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Introduction
Increasing reinforced concrete structures’ durability and service 
life is vital in structural engineering. The main factors affecting 
structural durability are cracks caused by environmental and 
structural factors. Cracks are considered critically important 
visual indicators that reinforced concrete structures are damaged. 
Therefore, timely detection and evaluation of these cracks have 
become indispensable to structural health monitoring. However, 
carrying out these processes with traditional methods brings 
various problems, such as expert dependency, risk of error, high 
cost, and access restrictions.

The limitations of traditional methods have increased the 
need for automatic crack detection technologies and were a 
key motivation for this study. In particular, the dependence of 
existing methods on high-cost equipment and complex technical 
infrastructure limits their practical use in large-scale applications. 
The solution proposed in this study involves the development of 
a Convolutional Neural Network (CNN) model that provides a 
simple, computationally efficient, and economical approach for 
crack detection on concrete surfaces. The proposed model operates 
on low-resolution images, eliminating the need for expensive 
imaging equipment and providing an accessible alternative for 
crack detection.

Studies on crack detection in reinforced concrete structures have 
made significant progress with innovative technologies such as IoT-

based fiber optic sensors, laser scanning systems, RGB-D image 
fusion, and perceptual analysis methods. However, these methods’ 
dependence on high-cost equipment and complex infrastructure 
requirements is limiting in large-scale applications. Deep learning 
techniques, especially Convolutional Neural Networks (CNN), 
have become increasingly popular thanks to their accuracy and 
processing efficiency in image classification and object detection.

Deep learning-based methods’ ability to work on low-resolution 
images and relatively low computational power requirements offer 
an effective solution for crack detection on concrete surfaces. 
CNN-based models enable automatic crack detection by separating 
crack and background pixel values in grayscale images. This 
feature eliminates the need for expensive imaging devices, 
enabling economical and easy evaluation of concrete surfaces.

In this study, an optimized and lightweight CNN model that can 
work on low-resolution (128x128 pixels) images was developed. 
The proposed model is designed using modern deep learning 
techniques such as ReLU activation, max pooling, and the Adam 
optimization algorithm. The model classifies surface images with 
and without high-accuracy cracks, providing 98.1% accuracy and 
significantly reducing computational costs. The developed model’s 
performance was compared with other methods in the literature 
(for example, Transfer Learning-based models and hybrid CNN 
approaches), and it was seen that it showed superior performance. 
This model, which can work with low-resolution images, makes 
detecting cracks quickly and cost-effectively possible, especially 
in field applications.

ABSTRACT
Detecting cracks in concrete surfaces is critical for structural health monitoring. However, traditional methods show limited effectiveness due to their 
high costs, time-consuming processes, and vulnerability to human error. This situation reveals the need for innovative methods to produce faster, more 
economical, and more reliable results. This study developed an optimized convolutional neural network (CNN) model that works on low-resolution images 
and has a four-layer lightweight architecture. The proposed model demonstrated superior performance with an accuracy rate of 98.1% and provided 
distinct advantages over traditional methods regarding computational efficiency. In addition, using image segmentation techniques, crack areas are visually 
highlighted, and users are offered easy evaluation. The proposed model provides economical, fast, and accessible monitoring by eliminating the need for 
expensive hardware. In this way, structural health monitoring processes have become more effective and applicable on a larger scale. The study proposes 
an innovative solution that saves both time and cost in engineering applications by adopting modern artificial intelligence techniques for crack detection 
of concrete surfaces.
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This study demonstrates the applicability of artificial intelligence 
and deep learning techniques in civil engineering. In the future, 
it aims to increase the proposed model’s applicability in other 
structural elements, test it in more complex surface conditions, 
and integrate it into real-time systems. Additionally, training the 
model with a larger dataset to improve its performance under 
environmental effects such as lighting, surface roughness, and 
noise will be an important step for larger-scale applications.

This study developed a CNN model that provides a simple, 
computationally efficient, and economical solution for detecting 
cracks in reinforced concrete structures. The proposed model 
exhibits superior performance in terms of accessibility and 
accuracy compared to traditional methods and is considered an 
effective solution in structural health monitoring. This model 
is expected to make significant contributions in academic and 
industrial fields with future improvements.

Research Significance
Detection of cracks on concrete surfaces is critical to ensuring the 
durability and safety of structures. Early and accurate detection of 
cracks allows efficient management of structural health monitoring 
processes and helps prevent structural problems before they 
progress. Today, deep learning techniques attract attention with 
the high accuracy rates they provide in automatic crack detection 
and offer significant cost and efficiency advantages compared to 
manual and traditional automatic systems.

However, most existing methods are based on complex architectures 
and high computing power requirements. This increases expensive 
hardware requirements and imposes significant limitations for 
large-scale applications due to the need for high-resolution data 
processing. In addition, the high number of parameters that large-
scale neural networks have can negatively affect prediction speeds 
by prolonging the model’s training time. This situation limits the 
widespread use of deep learning-based approaches in practical 
applications.

The importance of this study stems from the fact that it makes 
the crack detection process faster, more economical, and feasible 
by proposing an optimized and lightweight Convolutional Neural 
Network (CNN) architecture. The proposed model is based on a 
simple CNN structure consisting of only four layers and achieves 
a high accuracy rate of 98.1% by working on low-resolution 
(128x128 pixels) images. This approach eliminates the need 
for expensive imaging devices and is suitable for large-scale 
applications with low-cost equipment. Thus, the potential for 
industrial use is significantly increased.

One of the most notable contributions of this research is that it 
provides a solution that requires less computational power while 
maintaining the accuracy and efficiency levels of existing methods. 
This feature enables the applicability of this method, especially in 
environments where devices with low hardware capacity are used 
or resources are limited. Additionally, the flexible structure of the 
proposed model provides a basis that can be adapted to different 
surface types and environmental conditions.

In conclusion, this study encourages the broader adoption of AI-
based solutions in structural health monitoring processes. The 
proposed solution not only offers an economical alternative but 
also has great potential in real-time applications. In this respect, 
the study represents an important advance in the field of civil 
engineering, both academically and industrially.

Literature Review
Deep Learning
Deep learning, as a sub-branch of artificial intelligence, is a powerful 
technology developed inspired by the working mechanisms of the 
human brain and offers solutions to complex problems through 
artificial neural networks. Today, the widespread use of deep 
learning has been made possible by increasing access to large data 
sets, widespread use of powerful computing infrastructures, and 
increasingly advanced algorithms. Groundbreaking achievements, 
especially in the field of computer vision, clearly demonstrate the 
feasibility and potential of deep learning.

The concept of computer vision was first defined under the name 
“cybernetics” in the 1940s and reached a new stage with the 
concept of “connectionism” in the 1980s. In 2006, the modern 
concept of deep learning emerged when Hinton and his team 
developed pre-training and fine-tuning techniques. This important 
milestone has made it possible for neural networks to work 
effectively on larger and more complex data sets. Today, deep 
learning is applied in many fields, such as image processing, 
natural language processing, and autonomous systems, and is 
customized through different structures (e.g., Convolutional 
Neural Networks [CNN], Recurrent Neural Networks [RNN], 
and fully connected networks).

In this study, Convolutional Neural Networks (CNN), one of the 
basic building blocks of deep learning, were optimized for crack 
detection on concrete surfaces. CNNs eliminate the need for manual 
feature engineering thanks to their ability to automatically extract 
features from images. The proposed model achieved a 98.1% 
accuracy rate on low-resolution (128x128 pixels) images with 
a simple but effective architecture and offered an advantageous 
solution in terms of processing efficiency.

As a result, deep learning overcomes the limitations of traditional 
methods, allowing the development of low-cost and accessible 
structural health monitoring systems. The method proposed in 
this study not only offers an economical and practical solution 
for crack detection on concrete surfaces but also provides an 
approach that will form the basis for real-time applications and 
more comprehensive models that can be used in different structural 
elements in the future.

Mathematical Understanding
The main purpose of a deep learning model is to create a function 
that produces meaningful outputs by processing given input data. 
This function is defined by the fact that the model performs a series 
of mathematical operations from the input to the result, optimizing 
its parameters during the learning process. This process, especially 
in deep learning structures such as convolutional neural networks 
(CNN), consists of two basic steps: forward propagation and 
backpropagation. The forward propagation process enables the 
model to produce an output by passing through the input data 
with the help of weights and biases in each layer. In this process, 
each layer takes input values, multiplies them by weights, adds 
biases, and produces a nonlinear output with the help of activation 
functions. This process is repeated from the input to the last layer 
to generate the final prediction result of the model.

Backpropagation is performed to minimize the model error. The 
difference between the model’s prediction and the actual result is 
calculated through a loss function. Backpropagation uses this error 
to update the weights and biases of the model. During this process, 
derivatives are calculated using the chain rule, and the error is 
propagated backward to optimize the model parameters. This 
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optimization process is usually performed by Stochastic Gradient 
Descent (SGD) or derivative algorithms (e.g., Adam optimization 
algorithm). These two processes form the basic building blocks of 
the learning process of a deep learning model. The performance 
of the model is optimized by accurately updating each weight and 
bias parameter. Thus, the model can produce meaningful outputs 
by learning complex relationships in the input data.

Forward Propagation
Forward propagation is a fundamental process in which input data 
is transformed into output by passing through the layers of an 
artificial neural network. This stage enables the model to produce 
a final prediction or output by processing features in the input data. 
At the beginning of the process, the input data (X) is multiplied by 
the filters (kernels) and weights (W) in each layer, and then bias 
(b) is added. These values are then passed through the activation 
function, which provides a non-linear transformation, and the 
resulting output is transmitted to the next layer. This process is 
repeated in all network layers, producing the final output (Y).

Especially in the case of Convolutional Neural Networks (CNN), 
the forward propagation process is largely concentrated in the 
convolution layers. More complex representations are obtained 
in these layers by extracting features from the input data. The 
convolution process can be expressed mathematically as follows:

Bu denklemde:
•	 Zij, represents the value of a pixel in the output map.
•	 X(i+m-1)(j+n-1) , represents the pixel values in the relevant region 

of the input data.
•	 Wmn, represents the filter (kernel) weights.
•	 b, is the bias term of the relevant layer.
•	 M and N, represent the filter dimensions.

In this process, activation functions (ReLU or sigmoid) enable 
the network to learn non-linear relationships and ensure that the 
outputs are appropriately passed on to the next layer. The forward 
propagation process enables each layer to extract meaningful 
features from the input data and produce an output towards the 
final goal.

In the forward propagation process, activation functions (e.g., 
ReLU or sigmoid) enable the network to learn nonlinear 
relationships, enabling the outputs to be appropriately passed to 
the next layer. This process aims to produce an output in line with 
the final goal by extracting meaningful features from the input 
data for each layer.

In the convolution layer, the input image is shifted (stride) with 
the help of a certain filter and matrix multiplications are performed 
on the image. After applying the filter, the results are passed 
through an activation function. ReLU (Rectified Linear Unit), one 
of the most commonly used activation functions, accelerates the 
network’s learning process by resetting negative values and enables 
the network to learn non-linear relationships more effectively.

The output matrix obtained due to the convolution process 
generally decreases in size at each step. The following formula 
can calculate the extent of this reduction:

Here:
•	 n[L] is the output size at the current layer.
•	 n[L−1] is the output size of the previous layer.
•	 p, padding value.
•	 f is the filter size used.
•	 s, stride value (scroll step).

After the convolution process, pooling is applied to reduce the size 
and preserve distinct features. Pooling is generally carried out by 
the maximum value selection (max pooling) method. This process 
increases the robustness of the network against noise and improves 
the model’s performance by reducing the computational load.

Flattening Layer
After the last convolution layer, the smoothing layer comes into 
play. This layer prepares the input data for fully connected layers 
by converting a multidimensional matrix into a one-dimensional 
vector. This enables easier processing of convolutional features 
in fully connected layers.

Fully Connected Layers and Egress
In fully connected layers, the input vector (X) is multiplied by 
each weight matrix (W), then the bias (b) is added. This process 
can be expressed mathematically as follows:

                                        Z=W⋅X+b

Here:
•	 Z is the predicted intermediate result.
•	 W is the weight matrix.
•	 X is the input vector.
•	 b, bias vector.

The result obtained is passed through activation functions, allowing 
the network to learn non-linear relationships, and transmitted to the 
output layer. In the output layer, a softmax or sigmoid activation 
function is usually used to generate classification results. The 
softmax function is used to calculate class probabilities in multi-
class classification problems; the sigmoid function is used in 
binary classification problems.

The forward propagation process involves a set of basic 
mathematical operations that enable a model to produce meaningful 
outputs from input data. This process is one of the cornerstones of 
deep learning models, especially Convolutional Neural Networks, 
structured and optimized to solve complex problems.

Backpropagation and Learning (Backpropagation)
The learning process of a deep learning model is based on 
minimizing the difference between the model’s predicted result 
(Y ̂) and the actual labels (Y). This difference is calculated through 
a loss function to measure and improve the model’s performance. 
For example:

The loss function is a measure that numerically expresses the 
errors made by the model. The parameters of the model (weights 
and biases) are optimized so that the output of the loss function 
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is minimized. This process is usually carried out with the help 
of backpropagation and optimization algorithms (for example, 
Stochastic Gradient Descent or Adam algorithm). Minimizing 
the loss function allows the model to better fit the real data and 
increase the accuracy of its future predictions.

In this context, the loss function constitutes one of the cornerstones 
of the model’s learning process, and the selection of a correct 
loss function is a critical element that directly affects the model’s 
overall performance.

Recent Work
In recent years, deep learning models have offered effective and 
innovative solutions for crack detection on concrete surfaces, and 
significant progress has been made in this field. Many studies in 
the literature use high accuracy rates and different architectural 
structures. For example, Guo and Hu achieved an 88.1% accuracy 
rate for detecting asphalt cracks on high-resolution (2978 x 
3978 pixels) images using YOLOv5 series pre-trained models 
[1]. However, the high processing costs of this method and its 
dependence on high-resolution images have brought serious 
limitations in large-scale applications.

Pang-Jo Chun and his colleagues used the Light Gradient Boosting 
Machine model for crack detection and compared their results with 
a pix2pix-based approach. This study extracted crack features 
through pixel values and geometric shapes and reached a high 
% accuracy rate of 99.7% [2]. However, this method’s complex 
structure and high processing power requirement create difficulties, 
especially in real-time applications.

Similarly, Yang Yu and colleagues evaluated existing crack 
detection techniques regarding processing costs and accuracy 
and proposed a method combining deep learning and the Enhanced 
Chicken Swarm algorithm [3]. This method attracts attention as 
an effective solution in image-based approaches. Andrushia and 
his team developed a U-Net model that performs pixel-level 
classification on concrete surfaces exposed to high temperatures. 
Although the model offers a complex structure with encoder and 
decoder components, it has limitations in terms of processing load 
and training time [4].

Chehri and Saeidi proposed a model for automatically detecting 
cracks in concrete bridges by combining IoT and deep learning 
techniques. This method provides significant efficiency in 
structural health monitoring processes [5]. By combining the 
YOLOv5 model with the Crack Feature Pyramid Network (Crack-
FPN), Zhao and his colleagues reduced transaction costs and 
offered a more effective method for feature extraction [6].

Munawar and colleagues analyzed 30 different crack detection 
models and compared them regarding accuracy, processing cost, 
and applicability. Their studies emphasized that simple and fast 
models are more suitable for large-scale and real-time applications 
[7-11].

In addition to the above-mentioned work, our proposed model 
is based on a lightweight CNN architecture that aims to reduce 
processing costs and provide high accuracy. While many studies 
require high-resolution images or complex architectures, this 
study offers a model optimized on low-resolution (128x128 pixels) 
images. The proposed model has only a four-layer CNN structure 
and offers an effective solution by combining forward and back 
propagation processes. This approach provides an economical 

and accessible solution by eliminating the need for expensive 
equipment.

These comprehensive studies on deep learning-based crack 
detection models reveal the advances in the field. However, our 
proposed work offers an important alternative to existing methods 
because it is low-cost and easily applicable. This model, which 
has a wide application potential, especially in structural health 
monitoring systems, makes a remarkable academic and industrial 
contribution [12-16].

Methods
Regularization and Optimization Process of the Model
Regularization techniques were used to minimize the difference 
between the proposed model’s training and testing performance 
and increase its generalization ability. In the initial tests, while 
the accuracy rate of the model in the training set reached 99% 
without applying regularization techniques, the accuracy rate 
in the test set remained at 91%, clearly showing that the model 
tended to overfit. In order to solve this problem, kernel and 
bias regularization coefficients in fully connected feed-forward 
layers were determined as 0.01. These regularization coefficients 
prevented the model’s parameters from growing excessively 
and provided a more balanced and universal learning process. 
Regularization reduced the difference in variance that could arise 
between both training and test sets, especially by limiting the 
high-capacity parameter sets of the model.

This approach increased the model’s generalization ability, resulting 
in a significant improvement in accuracy on the test set. Reducing 
the performance difference between training and validation sets 
contributed to the model providing more stable results in different 
data sets and significantly strengthened its generalization ability. 
The effective use of regularization techniques enabled the proposed 
model to exhibit a balanced performance in training and testing 
processes and eliminated the model’s overlearning problem. This 
arrangement is an important improvement process that increases 
the model’s success in practical applications [17-21].

Educational Process
The proposed model’s training process has been carefully optimized 
to increase generalization capacity and avoid overlearning. At 
the beginning of the training process, the model was trained 
for 10 epochs. However, this short training period causes the 
model to overfit the training set, especially in simple pattern 
recognition tasks. To prevent this situation, the number of epochs 
was increased to 50, allowing the model to be trained for longer.

The mini-batch method, which consisted of 32 data points used 
during training, allowed the model to update its parameters more 
frequently at each step. This approach enabled the training time to 
be managed efficiently and contributed to rapidly minimizing the 
loss function. The mini-batch method allowed the model to learn 
more stably by frequently making parameter updates.

During the training process, changes in the loss function were 
carefully monitored, and the performance in the validation set 
remained stable. An early stopping mechanism was unnecessary 
since there was no significant performance drop between the 
training and validation sets. This shows that the model is effectively 
optimized while avoiding overlearning [23, 24].

The results obtained regarding the training process are detailed in 
Table 1 below. The table shows the change in accuracy and loss 
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rates in the training and validation sets across epochs. These findings clearly demonstrate that the model exhibits stable performance 
during the training process, and the validation accuracy is close to the training accuracy. This indicates that the model’s generalization 
ability is strong.

Table 1: Training and Validation Accuracy and Loss Values
Epoch Training Accuracy (%) Verification Accuracy (%) Loss of Education Authentication Loss
10 95.2 93.8 0.124 0.135
20 97.4 96.5 0.073 0.081
30 98.3 97.9 0.048 0.053
40 98.7 98.2 0.032 0.037
50 98.9 98.3 0.021 0.028

Optimization Algorithms
In this study, Adam (Adaptive Moment Estimation) optimization 
algorithm was preferred to optimize the parameters of the model. 
Adam is an effective algorithm that speeds up the optimization 
process by adaptively adjusting the learning rate, generally 
resulting in higher accuracy rates. During the training process, 
the default Adam parameters provided by the Keras library were 
used. These parameters are as follows:
•	 Learning Rate: 0.001
•	 Beta_1: 0.9 (for momentum)
•	 Beta_2: 0.999 (for the mean squared momentum)
•	 Epsilon: 1×10-8  (to avoid values approaching zero when 

dividing)
The Adam algorithm combines the advantages of AdaGrad and 
RMSProp methods, providing a powerful optimization mechanism. 
While AdaGrad reduces the learning rate of frequently used 
parameters over time, RMSProp provides a balanced parameter 
update by increasing the learning rate of rarely used parameters. 
Combining these two approaches enables the Adam algorithm to 
provide an advantageous computational efficiency and accuracy 
solution on large data sets.

Additionally, the Adam algorithm allows the model to perform 
stably over a wide range of hyperparameters. This feature makes 
it possible to obtain stable results, especially on different data sets 
and model architectures. These advantages provided by the Adam 
optimization algorithm during the training process contributed to 
the rapid and effective completion of the model’s learning process, 
and a significant increase in accuracy rates was achieved [25-27].

Performance Evaluation
The model’s performance was comprehensively evaluated using 
the training, validation, and test sets accuracy metric. This metric 
reflects the importance of true positive (TP) and true negative (TN) 
classifications in crack detection on concrete surfaces. The model’s 
success in distinguishing cracked and non-cracked surfaces clearly 
demonstrated strong generalization capacity.

At the end of the training process, the model reached an accuracy 
rate of 98.9% in the training set and 98.3% in the validation set. 
These results showed that the model not only overfitted the training 
data but also performed well on the validation data. This consistent 
performance between training and validation sets proves that the 
model’s generalization ability is strong.

In detailed analyses performed on the test set, the model’s 
performance was evaluated using a confusion matrix and ROC 
curve (Receiver Operating Characteristic curve). The Confusion 
Matrix (Table 2) clearly demonstrates the correct classification 
(true positive and true negative) rates of the model, reflecting in 

detail the level of accuracy, precision, and error tolerance of the 
model [28, 29].

In addition, the model’s classification success was analyzed using 
the ROC curve (Figure 1). The ROC curve showed how accurately 
the model could distinguish positive and negative classes. The 
high area under the curve (AUC) showed that the model’s overall 
performance was effective, and the classification success was high.

In conclusion, the proposed model offered a stable and high-
performance approach to solving the problem of crack detection 
on concrete surfaces, exhibiting strong generalization capacity 
on both training and test data.

Table 2: Confusion Matrix
Real Cracked No Real Cracks

Prediction: Cracked 3,720 30
Prediction: No 
Cracks

25 3,725

The confusion matrix concretely reveals the prediction accuracy 
of the model on surfaces with and without cracks. Particularly 
low error rates (FN=25, FP=30) show that the model provides 
high precision and recall.

Figure 1:  ROC Curve

In addition, the accuracy performance of the model is shown 
graphically with the ROC curve (Receiver Operating Characteristic 
curve). The ROC curve reveals the classification success in detail 
by correlating the model’s true positive rate (TPR) against the 
false positive rate (FPR). This graphical analysis is critical for 
understanding how the model performs at different thresholds.
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In this study, the AUC (Area Under Curve) value calculated from 
the ROC curve was 0.99. The fact that the AUC is close to 1 
indicates that the model’s classification ability is close to perfect 
and that it performs very effectively in a critical problem such as 
crack detection. The high AUC value emphasizes that the model 
can accurately distinguish both positive and negative classes.

The ROC curve and AUC analysis show that the model 
demonstrates stable and reliable performance in crack detection 
on concrete surfaces. These analyses indicateanalyses indicate that 
the model can provide high accuracy and reliability in practical 
applications [30-39].

Results
This study aimed to develop an efficient and lightweight deep 
learning model to detect cracks on concrete surfaces. In the study, 
Convolutional Neural Network (CNN) architecture was applied 
and evaluated on a dataset consisting of 40,000 images in total. 
The dataset in question has been carefully prepared to cover 
different conditions of cracks in concrete surfaces, enabling the 
model to demonstrate robust and adaptable performance in real-
world applications. The proposed model’s simple structure and 
the dataset’s diversity have proven the model’s effectiveness in 
the crack detection task in different scenarios.

The developed CNN model was implemented using Python’s 
Keras library and other auxiliary modules. Thanks to a simple 
optimized architecture, the model achieved 97.8% accuracy in just 
five epochs, demonstrating that the model is both computationally 
efficient and high-performance. Input images were preprocessed 
by converting them to grayscale to reduce the computational load 
and maintain accuracy. Additional data augmentation was not 
applied because the dataset was already created from a pool of 
458 high-resolution images derived and augmented. This structure 
enabled the model to achieve a good generalization capacity 
without overlearning.

The proposed CNN architecture has a four-layer structure 
consisting of two convolution layers followed by two fully 
connected layers. This architecture balances simplicity and 
efficiency, providing an ideal solution for practical applications. 
During the training process, the model learned a total of 954,241 
parameters and these parameters were optimized using the Adam 
optimization algorithm. The Adam algorithm contributed to the 
model’s performance with its features of dealing with sparse 
gradients and adaptive learning rate. Additionally, Binary Cross-
Entropy was used as the loss function and this function provided 
a solution suitable for the binary classification structure (crack 
present/absent) of the crack detection problem.

In order to better interpret the results, segmentation techniques 
were used to localize and highlight cracked areas on concrete 
surfaces. In this context, using the pixel thresholding method, 
crack areas in the input images were detected and segmentation 
was performed. The model’s performance was evaluated with high 
recall, precision and F1 scores, and the results demonstrated the 
adequacy and robustness of the proposed approach in detecting 
cracks on concrete surfaces.

However, despite the strong performance of the model, there are 
some limitations. First, the model is not designed to analyze the 
morphological properties of cracks, such as depth or width. In 
addition, for the model to work effectively, the images used must 
be free of external noise such as shadows, stains or debris. Such 
noise can mimic crack patterns, leading to misclassifications. 

Another limitation arises from the structure of the dataset: The 
images were mostly taken from close range, and decreases in the 
performance of the model can be observed in images taken from 
different angles or longer distances. Additionally, the model is 
only specialized to detect cracks in concrete surfaces and is not 
generalized to other materials or structural surfaces.

The dataset used in this study does not include morphological 
characteristics of cracks such as depth, width, or shape. This limits 
the model’s ability to detect hairline cracks (e.g., hairline cracks) 
in low-light conditions. This limitation is due to the low resolution 
of some images in the dataset. The dataset has been deliberately 
kept lightweight to make the model computationally efficient and 
suitable for economical use. However, this may pose a potential 
risk, especially in critical safety requirements, by reducing the 
likelihood of detecting micro-level cracks.

Future Research Field
In order to overcome the limitations identified in this study 
and improve the performance of the model in a wider range of 
applications, future research should focus on the following key 
areas:

Creating a larger, more comprehensive dataset that includes 
more hairline crack samples and different light conditions can 
significantly increase the robustness of the model. Synthetic cracks 
or high-resolution annotated images can be used to augment 
such a dataset. Expanding the dataset will strengthen the model’s 
generalization capacity in different scenarios.

The model needs to be expanded so that it is not only limited to 
crack detection, but also analyzes the morphological characteristics 
of cracks, such as width, depth, and growth patterns. Such 
development could contribute to assessing the long-term effects 
of cracks by providing additional information in structural health 
monitoring.

More effective preprocessing steps must be implemented to 
prevent external noises such as shadows, stains, or debris from 
negatively affecting model performance. Adaptive thresholding, 
edge detection, and other advanced image-processing techniques 
can be used in this context. Such techniques can enable the model 
to perform more accurately in real-world conditions.

Expanding the dataset to include concrete surfaces and cracks in 
other materials, such as asphalt, metal, etc., could increase the 
model’s versatility. Such an extension would enable the model to 
be applied to a broader range of structural integrity assessments.

Methods should be developed to correct perspective distortions in 
images taken from different angles. This advancement will allow 
the model to perform consistently across a variety of imaging 
scenarios. In particular, applying methods such as perspective 
transformations and camera calibration can increase the model’s 
flexibility.

As a result, the proposed CNN-based crack detection model 
exhibits high accuracy and computational efficiency in its current 
form but will become applicable in much wider contexts by 
eliminating its limitations. Such future research will enable the 
model to be used as a powerful tool in the construction industry’s 
structural health monitoring and maintenance processes.
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