricultural technologies, putting more 
land under cultivation, the rising use of chemical fertilizers and 
pesticides, and urbanization. Thus, NPS pollution has become a 
primary threat to surface water quality and evolve into the primary 
contributor to water-related problems such as water contamination, 
aquatic ecology deterioration and eutrophication [13-17]. Proper 
management of agricultural and urban runoff is a large concern 
for the U.S. Environmental Protection Agency (USEPA) and the 
U.S. Department of Agriculture (USDA) [18]. In recent decades, 
agricultural and rural NPS pollution has become the leading 
contributor to water quality degradation across the world, resulting 
in the importance of controlling agricultural and urban NPS 
pollution loads in protecting the aquatic environment pollution 
has remarkably increased [19-21]. Identifying NPS pollution 
characteristics, tracking NPS pollutants pathways, and estimating 
the NPS pollution loads in a watershed greatly aid researchers to 
get an acute insight into the entire processes of NPS pollutants 
and determine the complete impact of NPS pollution in order to 
control water pollution and create and implement BMPs. However, 
tracking NPS pollutants is largely difficult from production to 
the final fate [22-24]. Modeling is a common tool for estimating 
NPS pollution loads, and in order to control NPS pollution having 
an accurate model to predict NPS pollution is essential. NPS 
pollution models simulate the spatial and temporal variation of 
NPS pollution by considering the entire basin system and the all 
complicated pollution-generating process. These simulations also 
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evaluate the effects of various BMPs on controlling NPS pollution, 
thereby providing a basis for environmental management plans 
[25]. Various approaches have been widely used throughout the 
last decades to precisely estimate NPS pollution in watersheds. 
These approaches include empirical modeling, physically based 
modeling, and simulation-based optimization modeling. There is 
a large body of literature associated with NPS pollution modeling; 
nevertheless, little direction is in place on selecting and applying 
the appropriate approach to simulate NPS pollution under different 
circumstances. Therefore, this work attempts to fill the mentioned 
gaps by classifying the NPS pollution modeling approaches 
to help researchers choose the suitable method and model to 
estimate NPS pollution loads. The present paper reviewed and 
categorized models which have been generally used for NPS 
pollution modeling.

Classification
The hydrological models commonly used for NPS pollution 
modeling could be clustered differently based on various criteria. 
In this paper, the approaches to simulate NPS pollution have been 
classified as follows:
1.	 Empirical models
2.	 Physically based models
3.	 Simulation based optimization models.

A schematic of the categorizing different models for the simulation 
of NPS pollution is shown in Figure 1.

Figure 1: Categorizing Different Models for Simulation of NPS 
Pollution

Figure 1. indicates the framework for categorizing NPS pollution 
models, which serves as the framework for the current review. In 
the subsequent sections, every single model with its subcategories 
is illustrated.

Empirical Models
Empirical modeling is based on observations rather than on a 
mathematical equation to describe the behaviour of the system; 
therefore, empirical models benefit data and observations of the 
system to drive a specific pattern to characterize the hydrological 
parameters [26]. These models, which are also known as a black 
box, data-driven models, neglect some processes and parameters 
to simplify NPS pollution modeling processes [17]. The principal 
benefits of these models are they need a lower demand for input 
data and consist of a rather simpler calculation process. However, 
these models cannot adequately reflect the contamination migration 
process and cannot be applied to regional scale problems[27]. 
Empirical modeling is not an option perfect for the prediction 
of NPS pollution loads in basins where complex land cover and 
geomorphic units exist [28]. 

Empirical modeling techniques include three different categories 
statistical methods, export coefficient model, and hydrograph 
separation methods.

Statistical Methods
Statistical methods were developed based on simultaneous 
monitoring data for water quality and quantity in the runoff. This 
method's fundamental assumption is to ignore the actual pollutant 
migration process on the surface and calculate the pollutant 
concentration based on the quality of receiving waters [29].

As there are a wide variety of variables associated with affecting 
water quality, statistical analysis has become a powerful tool to 
study water quality. A large number of investigations have been 
carried out to study NPS pollution in recent years with statistical 
methods [30,31]. As the statistical method requires a large deal of 
data, it is appropriate for a watershed with adequate data in order 
to estimate the regional pollution load sufficiently accurately. 
Thus, the utilization of this method is limited to some specific 
cases since this method is data-intensive and expensive.
 
Export Coefficient Mode (ECM)
The export coefficient model (ECM) is based on the concept that 
the nutrient load exported from a basin is the sum of the produced 
by catchments with different land-use types [32,33]. This simple 
and relatively efficient method is widely used for simulating NPS 
pollution loads according to large time steps (monthly or annual) 
on a watershed scale. In recent decades, a great number of ECM 
based studies have been carried out for simulating NPS pollution 
[34-37]. The ECM model has a simple and straightforward layout, 
less number of parameters and easier operation [38,39]. However, 
this method suffers from not considering some influence factors of 
NPS pollutants, such as climate, topography, soil type, land cover 
type, and other human activities [40]. To address the drawbacks of 
ECM a method known as the improved export coefficient modeling 
method (IECM) was created in order to improve the ECM by 
accounting for the effects of the temporal-spatial heterogeneity 
of precipitation and terrain on NPS pollution, and applying other 
characteristics of watersheds such as climate, sediment, nutrient 
decay, soil erosion, or bioactive ingredients of fertilizer and 
pesticide. Various scholars and researchers have used IECM for 
predicting NPS pollution loads  [20,41-48]. The ECM and IECM 
approaches have been widely accepted as methods to estimate NPS 
pollution loads in watersheds with sufficient accuracy, benefiting 
from advantages such as limited input data requirements, fewer 
parameters, and easy operation. These methods can be scaled up 
to a regional scale, in addition, these methods are particularly 
appropriate for large watersheds, in which observed data are 
inadequate. Their export coefficients, however, are fundamentally 
quite varied and reflect unique site circumstances for each case 
and cannot extend to other cases.

Hydrograph Separation Method
This method uses runoff hydrographs to calculate point source 
(PS) and non-point source (NPS) pollution. In this method runoff 
hydrograph is divided into the base flow and storm flow to estimate 
the point source (base flow) and NPS loads (storm flow) [49]. 
In order to separate baseflow from total storm flow several 
methods have been presented [50,51]. The methods of hydrograph 
separation can be differentiated into two main groups: graphical 
approaches and filtering approaches [52]. Graphical approach is 
based on stream flow data [53,54]. and emphases on determining 
the points in which base flow intersects the rising and falling 
limbs of the quick flow response. The recursive digital filtering 
approach is another method to quantify base flow contributions 
in which data processing of the entire stream hydrograph derives 
a base flow hydrograph [55,56]. In recent years the hydrograph-
separation approach has been developed and utilized in various 
for predicting agricultural and urban NPS pollution loads [57,58]. 
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Overall, this technique is quite straightforward and broadly 
used in the hydrological field; however, the storm flow and base 
flow separation does not distinguish between NPS (storm flow) 
and point source (base flow). In addition, this approach is often 
restricted to small basins with a short amount of data.

Physically Based Models
The physically based models are based on some mathematical 
equations characterizing the physics of the hydrological processes. 
These equations are spatially and temporally discretized to describe 
the hydrological phenomena over time and space. Deterministic 
models based on spatial complexity aspect are classified as 
lumped, distributed, and semi-distributed models [26]. In the 
last years, deterministic physically-based modeling (more often 
called simply physically-based modeling) has received much 
attention for NPS pollution modeling [59-62]. Physically based 
models incorporate hydrological model, soil erosion model and 
pollutant transport model into a generally a complete model system 
providing quantities and qualitative description of NPS pollution. 
These models also referred to as "white-box” models, take into 
account the fundamental mechanism of the pollution process and 
consider distinct spatial and temporal feature distributions. These 
models can be applied to large-scale studies; however, it needs a 
large body of data to calibrate the models [29]. Physically based 
models can be divided into single event simulation and continuous 
simulation models.

Single Event Simulation
The single event modeling uses simple equations to simulate 
hydrological processes. This type of modeling is easy to run; 
nevertheless, it cannot consider the variability of parameters and 
several variables such as soil moisture conditions are assumed; 
in addition, single event models are not generally applicable for 
long term simulation [63].

Table 1 shows the single event models which have been widely 
used for modeling NPS pollution and present their properties.

Table 1: Summary of single-event models
Model Temporal 

scale
Watershed
delineation

Runoff Erosion Sediment

AGNPS Storm event Hydrological 
unit

Curve 
number

USLE Sediment 
routing

ANSWERS Storm event Hydrological 
unit

Manning ANSWERS Storm event

CASC2D Long term 2D grid Diffusive 
wave

USLE Not 
simulated

Among the models shown in Table 1, the AGNPS model and 
ANSWERS model are considerably used in recent studies.

AGNPS
AGNPS (Agricultural Non-Point Source Pollution Modeling 
System) is developed by USDA for the NPS pollution modeling 
in rural areas. This event-based model simulates runoff, sediment, 
and nutrient transport from agricultural watersheds. This model 
deploys cells to cover the computational domain. These cells, 
which are uniformly square areas represent the watershed and 
enable considering and defining features as a point within a 
watershed [64]. The AnnAGNPS (Annualized Agricultural Non-
Point Source Pollutant Loading Model) is the improved version 
of the AGNPS model which is based on continuous simulation 
[65]. AGNPS and AnnAGNPS models have considerably been 

applied to different watersheds to simulate hydrological processes 
and NPS pollution loads [66-68].

The drawbacks of the AGNPS model are requiring intensive input 
data, incapable of simulating pollutant transformations, and not 
considering baseflow. [63]

ANSWERS
ANSWERS (Areal Nonpoint Source Watershed Environment 
Response Simulation) is a distributed, and event-based model 
developed for estimating the impacts of land use on NPS pollution 
loads. This model utilizes a distributed parameter concept to 
model spatially variable runoff, seepage, underground drainage 
and erosion. ANSWERS-2000 is the enhanced and continuous 
version of the ANSWERS model developed by at Virginia Tech. 
ANSWERS-2000 continuously simulates nutrient load within a 
watershed. In addition, this model can consider different BMPs 
(agricultural and urban) for decreasing sediment and nutrient 
delivery to streams and leaching of nitrogen. The incapability of 
simulating chemical processes, requiring intensive computation 
calculations, and sensitivity to input data are the main downsides 
of the ANSWERS model.

Continuous Simulation
Continuous hydrologic modeling is an approach to simulate the 
entire hydrological cycle by considering different parameters 
such as soil type, moisture, and storage. This model increases the 
simulation accuracy by taking into account historic hydrological 
events. Continuation models are generally used to model 
hydrological processes over longer periods of time such as months 
and even years, to consider all the precipitation-runoff events 
during the period [63].

The important continuous simulation models for NPS pollution 
are shown in Table 2.

Table 2: Summary of Continuous Models
Model Temporal 

scale
Watershed
delineation

Runoff Erosion Sediment 

SWAT Long term Basin and 
subbasins

Curve 
number

MUSLE Bagnold’s 
stream power

HSPF Long term Basin and 
segment

Empirical 
equation

Splash 
detachment and 

wash off

Toffaleti 
or Colby 
methods

MIKE 
SHE

Long term 2D grid Diffusive 
wave

NI NI

The SWAT model and HSPF models are considerably used for the 
simulation of water quantity and quality, and for investigating the 
effect of different BMPs on water quality in a watershed [69,70].

SWAT
SWAT (Soil and Water Assessment Tool) is an advanced, 
physically based, distributed, basin scale, hydrological model 
developed by USDA-ARS [71]. The hydrological model includes 
various processes such as surface runoff, peak flows, groundwater, 
evapotranspiration, etc. based on water balance equation and 
simulates the transport process of many substances including 
nutrients, sediment, heavy metals, etc [71]. Recent studies have 
shown that the SWAT model can predict sufficiently accurate 
runoff and NPS loads in a watershed. On the other hand, this 
model needs a great deal of data about under study watershed, 
which brings about uncertainties. In addition, there is an unsuitable 
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mechanism for run off calculation and description of the interaction 
of groundwater and surface water, which requires further research 
and improvement. 

HSPF
HSPF (Hydrological Simulation Program—Fortran) is a 
distributed model for watershed scale model developed by the 
United States Environmental Protection Agency (EPA) [72]. HSPF 
uses three main modules to simulate hydrological processes in 
a watershed. These modules include PERLND, IMPLND, and 
RCHRES. Each of these can be further divided into several 
compartments simulating different processes. Pervious Land-
segments (PERLND) module contains 12 sections to simulate 
water quality and quantity parameters in pervious land segment. 
The Impervious Land-segments (IMPLND) module is divided 
into 6 sections estimating runoff and water quality parameters 
in impervious land. The RCHRES module is divided into eleven 
sections to simulates quantity and quality of the water in rivers 
of watershed. These modules are linked together to provide a 
comprehensive hydrological simulation for different segments 
of a watershed. 

The HSPF is a model that employs empirical equations for 
hydrologic simulation and estimates hydrologic parameters and 
pollution loads. The HSPF has been considerably used in NPS 
pollution investigations in watersheds, providing a solid basis for 
the establishment and implementation of watershed management 
plans. As HSPF contains many empirical equations it includes 
high uncertainties for modeling and demands extensive data for 
the calibration of the model.

Simulation Based Optimization Models
A considerable part of NPS pollution modeling, including the 
spatial and temporal variations of hydrological parameters, can 
be represented using deterministic models. However, hydrologic 
data and equations have been subjected to uncertainties leading 
to bias and error in determent sic modeling. As a wide variety of 
parameters are used in the NPS pollution simulation, physically 
based models are sensitivities to weather, soil types and land 
use data and a slight change in input data lead to significant 
changes in the predicted results. Thus, the calibration process of 
physically based models is so critical in the simulation of NPS 
pollution. In addition, some simplifications and assumptions lead 
to an inevitable uncertainty of predicted results [73]. In addition, 
the placement and optimization of BMPs for controlling NPS 
pollution in watersheds is a complex and challenging problem. 
These problems almost contain a large number of variables which 
create computational efforts. This problem can be transformed 
into an optimization problem with spatial and temporal features 
[74,75]. In order to deal with the mentioned issues, several 
models based on an optimization-simulation approach have been 
developed to meet the demands. These models are composed 
of a deterministic core within a surrogate modeling frame for 
optimization. Simulation-based optimization models combine 
simulation modeling and optimization techniques known as 
simulation optimization (SO) models. Depending on the number 
of objective functions, optimization problems are categorized as 
single-objective or multi-objective.

Single-Objective Optimization
When there is just one objective function to optimize, the process is 
called single-objective optimization. In the single objective function 
all different objectives are lumped into one function representing 
the goal of the problem and the main target of single objective 
optimization is to get the best solution, corresponding to the either 

minimum or maximum value of the objective function [75].

Over the past years, the single-objective optimization has 
been widely used for NPS pollution modeling and selection of 
suitable BMPs [76-78]. The single objective optimization is an 
advantageous and applicable tool providing decision makers with 
a great understanding of the nature of the problem, but usually 
cannot provide a set of alternative solutions that trade different 
objectives against each other.

Multi-Objective Optimization
Optimization problems that need to address more than one 
objective are called multi objective optimization problems and 
may present several optimal solutions. In the multi-objective 
optimization problems, the optimal values are found out of many 
objective functions and there is no single optimal solution. The 
interaction among different objectives induces to a set of impaired 
solutions, largely known as the trade-off, or Pareto-optimal 
solutions [75]. Multi-objective optimization models as a tool for 
targeting BMPs implementations to control NPS pollution has 
been received great attention lately [79-81]. In the SO simulation, 
SAWT, HSPF, and AnnAGNPS are widely used as hydrological 
models and the optimization algorithms are commonly NSGA-II or 
Ant Colony. Taking advantage of the multi-objective optimization 
model along with the simulation hydrological model greatly 
enhances the quality of the simulation process and provides a more 
realistic modeling. The main disadvantage of the multi-objective 
optimization simulation is that it is time intensive, and it needs a 
large computation time to run dynamically linked hydrological 
models.

Future Prospects of NPS modeling
NPS pollution is prevalent source of water pollution, and it has 
complex mechanisms and processes. The NPS pollution modeling 
is a complex procedure which requires a large data associated with 
climate, geological, land cover, and hydrological conditions. In this 
study, three main categories have been introduced for NPS pollution 
modeling by considering the spatial and temporal variations. This 
classification includes empirical models, physically based models, 
and simulation-based optimization models. The empirical models 
offer a simple equation to characterize the relationship between 
hydrological components and NPS pollution loads, particularly 
in the case of lacking monitoring data. Empirical models fall into 
three classes, including statistical methods, export coefficient 
model, and hydrograph separation methods. The empirical model 
commonly does not need a great deal of input data and contains 
a simple calculation technique; however, it lacks simulating of 
spatial and temporal variation of NPS pollution. Compared to 
empirical models, physical-based models contain good physical 
and chemical mechanisms and could map the spatiotemporal 
distribution of NPS pollution at larger scales, and they can 
represent a system's behavior by partial differential equations 
based on the physics of hydrological processes. Physically based 
models include two main groups of single-event simulation and 
continuous simulation models. The physically based model 
demands a great deal of data on climate, hydrology, land uses, 
etc. This model generally suffers from data scarcity issues, which 
reduce the accuracy and efficiency of this simulation process. 
Simulation-based optimization models combine optimization 
techniques into simulation analysis to address complicated 
problems. According to the number of objective functions, these 
models are divided into single and multi-objective functions. 
Simulation-based optimization models provide an efficient way to 
find BMP or a combination of BMPs based on various constraints; 
although, these models are typically computationally expensive. 
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Over the past decades, NPS pollution modeling has continuously 
evolved to provide an accurate simulation of NPS pollution; 
nevertheless, there are still some limitations which should be 
addressed. The accuracy of physically based modeling largely 
depends on the calibration of the input data. Due to the large 
number of parameters commonly used by physically based NPS 
models, both calibration and validation of these models commonly 
dela with some issues and challenges. Thus, conventional methods 
for either calibration or validation are generally cumbersome 
process. Therefore, there is a grave need for developing an efficient 
framework for the calibration of NPS models.  NPS pollution 
simulation normally only focus on the processes of hydrology, 
erosion, and pollutant transportation; however, this process is quite 
complex including multiple processes of hydrology, environments, 
chemical, and ecological process. Consequently, the integration of 
different models in order to consider various parameters should be 
taken into account as a future trend in NPS pollution modeling. 
Multiscale modeling paves the way for integrating standalone 
models to provide a comprehensive simulation and efficiently 
pass information across temporal and spatial scales. Most of NPS 
pollution models just deal with surface water pollution and neglect 
the groundwater impacts; however, pollution of surface water 
can result in degradation of ground water quality and conversely 
contamination of groundwater can decrease surface water quality. 
Thus, considering the complicated interaction of surface water 
and groundwater is necessary for a comprehensive simulation 
of NPS pollution. 

Developing a decision support system for selecting the optimum 
combination of BMPs to control NPS pollution within a watershed 
greatly helps decision-makers and policy-makers to increase the 
efficiency of the regulations and policies. Consequently, providing 
a framework to investigate the effect of different BMPs on 
controlling NPS pollution based on multi-model comparison 
could be crucial for future studies. 

Conclusions
Determining the spatiotemporal variation in NPS pollution is 
a prerequisite for enhancing water quality and protecting the 
environment. Providing an accurate simulation of NPS pollution 
in a watershed is essential for water resource protection plans. 
However, considerable investigations have been carried out on 
NPS pollution modeling and defining and implanting BMPs to 
control NPS pollution, but the terminology and categorizing 
different approaches for NPS pollution simulation have not yet 
been well explained in the literature. The classification of NPS 
pollution modeling is vital to help researchers choose a proper 
technique for NPS pollution according to the limitations and 
purposes of modeling. A review of approaches to simulate NPS 
pollution is presented in this paper. The most dominant methods 
have been reviewed and categorized in the current study based on 
their properties, which could suggest a direction for researchers 
to choose the optimal approach to simulate NPS pollution in a 
watershed.

The approaches for modeling NPS pollution are classified into 
the following categories. 
1.	 Empirical models
2.	 Physically based models
3.	 Simulation based optimization models.
Empirical models offer simplified solutions for estimating NPS 
pollution loads in watersheds based on observed and monitored 
data. Empirical models are simple, easy to operate and have 
low-demand data; however, it lacks some accuracy to perform 
specifically on a watershed scale. 

The physically based models provide comprehensive modeling 
by considering all hydrological processes in a watershed. As 
physically based models require a wide variety of input data, 
they could be operated when various data, including hydrology, 
geology, and so on, are available.

Simulation-based optimization models integrate a hydrological 
model with an optimization algorithm which results in high 
computational cost and effort in modeling. Simulation-based 
optimization models are commonly utilized for complex problems, 
which provide optimization for BMPs placement. Future NPS 
pollution modeling should attempt to decrease the limitations of 
the current simulation models to provide an accurate and realistic 
simulation. Thus, more attention would be inevitably paid to 
the calibration of NPS pollution models, multiscale modeling, 
considering the groundwater-surface water interaction, and 
developing a decision support tool in order to have a comprehensive 
NPS pollution modeling.
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