Journal of Clinical Case Studies Reviews & Reports

Review Article Open de Access

Correlative Indexes in Prediction of Survival in Refractory Metastatic Lung Adenocarcinoma. The Role of Liquid Biopsy to Assess Survival

M Nezami* and Asra Siddiqui

Sahel Oncology, Orange Coast Medical Center of Hope, USA

*Corresponding author

M Nezami, Sahel Oncology, Orange Coast Medical Center of Hope, USA

Received: June 11, 2025; Accepted: June 18, 2025; Published: June 24, 2025

Keywords: Metastatic Lung Adenocarcinoma, Liquid Biopsy

Background

In refractory metastatic lung adenocarcinoma, liquid biopsy can provide valuable insights into survival, particularly in identifying resistance mechanisms and monitoring treatment response. For example, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) can reveal EGFR mutation status. Heterogenous tumors are defined based on their genomic signature consisting of a variety of biomarkers. Aa major problem, remains as we are unable to translate a "target response" to a "clinical response". This problem would be even further complicated by implementing targeted therapies that can cause resistance by inducing mutations in the DNA as well as enhancing the process called "selective advantage" of the resistant cells. Since the resistance of the tumor correlates with the patient's survival, using liquid biopsy can detect early resistance and therefore predict prognosis.

Methods and Materials

All three cases were consented and treated according to the protocols in an off trial of a phase II clinical study approved by IRB. Patients received Multi targeted epigenetic therapy consisting of IV PEG-Quercetin and polyphenols, compounded by FDA approved compounding pharmacy. Liquid biopsies were obtained before and post therapy through Guardant 360 Laboratory.

Case Reports

Here we review three (3) cases of non small cell lung cancer and review their outcome. Case one was status post cytotoxic drugs, and radiation and surgery with progressive disease and advanced dissemination. We showed eradication of CTC which carried c MYC overexpression in two weeks post implementation of anti VEGF therapy. Patient was followed closely and we showed improved surrogate markers for her survival, documented by complete eradication of CTC and overall survival, which translated to minimum residual disease with no FDG avid tumor in the tumor.

Second case was a lung adenocarcinoma with negative KRAS and EGFR and ROS1, in tissue biopsy, but positive KRAS/c MET and ROS1 mutations in liquid biopsy, who presented with brain metastatic lesions, and was treated with Anti VEGF therapy, showing stable disease after 6 months, with reduced c

DNA MAF of KRAS, c MET, ROS1. He did not receive cytotoxic chemotherapies with overall survival benefit.

Third case was a lung adenocarcinoma status post failure of three lines of therapies, chemotherapy along with antiangiogenic therapies, and immune therapies, presented with disseminated disease and liver and bone and peritoneal metastatic disease. She was treated with epigenetic therapies independently for over a year, and in combination with metronomic chemotherapy. She passed 7 years of survival with minimum residual disease with no FDG avid activity in all her chest (mediastinum, lungs, LNs) and liver and bone lesions, at the time of this paper. She has no circulatory DNA or CTC identified at this time.

Conclusion

Implementation of liquid biopsy was able to predict survival in patients with stage four lung adenocarcinoma treated with both anti VEGF and Epigenetic therapies. Specifically, patients with EGFR or KRAS mutations showed benefit from therapies aimed at actionable targets. We propose that liquid biopsies tracking circulating tumor cells (CTC) and circulating DNA (ct DNA) be used universally in all patients with refractory disease, regardless of treatment received upon diagnosis [1-21].

References

- 1. Mariam Jamal-Hanjani, Sergio A Quezada, James Larkin, Charles Swanton (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21: 1258-1266.
- 2. Rich JN (2016) Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore) 95: S2-S7.
- 3. Rebecca A Burrell, Nicholas McGranahan, Jiri Bartek, Charles Swanton (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501: 338-345.
- 4. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14: 275-291.
- 5. Luis A Diaz Jr, Richard T Williams, Jian Wu, Isaac Kinde, J Randolph Hecht, et al. (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486: 1-4.
- 6. Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates. Nat Med 20: 342-344.
- 7. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour

J Clin Stud Rev Rep, 2025 Volume 7(6): 1-2

- heterogeneity: a looking glass for cancer? Nat Rev Cancer 12: 323-334.
- Bert Vogelstein, Nickolas Papadopoulos, Victor E Velculescu, Shibin Zhou, Luis A Diaz Jr, et al. (2013) Cancer genome landscapes. Science 339: 1546-1558.
- Neelakantan D, Drasin DJ, Ford HL (2015) Intratumoral heterogeneity: Clonal cooperation in epithelial-tomesenchymal transition and metastasis. Cell Adh Migr 9: 265-276.
- 10. McGranahan N, Swanton C (2017) Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168: 613-628.
- 11. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11: 220-228.
- 12. Alvin J X Lee, David Endesfelder, Andrew J Rowan, Axel Walther, Nicolai J Birkbak, et al. (2011) Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 71: 1858-1870.
- 13. Rama K R Mettu, Ying-Wooi Wan, Jens K Habermann, Thomas Ried, Nancy Lan Guo (2010) A 12-gene genomic instability signature predicts clinical outcomes in multiple cancer types. Int J Biol Markers 25: 219-228.
- 14. Gerlinger M, Swanton C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103: 1139-1143.

- 15. Mariam Jamal-Hanjani, Gareth A Wilson, Nicholas McGranahan, Nicolai J Birkbak, Thomas B K Watkins, et al. (2017) Tracking the Evolution of Non-Small-Cell Lung Cancer. N Engl J Med 376: 2109-2121.
- Ludmil B Alexandrov, Serena Nik Zainal, David C Wedge, Samuel A J R Aparicio, Sam Behjati, et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415-421.
- 17. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci U S A. 110: 1999-2004.
- Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108: 479-485.
- 19. Haber DA, Settleman J (2007) Cancer: drivers and passengers. Nature 446: 145-146.
- Akiko Tatematsu, Junichi Shimizu, Yoshiko Murakami, Yoshitsugu Horio, Shigeo Nakamura, et al. (2008) Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res 14: 6092-6096.
- 21. Kazuya Taniguchi, Jiro Okami, Ken Kodama, Masahiko Higashiyama, Kikuya Kato (2008) Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci 99: 929-935.

Copyright: ©2025 M Nezami. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Clin Stud Rev Rep, 2025 Volume 7(6): 2-2