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ABSTRACT

A comprehensive understanding of the groundwater dynamics of a transboundary aquifer system is highly needed for any successful transboundary
cooperation policy. The present paper addresses the necessity of identifying specific cooperation problems which evolve out due to the improper handling
and treatment of isotopic data of these hydro geological attributes and prevalent use patterns.

The main reasons that render the use of the treated isotopic data illegal, incomparable and have thus lost some of its power as an effective tool is the
ignorance of both time and space variations in treating isotopic data of two major aquifer systems in Africa namely; Nubian Sandstones Aquifer System
(NSAS) as well as North-Western Sahara Aquifer System (NWSAS).

For any quantitative application of the stable isotopes labeling of waters a geo-hydrological tool, it is necessary to establish how well the isotopic composition
of a groundwater source is defined in a supposedly homogenous geographic setting. Both time and space variations were not considered in all isotopic data
of both aquifer systems; NSAS and NWSAS, where some of the sample were taken in 1968,1971,1972 other in 1982,1995 and 2000,2006,2010 and were all in
some cases combined together in one diagram regardless the significant difference in time or lag-time i.e. not one month lag ,but years. This situation would
therefore be misleading and represents one of the most obvious inaccuracies as well. On the contrary, one might also argue this inaccuracy to be negligible

or at least of little importance, due to spatial and temporal reasons. In either case it seems to be sensible to at least address the respective mismatches.
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Introduction

The Nubian Sandstone Aquifer System (NSAS) is considered one
of the most important groundwater basins in North Africa and
the Arab Region. Its large areal extent across the borders of four
African Countries; Egypt, Sudan, Libya, and Chad, along with the
huge groundwater reserves contained in its various water bearing
formations, imply serious consideration, towards optimizing the
utilization of this most vital natural water resource. Whereas, The
North-West Sahara Aquifer System(NWSAS) often referred to as
the Systéme Aquifére du Sahara Septentrional (SASS) is one of
major North African transboundary groundwater basins in Africa.
The huge groundwater reservoir of the North-West Sahara Aquifer
System (NWSAS) is being shared by three North African countries
of Algeria, Tunisia and Libya. Both aquifers constitute the major
groundwater resources in the forgoing countries.

Methodology and techniques
Palaco climatic condition were assessed from the isotopic
composition of groundwater samples taken from the foregoing

water bearing formations using stable isotopes of O-18, H-2,
and radioactive isotopes of H-3 and C-14. Altitude effect as well
as effect of depth on isotopic composition of both aquifers were
quantified. A statistical package “SSC-Stat v2. nn” developed
by Statistical Center of Reading University as well as isotope
hydrology program ‘Diagram” were acknowledge ably used for
the analysis of isotopic data.

Review of the present Case studies

Nubian Sandstone Aquifer System (NSAS) in Sinai Peninsula
The Nubian Sandstone Aquifer System (NSAS) in Sinai
Peninsula; exposed at the foothills of the Precambrian basement
outcrops in Sinai and in the Negev desert and underlies large
segments of the central Sinai Peninsula and the southern part of
the Negev desert (Figure.l) [1,2]. The NSAS is composed of
thick (up to 3 km in basin center) sequences of unfossiliferous
continental sandstone with intercalated shale of shallow marine
and deltaic origin, unconformably overlying basement rocks [3-5].
The NSAS is composed of unfossiliferous continental sandstone
of Lower Cretaceous age intercalated with shale of shallow marine
and deltaic origin of the Malha Formation in central and southern
Sinai and marine limestone of the Risan Aneiza Formation in
northern Sinai [6,7]. The Malha and the Risan Aneiza Formations
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are part of the Nubian Sandstone group that rests unconformably on the basement rock units and is overlain by calcareous sequences
of Cenomanian to Upper Eocene age (Figure 1) [1,4]. There is a general consensus that the There is a general consensus that the
paleoclimatic regimes of the North African Sahara Desert alternated between dry and wet periods throughout the Pleistocene Epoch
and that it was during these wet periods that the NSAS was recharged. However, the nature of these wet periods remains a subject of
debate. Two main hypotheses have been advocated to address the origin of the fossil water of the NSAS: (1) intensification of paleo
westerlies during glacial periods or (2) intensifi-cation of paleo monsoons during interglacial periods [8-23].
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Figure 1: Location map for groundwater samples and south—North cross section [18]. Groundwater samples collected for isotopic
analysis by A. Abouelmagd et al., were conducted in January and June of 2010 from 12 drilled wells and from the Ayun Musa spring,
which taps the NSAS and from three open wells in the fractured base-ment as shown in Figure 2 .The inspection of Figures 1 and 2
reveals that samples are widely distributed and represent totally different elevation as far as altitude of recharge areas is concerned
and totally different depth as far as groundwater depth is concerned (cross section A-A of Figure 1).
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Figure 2: A base map false-color Landsat TM image showing (1) our groundwater sample locations from wells and a spring tapping
the NSAS (blue triangles) and from wells tapping the fractured basement aquifer (red triangles); (2) groundwater sample locations
for open wells tapping the NSAS in the recharge areas (green triangles); (3) groundwater levels (dashed lines) and flow directions
(black arrows); and (4) 62H value (yellow box: upper), adjusted 14C model age (yellow box: lower) [24,25]. Also shown is a graphical
representation for polygons (outlined by red lines) defined by the Thiessen method that was applied to interpolate present-day mean
weighted annual temperature from meteorological stations (purple cross) to the surrounding areas including the Nubian Sandstone
Aquifer outcrops.

Table 1: Sample locations, well information, O and H isotopic compositions, and tritium activities for groundwater samples
from wells tapping the NSAS and the fractured basement in Sinai [18].

1D Name Latitude Longitude Aquifer/ TD® DWL? | TDS® &°H° I ON I5e
N E Well (m) (m) (mg/L) | (%o) (%o0) TU Group

SN4-1 Arif El Naga 2 | 30°18.21’ 34°26.30' NSS/D 870 271 3810 —-49.3 | —7.62 - I
SN4-2 El Themed 2 | 29°40.80’ 34°18.20" NSS/D 747 376.8 1830 =523 =7.7 - I
SN4-3 El Hasana 3 30°26.99 33°51.06’ NSS/D 1200 200 3260 =51.6 | —7.19 — I
SN4-4 | Sudr El Hetan 3 | 29°58.70’ 33°16.95' NSS/D 1040 270 1740 =53 —7.85 - I
SN4-5 El Rueikna 3 | 29°08.06’ 33925.35' NSS/D — 55.6 480 -333 | —5.89 - 11
SN4-7 El Kuntella3 | 30°00.38' 34°42.04' NSS/D 1121 3534 1827 —63.1 | —8.85 — I
SN4-8 Nekhel 5 29°57.27 33°46.08' NSS/D 1200 200.6 1622 -61.2 | —8.81 - I
SN3-3 Mekatab 3 28°47.71" 33°26.89' NSS/D 366 49.7 953 —24.1 | —4.84 b1.0 11
SN3-4 Nadya El Soda | 28°46.55' 33°31.35' NSS/D 63 — 934 248 | 493 | 2.78 £0.29 11
SN3-5 Haroun 28°50.37 33°42.41' FB/O 31 29.7 827 213 | —4.13 | 242+0.27 11
SN3-6 Halwagy 28°38.33' 33°59.62' FB/O — 30 868 -18.7 | =3.36 | 2.55+0.30 1I
SN3-7 Dir El Banat 28°42.00’ 33°38.80’ FB/O - — 675 —22.7 | —4.54 | 3.04+£0.28 11
SN3-8 Regwa 12 28°26.05' 33°29.59' NSS/D - 18.4 622 —34.5 | -5.72 bl.0 1I
SN3-9 Ayun Musa 29°52.28' 32°38.03' NSS/S n/a n/a 2778 -42.9 | —6.53 b1.0 I
SN3-10 El Berouk 4 30°11.60' 33°42.58' NSS/D 955 137 2682 =729 | —9.59 bl1.0 I
SN3-11 | Erirah El Far4 | 30°02.35’ 33°20.15' NSS/D 1250 - 2215 —55.6 -8 bl.0 I

Abbreviations: NSS: Nubian Sandstone; FB: fractured basement; D: drilled well; O: open well; S: spring; TU: tritium unit.

a Data collected from field work and from JICA (1999).

b Western Michigan University geochemical labs.

c Analyzed at Isotech Laboratories, Champaign, Illinois.
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North-Western Sahara Aquifer System (NWSAS)

The North-Western Sahara Aquifer System (NWSAS) often
referred to as the Systéme Aquifére du Sahara Septentrional
(SASS) is one of major North African transboundary groundwater
basins in Africa. The huge groundwater reservoir of the North-
West Sahara Aquifer System (NWSAS) is being shared by three
North African countries of Algeria, Tunisia and Libya (Figure
1).The NWSAS covers an approximately half the size of the
Nubian Sandstone Aquifer System, shared by Egypt, Sudan,
Libya and Chad and it is predicted to cover around 1 million km?
and reaching a scale of 1,800 km from east to west and 900 km
from north to south. The NWSAS can be categorized as a multi-
layered system of aquifers which embodies a huge stock of non-
renewable, fossil water. It displays a mostly porous and fissured
/ fractured structure. The geological structure determines the
aquifer’s recharge infiltration rate and the velocity of groundwater
flows in time and space. Among its different layers, two have to be
distinguished as being of major size and importance. The so called
Continental Intercalaire (CI) is located on the lower level (Figure
2). It has a thickness of many hundreds of meters and is found in
depths ranging from around 400 up to 2,000 meters below ground.
According to Besbes et al. the CI contains a set of layers with very
differing lithology, comprising mainly continental sandstone in
alternation with marine limestones and clay formations (Figure
2). NWSAS being identified as type “F” according to Eckstein
and Eckstein, and was thus considered as unrelated to any surface
body of water, disconnected from the hydrological cycle, and
devoid of any meaningful recharge. However the present study
was designed to reveals the real situation of NWSAS and whether
it is a renewable or non-renewable water resource

Figure 1: Groundwater flow dynamics in the North-West Sahara
Aquifer System
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Figure 3: Location map and areal extent of North-Western Sahra
Aquifer System (NWSAS)

Figure 4: East-West lithostratigraphic cross section along the
three countries (OSS internal report)

Table 2: Isotopic data of North Western Sahara Aquifer System (NWSAS)(OSS Int. Report)

Code Name of water point Date Aquifer 30 H 4C % BC%.
15.0.16 Hassi Maroket 66 L 8 27/11/69 ind (Sa) 1.0 0.7 -5.6
15.0.17 Hassi Maroket 66 L 9 01/12/70 ind (Sa) -5.7 1.0+0.1
14.14.16 | Hassi Enfil P n°5 27/03/69 ind (Sa) -6.0 -58 59.6 +4.4 -5.1
13.0.0 Fogg. Amghaier 26/03/69 ind (Sa) -7.9 -64
(Timimoun)
CF Terr. Aviation 01/12/70 ind (Sa) -8.3 30.9 £0.5 -6.5
(Timimoun)
8.0.0 Foggara Adrar 24/03/69 ind (Sa) -7.0 6 60
9.0.0 Ferme expale Adrar 25/03/69 ind (Sa) -6.1 -52
CF Shell - Sonatrach-Adrar 27/04/69 ind (Sa) -7.1 -54
CF Adrar 01/12/70 ind (Sa) -6.5 244+0.5 -8.7
CF Adrar 04/04/68 ind (Sa) -6.8
CE Adrar 28/04/68 ind (Sa) -6.7
CF Adrar 23/04/68 ind (Sa) -7.1 -61
CF Bou Ali 01/12/70 ind (Sa) -8.7 223+04 -8.8
CF Bou Ali 28/04/68 ind (Sa) -1.7
CF Bou Ali 28/04/68 ind (Sa) -7.9
CF C.A.S (Reggane) 01/12/70 ind (Sa) 33.2+£2.5
CF Reggane 14/04/68 ind (Sa) -7.9
CF Reggane 01/11/71 ind (Sa) 335425
CF OCI, Reggane 14/04/68 ind (Sa) -7.4
CE Fogg. Beb Drao, Aoulef 14/04/68 ind (Sa) -7.4 -58
El Arab
CF Fogg. Beb Drao, Aoulef 01/12/70 ind (Sa) -7.4
El Arab
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51.0.0 Tit 101 01/14/71 ind (Sa) -8.0 -60
51.0.1 Tit 102 01/11/71 ind (Sa) 36.0 0.6
CF Hydraulique In Salah 01/12/70 ind (Sa) -8.4 21.2+1.0 -10.2
CF In Salah 14/04/68 ind (Sa) -8.3 -64
CF Foggara Ez Zoua 13/04/68 ind (Sa) -9.6
CF Foggara Gentour 26/03/69 ind (Sa)+ CT (SC) -6.6 -57
(Timimoun)

Findings and discussion

Nubian Sandstones Aquifer System (NSAS)

The range of stable isotopes contents(Table 1) is interrupted with
2H ranging from -18 (%o) to -72 (%o) and O-18 from -3 (%o)
to -9.59 (%o) as a result of ignoring altitude effect defined by
Gat, J.R. (1980) as ” On the windward side of a mountain, the
d"®0O and dD values of precipitation decrease with increasing
altitude”. Typical gradients are -0.15 to -0.5 %o per 100m for
180, and -1.5 to -4 %o per 100m for D was totally ignored in
the foregoing study. Accordingly, the NSAS exhibits an altitude
effect by which, mixing also occurred between waters precipitated
at different altitudes, this could also account for the observed
difference in stable isotopes and confirms that the aquifer receive
a considerable fraction of modern water recharging the aquifer
under consideration (Figure 5). A solid criterion indicating
altitude effect was established using the same data of Table 1
as shown in Figure.5. A further scrutiny to Table 1 taking into
consideration column of latitudes versus isotopic composition,
it can be concluded that also “latitude effect (in which The d'*O
and dD values decrease with increasing latitude because of the
increasing degree of “rain-out”) was not taken into consideration
and represent mismatches. On the contrary, one might also argue
this inaccuracy to be negligible or at least of little importance,
due to spatial and temporal reasons. In either case it seems to be
sensible to at least address the respective mismatches.

North-Western Sahara Aquifer System (NWSAS)

For any quantitative application of the stable isotopes labelling of
waters a a geo-hydrological tool, it is necessary to establish how
well the isotopic composition of a groundwater source is defined in
a supposedly homogenous geographic setting. We have to consider
both time and space variations [26].The inspection of Table 2
reveals that some of the sample were taken in 1968,1971,1972
other in 1982,1995 and were all in some cases combined together
in one diagram regardless the significant difference in time or
lag-time i.e. not one-month lag, but years.
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Figure 5: Altitude effect expressed as cross plot of O-18 versus
elevation for NSAS in Sinai (Originated from the present author)

Furthermore, In a given region, the d-values of precipitation
at higher altitudes generally will be more negative in what is
known as “Altitude effect”. So combining data from Algeria and
Tunisia with no differentian will lead to a total ignorance of one
of the major effect on isotopic data ..the same fact remains true
for variation in depth of water sample (Figure 6).The inspection

of Figure 4 of litho-stratigraphic sequence indicates that a
considerable portion of aquifer is confined with mean groundwater
velocity of 6m/year,i.e.2cm/day which represents some sort of
stagnancy as represented by slow velocity aided by elevated
groundwater temperature will enforce water to have—rock—water
interaction phenomenon which will change isotopic composition.
This approach was not also considered.

Last but not least Spatial scatter within an aquifer is found in
most cases to be more significant than variation in time. One
must realize that no area is really uniform from topographical,
morphological and ecological point of view. Accordingly, for
transboundary aquifer shared by Algeria,Tunisia and Libyia,
different recharge relation may apply at each point,(Figure 7) [26].

Plot of 180 against Depth

0 T T T T T T )

P 200 400 600 800 1000 1200 1400
2
i .
s 5 - .
by LR RS
- 8 - 0“ . -
-] A

LA +
10 - ..S. .
-12
Depth to water in meter
(a)
Plot of 180 against Depth
10

° 5

E oo ‘ . . ‘

E 500 1000 1500 2000 2500

w -5 A " Y

‘T - ay i

o 10 a A ak e sk

-18
Depth,m

Figure 6: Cross plot of depth to water level, versus 6 180%o for
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Conclusions
A comprehensive understanding is highly needed for any successful
transboundary cooperation policy. Isotopic data interpreted in
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conjunction with conventional hydrologic data has confirmed the
fact that NWSAS as well as NSAS  are receiving a considerable
fraction of modern water recharging both aquifers. This was
clearly indicated by the frequent occurrences of significant amount
14C >2 % pmc, H-3 =5 T.U. and the abnormally low values
of d-excess(-1%o).Isotopic data related to both aquifers ara not
comparable as per the significant difference in time and space
variation [27-76].
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