Journal of Clinical Case Studies Reviews & Reports

Research Article Open Ö Access

Retrospective Review of 374 Samples, Circulating DNA; as a Biomarker Assay to Support Clinical Management in Solid Tumors Treated With Multi Targeted Epigenetic Therapy (MTET)

MA Nezami

President and CEO, Sahel Oncology LLC, USA

ABSTRACT

Here in this abstract we retrospectively review preliminary findings on 374 samples of circulating DNAextracted from 173 patients treated by multitargeted epigenetic therapy (MTET), which is a combination of natural histone deacetylase inhibitors and DNMT methyl transferase inhibitors. This therapy could dynamically interrupt the expression of altered genes, in a variety of solid tumor types, both in invitro and invivo models. We hypothesize that serial monitoring of the circulating DNA provides a feasible option for therapeutic decisions making based on presence of the driver genes in these cases. We also were able to track the antineoplastic response in these group of patients by monitoring their tumor circulating DNA mutated allele fractions and propose a direct correlation with interim epigenetic therapy effectiveness.

*Corresponding author

M.A. Nezami MD, President and CEO, Sahel Oncology LLC, Orange Coast Medical Center of Hope Inc. 496 Old Newport Blvd. #7, Newport Beach, CA 92612, Tel: (949) 515 4673(HOPE); E-mail: amnezami@yahoo.com

Received: September 10, 2019; Accepted: September 16, 2019, Published: September 21, 2019

Keywords: Epigenetic, Liquid Biopsy, Circulating DNA

Introduction

Our current understanding of cancer biology, and the epigenetic science has transformed our ability to deliver therapies more precisely to the genetic and epigenetic targets driving the tumor growth and disrupting it's behavior. In concert with our efforts to regulate the transcription of altered genes involved in tumor biology, we have emphasized a range of epigenetically regulated driver genes that control the tumor key molecular targets, involved with it's growth and metastasis [1]. Statistical analysis on epigenetically driven targets had shown improved outcome compared to historical control [2].

Unfortunately epigenetic targets are dynamically expressed and no single drug can clinically be used to target the epigenome as drugs have static mechanism of action [3]. This limiting factor has caused researchers in the field to admit their failure in development of an epigenetic formula or product that has significant clinical impact in majority of cancer types, mainly solid tumors. As a result, the efforts on epigenetic drug development has shifted in recent years to hematological cancers, such as lymphomas and leukemias where these drugs can make a difference in the clinic [4-13].

We earlier had shown that a combination of histone and DNA selective demethylators used in a specific protocol, was able to significantly produce meaningful results in our experimental therapeutic models. Although cytotoxic therapies, and targeted drugs have been studied in the recent years to correlate with

such relevance, using liquid biopsy in different types of cancer, including lung, lymphoma, renal cancer, breast cancer, colon cancer, ovarian cancer, this is to our knowledge the first time this correlation with epigenetic drugs have been explored [14-28].

Method and materials

173 cases treated by MTET were collectively selected without selection bias. These cases were treated all in associated clinics of Medical centers of Hope.

The biomarker assays were performed through liquid biopsy through 374 samples. Amongst them 300 samples were positive for circulating DNA. 74 were negative. 66 patients had one sample and 63 patients had at least two samples (Table 1).

Dr. Nezami G360 data			
	Number of tests	Number of patients	
374 samples sent through the end of May 2018 on 173 patients. More	1	66	
	2	63	
	3	17	
	4	13	
than 1/2 patients in the practice	5	9	
(61%) have had serial testing (2 or more G360 tests).	6	2	
	7	2	
	8	1	
	total	173	

J Clin Stud Rev Rep, 2019 Volume 1(1): 1-3

Citation: M.A. Nezami MD (2019) Retrospective Review of 374 Samples, Circulating Dna; as A Biomarker Assay to Support Clinical Management in Solid Tumors Treated With Multi Targeted Epigenetic Therapy (MTET). Journal of Clinical Case Studies Reviews & Reports. SRC/JCCS-102. DOI: doi.org/10.47363/JCCSR/2019(1)102

Other and misc. categories	Other/MISC	Count of cancertype
	Anal Squamous Cell Carcinoma	2
	Anaplastic Thyroid Carcinoma	1
	Cencer, Other	2
	Carcinoma of Unknown Primary (CUP)	7
	Glioblastoma	3
	Glioma	1
	Neuroendocrine Carcinoma	1
	Other	17
	Squamous Cell Carcinoma	1
	Thyroid Carcinoma	4
	Grand Toatl	42

Detection rate was 86 percent. The most and least common tumor types: 134 cases had breast cancer. 4 had glioblastoma. 20 cases carried BRCA alterations. In average 64 percent of such cases were stage four and had no other viable options left.

Results

Serial monitoring of mutated allele fraction in circulating DNA analysis is feasible and clinically meaningful, when epigenetic drugs are applied in clinic and show positive clinical outcome based on such biomarker driven approach to epigenetic targets.

Further analysis as of April of 2019, for 491 cases is currently on going and preliminary findings are consistent with this article with common genetic mutations reflected in breast cancer responding to the epigenetic therapies (Tables 2 & 3).

Dr. Nezami G360 data		
	Cancer Category	Count of samples
Samples to date by cancer type, through end of April, 2019	BLADDER	7
	BONE/ SOFT TISSUE	14
	BREAST	186
	CERVIX	5
	ENDOMETRIAL/ Uterine	11
	GI	59
	HEAD NECK	16
	KIDNEY	7
	LUNG	34
	PROSTATE	50
	Misc/Other*	42
	OVARIAN	34
	SKIN	26
	Grand Total	491

Dr. Nezami G360 data		
	Cancer Category	Count of samples
common gene mutations breast cancer samples (genes identified 10 or more times in breast cancer	Grand Total	644
	PIK3CA	61
	TPS3	44
	ERBB2	36
	ESR1	32
samples to	NF1	32
date)	EGFR	27
	ARID1A	26
	KIT	23
	MYC	22
	CCND1	21
	BRCA1	20
	BRCA2	20
	FGFR1	20
	MET	20
	APC	18
	RAF1	16
	FGFR2	15
	PDGFRA	14
	BRAF	12
	GATA3	12
	CCNE1	11
	CDK6	10
	NOTCH1	10

ERBB2	36
CNV	14
SNV	22

4/22 SNVs: activating

We conclude that such biomarker based target identification and selective epigenetic approach in cancer therapy could replace the current standard of care which is mainly blind shot and type specific.

Acknowledgement

Christian Klowsowski, Steven Jeffrey Hager; Research Cancer Institutes of America, Sahel Oncology, Newport Beach, CA; Guardant health, Genomic Specialist, Medical Affairs, Redwood City, CA; California Cancer Associates for Research and Excellence, Fresno, CA.

References

- 1. M.Nezami MD, Steve Hager DO, Christian Klowski (2019) "Retrospective review of 374 sample, circulating DNA; to support clinical management in solid tumors treated with multi targeted epigenetic therapy(MTET)", Journal of Cancer therapy(JCT).
- 2. Mohammad A. Nezami, Christian Klowsowski, Steven Jeffrey Hager (2019) "Predictive molecular tumor response through circulating DNA (cDNA) measurements and correlation with established prognostic markers in a series of solid tumors treated with multitargeted epigenetic therapy (MTET)" J

J Clin Stud Rev Rep, 2019 Volume 1(1): 2-3

- Clin Oncol 37: e13015.
- 3. Weixing Feng, Zengchao Dong, Bo He, Kejun Wang, Fenget (2012) Analysis method of epigenetic DNA methylation to dynamically investigate the functional activity of transcription factors in gene expression. BMC Genomics 13:532.
- David Sermer, Laura Pasqualucci, Hans-Guido Wendel, Ari Melnick&Anas Younes (2019) Emerging epigeneticmodulating therapies in lymphoma". Nature Reviews Clinical Oncology 16: 494-507.
- 5. Lunning, M. A (2015) Mutation of chromatin modifiers; an emerging hallmark of germinal center B cell lymphoma. Blood Cancer J 5: e361.
- Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, et al. (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476: 298-303.
- Morin RD, Johnson NA, Severson TM, Mungall AJ, An J. D, et al. (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B cell lymphomas of germinal-cell origin. Nat. Genet 42, 181-184.
- 8. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, et al. (2011) Analysis of the coding genome of diffuse large B cell lymphoma. Nat. Genet 43: 830-836.
- 9. Laura Pasqualucci,1,2 David Dominguez-Sola,1 Annalisa Chiarenza,1 Giulia Fabbri,1 Adina Grunn, et al. (2014) Inactivating mutations of acetyltransferase genes in B cell lymphoma. Nature 471: 189-195.
- Chambwe N1, Kormaksson M, Geng H, De S, Michor F, et al. (2014) Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood 123: 1699-1708.
- 11. Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, et al. (2015) Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics 7: 215-235.
- 12. Clara Nervi, Elisabetta De Marinis, and Giovanni Codacci-Pisanelli (2015) Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics 7: 127.
- 13. Sharma MR, Maitland ML, Ratain MJ (2015) RECIST: no longer the sharpest tool in the oncology clinical trials toolboxpoint. Cancer Res 72: 515.
- 14. Aggarwal C, Thompson JC, Black TA, Katz SI, Fan R, et al. (2018) Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol 5: 173-180.
- David M. Kurtz, Florian Scherer, Michael C. Jin, Joanne Soo, Alexander F.M. Craig, et al. (2018) Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma", Journal of Clinical Oncology 36: 2845-2853.
- 16. Banumathy G, Cairns P (2010) Signaling pathways in renal cell carcinoma. Cancer Biol Ther 10: 658-64.
- 17. Austrup F, Uciechowski P, Eder C, Bockmann B, Suchy B, et al. (2000) Prognostic value of genomic alterations in minimal residual cancer cells purified from the blood of breast cancer patients. Br J Cancer 83: 1664-1673.
- 18. Zhao B, Lee SM, Lee HJ, Tan Y, Qi J, et al. (2014) Variability in assessing treatment response: metastatic colorectal cancer as a paradigm. Clin Cancer Res 20: 3560-3568.
- Garlan F, Laurent-Puig P, Sefrioui D, Siauve N, et al. (2017)
 "Early Evaluation of Circulating Tumor DNA asMarker of Therapeutic Efficacy in Metastatic Colorectal Cancer Patients (PLACOL Study). Clin Cancer Res 23: 5416-5425.
- Kurtz DM, Scherer F, Newman AM, Dührsen UHüttmann A, Meignan M, et al. (2018) Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol 36: 2845-2853.

- 21. Nannan Guo, Feng Lou, Yongfu Ma, Jie Li, Bo Yang, et al. (2016) Circulating tumor DNA detection in lung cancer patients before and after surgery" Scientific Report 6.
- 22. Sorensen BS1, Wu L, Wei W, Tsai J, Weber B, et al. (2014) Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations, in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer 120: 3896-3901,
- 23. Murtaza M1, Dawson SJ, Tsui DW, Gale D, Forshew T, et al. (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497: 108-112,
- 24. Bast RC Jr1, Xu FJ, Yu YH, Barnhill S, Zhang Z, et al.(1998) CA 125: The past and the future. Int J Biol Markers 13:179-187.
- 25. Koprowski H, Herlyn M, Steplewski Z, Sears H F (1981) Specific antigen in serum of patients with colon carcinoma. Science 212: 53-55
- 26. Tissot C, Toffart AC, Villar S, Souquet PJ, Merle P. et al. (2015) Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. European Respiratory Journal 46: 1773-1780.
- Spindler KL, Pallisgaard N, Vogelius I, Jakobsen A (2012) Quantitative Cell-Free DNA, KRAS, and BRAF Mutations in Plasma with Cetuximab and Irinotecan from Patients with Metastatic Colorectal Cancer during Treatment. Clin Cancer Res 18: 1177-1185.
- Chiya Oshiro, Naofumi Kagara, Yasuto Naoi, Masafumi Shimoda, Atsushi Shimomura et al. (2015) PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Research Treat 150: 299-307.

Copyright: ©2019 M.A. Nezami. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Clin Stud Rev Rep, 2019 Volume 1(1): 3-3