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ABSTRACT

of concrete surfaces.

Detecting cracks in concrete surfaces is critical for structural health monitoring. However, traditional methods show limited effectiveness due to their
high costs, time-consuming processes, and vulnerability to human error. This situation reveals the need for innovative methods to produce faster, more
economical, and more reliable results. This study developed an optimized convolutional neural network (CNN) model that works on low-resolution images
and has a four-layer lightweight architecture. The proposed model demonstrated superior performance with an accuracy rate of 98.1% and provided
distinct advantages over traditional methods regarding computational efficiency. In addition, using image segmentation techniques, crack areas are visually
highlighted, and users are offered easy evaluation. The proposed model provides economical, fast, and accessible monitoring by eliminating the need for
expensive hardware. In this way, structural health monitoring processes have become more effective and applicable on a larger scale. The study proposes
an innovative solution that saves both time and cost in engineering applications by adopting modern artificial intelligence techniques for crack detection
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Introduction

Increasing reinforced concrete structures’ durability and service
life is vital in structural engineering. The main factors affecting
structural durability are cracks caused by environmental and
structural factors. Cracks are considered critically important
visual indicators that reinforced concrete structures are damaged.
Therefore, timely detection and evaluation of these cracks have
become indispensable to structural health monitoring. However,
carrying out these processes with traditional methods brings
various problems, such as expert dependency, risk of error, high
cost, and access restrictions.

The limitations of traditional methods have increased the
need for automatic crack detection technologies and were a
key motivation for this study. In particular, the dependence of
existing methods on high-cost equipment and complex technical
infrastructure limits their practical use in large-scale applications.
The solution proposed in this study involves the development of
a Convolutional Neural Network (CNN) model that provides a
simple, computationally efficient, and economical approach for
crack detection on concrete surfaces. The proposed model operates
on low-resolution images, eliminating the need for expensive
imaging equipment and providing an accessible alternative for
crack detection.

Studies on crack detection in reinforced concrete structures have
made significant progress with innovative technologies such as [oT-

based fiber optic sensors, laser scanning systems, RGB-D image
fusion, and perceptual analysis methods. However, these methods’
dependence on high-cost equipment and complex infrastructure
requirements is limiting in large-scale applications. Deep learning
techniques, especially Convolutional Neural Networks (CNN),
have become increasingly popular thanks to their accuracy and
processing efficiency in image classification and object detection.

Deep learning-based methods’ ability to work on low-resolution
images and relatively low computational power requirements offer
an effective solution for crack detection on concrete surfaces.
CNN-based models enable automatic crack detection by separating
crack and background pixel values in grayscale images. This
feature eliminates the need for expensive imaging devices,
enabling economical and easy evaluation of concrete surfaces.

In this study, an optimized and lightweight CNN model that can
work on low-resolution (128x128 pixels) images was developed.
The proposed model is designed using modern deep learning
techniques such as ReLU activation, max pooling, and the Adam
optimization algorithm. The model classifies surface images with
and without high-accuracy cracks, providing 98.1% accuracy and
significantly reducing computational costs. The developed model’s
performance was compared with other methods in the literature
(for example, Transfer Learning-based models and hybrid CNN
approaches), and it was seen that it showed superior performance.
This model, which can work with low-resolution images, makes
detecting cracks quickly and cost-effectively possible, especially
in field applications.
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This study demonstrates the applicability of artificial intelligence
and deep learning techniques in civil engineering. In the future,
it aims to increase the proposed model’s applicability in other
structural elements, test it in more complex surface conditions,
and integrate it into real-time systems. Additionally, training the
model with a larger dataset to improve its performance under
environmental effects such as lighting, surface roughness, and
noise will be an important step for larger-scale applications.

This study developed a CNN model that provides a simple,
computationally efficient, and economical solution for detecting
cracks in reinforced concrete structures. The proposed model
exhibits superior performance in terms of accessibility and
accuracy compared to traditional methods and is considered an
effective solution in structural health monitoring. This model
is expected to make significant contributions in academic and
industrial fields with future improvements.

Research Significance

Detection of cracks on concrete surfaces is critical to ensuring the
durability and safety of structures. Early and accurate detection of
cracks allows efficient management of structural health monitoring
processes and helps prevent structural problems before they
progress. Today, deep learning techniques attract attention with
the high accuracy rates they provide in automatic crack detection
and offer significant cost and efficiency advantages compared to
manual and traditional automatic systems.

However, most existing methods are based on complex architectures
and high computing power requirements. This increases expensive
hardware requirements and imposes significant limitations for
large-scale applications due to the need for high-resolution data
processing. In addition, the high number of parameters that large-
scale neural networks have can negatively affect prediction speeds
by prolonging the model’s training time. This situation limits the
widespread use of deep learning-based approaches in practical
applications.

The importance of this study stems from the fact that it makes
the crack detection process faster, more economical, and feasible
by proposing an optimized and lightweight Convolutional Neural
Network (CNN) architecture. The proposed model is based on a
simple CNN structure consisting of only four layers and achieves
a high accuracy rate of 98.1% by working on low-resolution
(128x128 pixels) images. This approach eliminates the need
for expensive imaging devices and is suitable for large-scale
applications with low-cost equipment. Thus, the potential for
industrial use is significantly increased.

One of the most notable contributions of this research is that it
provides a solution that requires less computational power while
maintaining the accuracy and efficiency levels of existing methods.
This feature enables the applicability of this method, especially in
environments where devices with low hardware capacity are used
or resources are limited. Additionally, the flexible structure of the
proposed model provides a basis that can be adapted to different
surface types and environmental conditions.

In conclusion, this study encourages the broader adoption of Al-
based solutions in structural health monitoring processes. The
proposed solution not only offers an economical alternative but
also has great potential in real-time applications. In this respect,
the study represents an important advance in the field of civil
engineering, both academically and industrially.

Literature Review

Deep Learning

Deep learning, as a sub-branch of artificial intelligence, is a powerful
technology developed inspired by the working mechanisms of the
human brain and offers solutions to complex problems through
artificial neural networks. Today, the widespread use of deep
learning has been made possible by increasing access to large data
sets, widespread use of powerful computing infrastructures, and
increasingly advanced algorithms. Groundbreaking achievements,
especially in the field of computer vision, clearly demonstrate the
feasibility and potential of deep learning.

The concept of computer vision was first defined under the name
“cybernetics” in the 1940s and reached a new stage with the
concept of “connectionism” in the 1980s. In 2006, the modern
concept of deep learning emerged when Hinton and his team
developed pre-training and fine-tuning techniques. This important
milestone has made it possible for neural networks to work
effectively on larger and more complex data sets. Today, deep
learning is applied in many fields, such as image processing,
natural language processing, and autonomous systems, and is
customized through different structures (e.g., Convolutional
Neural Networks [CNN], Recurrent Neural Networks [RNN],
and fully connected networks).

In this study, Convolutional Neural Networks (CNN), one of the
basic building blocks of deep learning, were optimized for crack
detection on concrete surfaces. CNNs eliminate the need for manual
feature engineering thanks to their ability to automatically extract
features from images. The proposed model achieved a 98.1%
accuracy rate on low-resolution (128x128 pixels) images with
a simple but effective architecture and offered an advantageous
solution in terms of processing efficiency.

As aresult, deep learning overcomes the limitations of traditional
methods, allowing the development of low-cost and accessible
structural health monitoring systems. The method proposed in
this study not only offers an economical and practical solution
for crack detection on concrete surfaces but also provides an
approach that will form the basis for real-time applications and
more comprehensive models that can be used in different structural
elements in the future.

Mathematical Understanding

The main purpose of a deep learning model is to create a function
that produces meaningful outputs by processing given input data.
This function is defined by the fact that the model performs a series
of mathematical operations from the input to the result, optimizing
its parameters during the learning process. This process, especially
in deep learning structures such as convolutional neural networks
(CNN), consists of two basic steps: forward propagation and
backpropagation. The forward propagation process enables the
model to produce an output by passing through the input data
with the help of weights and biases in each layer. In this process,
each layer takes input values, multiplies them by weights, adds
biases, and produces a nonlinear output with the help of activation
functions. This process is repeated from the input to the last layer
to generate the final prediction result of the model.

Backpropagation is performed to minimize the model error. The
difference between the model’s prediction and the actual result is
calculated through a loss function. Backpropagation uses this error
to update the weights and biases of the model. During this process,
derivatives are calculated using the chain rule, and the error is
propagated backward to optimize the model parameters. This
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optimization process is usually performed by Stochastic Gradient
Descent (SGD) or derivative algorithms (e.g., Adam optimization
algorithm). These two processes form the basic building blocks of
the learning process of a deep learning model. The performance
of'the model is optimized by accurately updating each weight and
bias parameter. Thus, the model can produce meaningful outputs
by learning complex relationships in the input data.

Forward Propagation

Forward propagation is a fundamental process in which input data
is transformed into output by passing through the layers of an
artificial neural network. This stage enables the model to produce
a final prediction or output by processing features in the input data.
At the beginning of the process, the input data (X) is multiplied by
the filters (kernels) and weights (W) in each layer, and then bias
(b) is added. These values are then passed through the activation
function, which provides a non-linear transformation, and the
resulting output is transmitted to the next layer. This process is
repeated in all network layers, producing the final output (Y).

Especially in the case of Convolutional Neural Networks (CNN),
the forward propagation process is largely concentrated in the
convolution layers. More complex representations are obtained
in these layers by extracting features from the input data. The
convolution process can be expressed mathematically as follows:

M N
ZU = Z ZX(i+m—1)(j+n—l) s Won + b
=1

m=1in

o

Bu denklemde:

*  Zj, represents the value of a pixel in the output map.

. )((]i+n,_.)(j+n_1) , represents the pixel values in the relevant region
of the input data.

* W, represents the filter (kernel) weights.

e b, is the bias term of the relevant layer.

* M and N, represent the filter dimensions.

In this process, activation functions (ReLU or sigmoid) enable
the network to learn non-linear relationships and ensure that the
outputs are appropriately passed on to the next layer. The forward
propagation process enables each layer to extract meaningful
features from the input data and produce an output towards the
final goal.

In the forward propagation process, activation functions (e.g.,
ReLU or sigmoid) enable the network to learn nonlinear
relationships, enabling the outputs to be appropriately passed to
the next layer. This process aims to produce an output in line with
the final goal by extracting meaningful features from the input
data for each layer.

In the convolution layer, the input image is shifted (stride) with
the help of a certain filter and matrix multiplications are performed
on the image. After applying the filter, the results are passed
through an activation function. ReLU (Rectified Linear Unit), one
of the most commonly used activation functions, accelerates the
network’s learning process by resetting negative values and enables
the network to learn non-linear relationships more effectively.

The output matrix obtained due to the convolution process
generally decreases in size at each step. The following formula
can calculate the extent of this reduction:

iy = G220
Here:

» n[L] is the output size at the current layer.

» n[L—1] is the output size of the previous layer.
* p, padding value.

»  fis the filter size used.

* s, stride value (scroll step).

After the convolution process, pooling is applied to reduce the size
and preserve distinct features. Pooling is generally carried out by
the maximum value selection (max pooling) method. This process
increases the robustness of the network against noise and improves
the model’s performance by reducing the computational load.

Flattening Layer

After the last convolution layer, the smoothing layer comes into
play. This layer prepares the input data for fully connected layers
by converting a multidimensional matrix into a one-dimensional
vector. This enables easier processing of convolutional features
in fully connected layers.

Fully Connected Layers and Egress

In fully connected layers, the input vector (X) is multiplied by
each weight matrix (W), then the bias (b) is added. This process
can be expressed mathematically as follows:

Z=W-X+b

Here:

*  Zis the predicted intermediate result.
* W is the weight matrix.

» X s the input vector.

e b, bias vector.

The result obtained is passed through activation functions, allowing
the network to learn non-linear relationships, and transmitted to the
output layer. In the output layer, a softmax or sigmoid activation
function is usually used to generate classification results. The
softmax function is used to calculate class probabilities in multi-
class classification problems; the sigmoid function is used in
binary classification problems.

The forward propagation process involves a set of basic
mathematical operations that enable a model to produce meaningful
outputs from input data. This process is one of the cornerstones of
deep learning models, especially Convolutional Neural Networks,
structured and optimized to solve complex problems.

Backpropagation and Learning (Backpropagation)

The learning process of a deep learning model is based on
minimizing the difference between the model’s predicted result
(Y") and the actual labels (Y). This difference is calculated through
a loss function to measure and improve the model’s performance.
For example:

1) =Y -7y’

The loss function is a measure that numerically expresses the
errors made by the model. The parameters of the model (weights
and biases) are optimized so that the output of the loss function
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is minimized. This process is usually carried out with the help
of backpropagation and optimization algorithms (for example,
Stochastic Gradient Descent or Adam algorithm). Minimizing
the loss function allows the model to better fit the real data and
increase the accuracy of its future predictions.

In this context, the loss function constitutes one of the cornerstones
of the model’s learning process, and the selection of a correct
loss function is a critical element that directly affects the model’s
overall performance.

Recent Work

In recent years, deep learning models have offered effective and
innovative solutions for crack detection on concrete surfaces, and
significant progress has been made in this field. Many studies in
the literature use high accuracy rates and different architectural
structures. For example, Guo and Hu achieved an 88.1% accuracy
rate for detecting asphalt cracks on high-resolution (2978 x
3978 pixels) images using YOLOVS series pre-trained models
[1]. However, the high processing costs of this method and its
dependence on high-resolution images have brought serious
limitations in large-scale applications.

Pang-Jo Chun and his colleagues used the Light Gradient Boosting
Machine model for crack detection and compared their results with
a pix2pix-based approach. This study extracted crack features
through pixel values and geometric shapes and reached a high
% accuracy rate of 99.7% [2]. However, this method’s complex
structure and high processing power requirement create difficulties,
especially in real-time applications.

Similarly, Yang Yu and colleagues evaluated existing crack
detection techniques regarding processing costs and accuracy
and proposed a method combining deep learning and the Enhanced
Chicken Swarm algorithm [3]. This method attracts attention as
an effective solution in image-based approaches. Andrushia and
his team developed a U-Net model that performs pixel-level
classification on concrete surfaces exposed to high temperatures.
Although the model offers a complex structure with encoder and
decoder components, it has limitations in terms of processing load
and training time [4].

Chehri and Saeidi proposed a model for automatically detecting
cracks in concrete bridges by combining IoT and deep learning
techniques. This method provides significant efficiency in
structural health monitoring processes [5]. By combining the
YOLOVS model with the Crack Feature Pyramid Network (Crack-
FPN), Zhao and his colleagues reduced transaction costs and
offered a more effective method for feature extraction [6].

Munawar and colleagues analyzed 30 different crack detection
models and compared them regarding accuracy, processing cost,
and applicability. Their studies emphasized that simple and fast
models are more suitable for large-scale and real-time applications
[7-11].

In addition to the above-mentioned work, our proposed model
is based on a lightweight CNN architecture that aims to reduce
processing costs and provide high accuracy. While many studies
require high-resolution images or complex architectures, this
study offers a model optimized on low-resolution (128x128 pixels)
images. The proposed model has only a four-layer CNN structure
and offers an effective solution by combining forward and back
propagation processes. This approach provides an economical

and accessible solution by eliminating the need for expensive
equipment.

These comprehensive studies on deep learning-based crack
detection models reveal the advances in the field. However, our
proposed work offers an important alternative to existing methods
because it is low-cost and easily applicable. This model, which
has a wide application potential, especially in structural health
monitoring systems, makes a remarkable academic and industrial
contribution [12-16].

Methods

Regularization and Optimization Process of the Model
Regularization techniques were used to minimize the difference
between the proposed model’s training and testing performance
and increase its generalization ability. In the initial tests, while
the accuracy rate of the model in the training set reached 99%
without applying regularization techniques, the accuracy rate
in the test set remained at 91%, clearly showing that the model
tended to overfit. In order to solve this problem, kernel and
bias regularization coefficients in fully connected feed-forward
layers were determined as 0.01. These regularization coefficients
prevented the model’s parameters from growing excessively
and provided a more balanced and universal learning process.
Regularization reduced the difference in variance that could arise
between both training and test sets, especially by limiting the
high-capacity parameter sets of the model.

This approach increased the model’s generalization ability, resulting
in a significant improvement in accuracy on the test set. Reducing
the performance difference between training and validation sets
contributed to the model providing more stable results in different
data sets and significantly strengthened its generalization ability.
The effective use of regularization techniques enabled the proposed
model to exhibit a balanced performance in training and testing
processes and eliminated the model’s overlearning problem. This
arrangement is an important improvement process that increases
the model’s success in practical applications [17-21].

Educational Process

The proposed model’s training process has been carefully optimized
to increase generalization capacity and avoid overlearning. At
the beginning of the training process, the model was trained
for 10 epochs. However, this short training period causes the
model to overfit the training set, especially in simple pattern
recognition tasks. To prevent this situation, the number of epochs
was increased to 50, allowing the model to be trained for longer.

The mini-batch method, which consisted of 32 data points used
during training, allowed the model to update its parameters more
frequently at each step. This approach enabled the training time to
be managed efficiently and contributed to rapidly minimizing the
loss function. The mini-batch method allowed the model to learn
more stably by frequently making parameter updates.

During the training process, changes in the loss function were
carefully monitored, and the performance in the validation set
remained stable. An early stopping mechanism was unnecessary
since there was no significant performance drop between the
training and validation sets. This shows that the model is effectively
optimized while avoiding overlearning [23, 24].

The results obtained regarding the training process are detailed in
Table 1 below. The table shows the change in accuracy and loss
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rates in the training and validation sets across epochs. These findings clearly demonstrate that the model exhibits stable performance
during the training process, and the validation accuracy is close to the training accuracy. This indicates that the model’s generalization

ability is strong.

Table 1: Training and Validation Accuracy and Loss Values

Epoch Training Accuracy (%) Verification Accuracy (%) Loss of Education Authentication Loss
10 95.2 93.8 0.124 0.135
20 97.4 96.5 0.073 0.081
30 98.3 97.9 0.048 0.053
40 98.7 98.2 0.032 0.037
50 98.9 98.3 0.021 0.028

Optimization Algorithms

In this study, Adam (Adaptive Moment Estimation) optimization

algorithm was preferred to optimize the parameters of the model.

Adam is an effective algorithm that speeds up the optimization

process by adaptively adjusting the learning rate, generally

resulting in higher accuracy rates. During the training process,

the default Adam parameters provided by the Keras library were

used. These parameters are as follows:

*  Learning Rate: 0.001

* Beta 1: 0.9 (for momentum)

*  Beta 2:0.999 (for the mean squared momentum)

*  Epsilon: 1x10-8 (to avoid values approaching zero when
dividing)

The Adam algorithm combines the advantages of AdaGrad and

RMSProp methods, providing a powerful optimization mechanism.

While AdaGrad reduces the learning rate of frequently used

parameters over time, RMSProp provides a balanced parameter

update by increasing the learning rate of rarely used parameters.

Combining these two approaches enables the Adam algorithm to

provide an advantageous computational efficiency and accuracy

solution on large data sets.

Additionally, the Adam algorithm allows the model to perform
stably over a wide range of hyperparameters. This feature makes
it possible to obtain stable results, especially on different data sets
and model architectures. These advantages provided by the Adam
optimization algorithm during the training process contributed to
the rapid and effective completion of the model’s learning process,
and a significant increase in accuracy rates was achieved [25-27].

Performance Evaluation

The model’s performance was comprehensively evaluated using
the training, validation, and test sets accuracy metric. This metric
reflects the importance of true positive (TP) and true negative (TN)
classifications in crack detection on concrete surfaces. The model’s
success in distinguishing cracked and non-cracked surfaces clearly
demonstrated strong generalization capacity.

At the end of the training process, the model reached an accuracy
rate of 98.9% in the training set and 98.3% in the validation set.
These results showed that the model not only overfitted the training
data but also performed well on the validation data. This consistent
performance between training and validation sets proves that the
model’s generalization ability is strong.

In detailed analyses performed on the test set, the model’s
performance was evaluated using a confusion matrix and ROC
curve (Receiver Operating Characteristic curve). The Confusion
Matrix (Table 2) clearly demonstrates the correct classification
(true positive and true negative) rates of the model, reflecting in

detail the level of accuracy, precision, and error tolerance of the
model [28, 29].

In addition, the model’s classification success was analyzed using
the ROC curve (Figure 1). The ROC curve showed how accurately
the model could distinguish positive and negative classes. The
high area under the curve (AUC) showed that the model’s overall
performance was effective, and the classification success was high.

In conclusion, the proposed model offered a stable and high-
performance approach to solving the problem of crack detection
on concrete surfaces, exhibiting strong generalization capacity
on both training and test data.

Table 2: Confusion Matrix

Real Cracked No Real Cracks
Prediction: Cracked 3,720 30
Prediction: No 25 3,725
Cracks

The confusion matrix concretely reveals the prediction accuracy
of the model on surfaces with and without cracks. Particularly
low error rates (FN=25, FP=30) show that the model provides
high precision and recall.

ROC Egrisi

Figure 1: ROC Curve

In addition, the accuracy performance of the model is shown
graphically with the ROC curve (Receiver Operating Characteristic
curve). The ROC curve reveals the classification success in detail
by correlating the model’s true positive rate (TPR) against the
false positive rate (FPR). This graphical analysis is critical for
understanding how the model performs at different thresholds.
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In this study, the AUC (Area Under Curve) value calculated from
the ROC curve was 0.99. The fact that the AUC is close to 1
indicates that the model’s classification ability is close to perfect
and that it performs very effectively in a critical problem such as
crack detection. The high AUC value emphasizes that the model
can accurately distinguish both positive and negative classes.

The ROC curve and AUC analysis show that the model
demonstrates stable and reliable performance in crack detection
on concrete surfaces. These analyses indicateanalyses indicate that
the model can provide high accuracy and reliability in practical
applications [30-39].

Results

This study aimed to develop an efficient and lightweight deep
learning model to detect cracks on concrete surfaces. In the study,
Convolutional Neural Network (CNN) architecture was applied
and evaluated on a dataset consisting of 40,000 images in total.
The dataset in question has been carefully prepared to cover
different conditions of cracks in concrete surfaces, enabling the
model to demonstrate robust and adaptable performance in real-
world applications. The proposed model’s simple structure and
the dataset’s diversity have proven the model’s effectiveness in
the crack detection task in different scenarios.

The developed CNN model was implemented using Python’s
Keras library and other auxiliary modules. Thanks to a simple
optimized architecture, the model achieved 97.8% accuracy in just
five epochs, demonstrating that the model is both computationally
efficient and high-performance. Input images were preprocessed
by converting them to grayscale to reduce the computational load
and maintain accuracy. Additional data augmentation was not
applied because the dataset was already created from a pool of
458 high-resolution images derived and augmented. This structure
enabled the model to achieve a good generalization capacity
without overlearning.

The proposed CNN architecture has a four-layer structure
consisting of two convolution layers followed by two fully
connected layers. This architecture balances simplicity and
efficiency, providing an ideal solution for practical applications.
During the training process, the model learned a total of 954,241
parameters and these parameters were optimized using the Adam
optimization algorithm. The Adam algorithm contributed to the
model’s performance with its features of dealing with sparse
gradients and adaptive learning rate. Additionally, Binary Cross-
Entropy was used as the loss function and this function provided
a solution suitable for the binary classification structure (crack
present/absent) of the crack detection problem.

In order to better interpret the results, segmentation techniques
were used to localize and highlight cracked areas on concrete
surfaces. In this context, using the pixel thresholding method,
crack areas in the input images were detected and segmentation
was performed. The model’s performance was evaluated with high
recall, precision and F1 scores, and the results demonstrated the
adequacy and robustness of the proposed approach in detecting
cracks on concrete surfaces.

However, despite the strong performance of the model, there are
some limitations. First, the model is not designed to analyze the
morphological properties of cracks, such as depth or width. In
addition, for the model to work effectively, the images used must
be free of external noise such as shadows, stains or debris. Such
noise can mimic crack patterns, leading to misclassifications.

Another limitation arises from the structure of the dataset: The
images were mostly taken from close range, and decreases in the
performance of the model can be observed in images taken from
different angles or longer distances. Additionally, the model is
only specialized to detect cracks in concrete surfaces and is not
generalized to other materials or structural surfaces.

The dataset used in this study does not include morphological
characteristics of cracks such as depth, width, or shape. This limits
the model’s ability to detect hairline cracks (e.g., hairline cracks)
in low-light conditions. This limitation is due to the low resolution
of some images in the dataset. The dataset has been deliberately
kept lightweight to make the model computationally efficient and
suitable for economical use. However, this may pose a potential
risk, especially in critical safety requirements, by reducing the
likelihood of detecting micro-level cracks.

Future Research Field

In order to overcome the limitations identified in this study
and improve the performance of the model in a wider range of
applications, future research should focus on the following key
areas:

Creating a larger, more comprehensive dataset that includes
more hairline crack samples and different light conditions can
significantly increase the robustness of the model. Synthetic cracks
or high-resolution annotated images can be used to augment
such a dataset. Expanding the dataset will strengthen the model’s
generalization capacity in different scenarios.

The model needs to be expanded so that it is not only limited to
crack detection, but also analyzes the morphological characteristics
of cracks, such as width, depth, and growth patterns. Such
development could contribute to assessing the long-term effects
of cracks by providing additional information in structural health
monitoring.

More effective preprocessing steps must be implemented to
prevent external noises such as shadows, stains, or debris from
negatively affecting model performance. Adaptive thresholding,
edge detection, and other advanced image-processing techniques
can be used in this context. Such techniques can enable the model
to perform more accurately in real-world conditions.

Expanding the dataset to include concrete surfaces and cracks in
other materials, such as asphalt, metal, etc., could increase the
model’s versatility. Such an extension would enable the model to
be applied to a broader range of structural integrity assessments.

Methods should be developed to correct perspective distortions in
images taken from different angles. This advancement will allow
the model to perform consistently across a variety of imaging
scenarios. In particular, applying methods such as perspective
transformations and camera calibration can increase the model’s
flexibility.

As a result, the proposed CNN-based crack detection model
exhibits high accuracy and computational efficiency in its current
form but will become applicable in much wider contexts by
eliminating its limitations. Such future research will enable the
model to be used as a powerful tool in the construction industry’s
structural health monitoring and maintenance processes.
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