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Introduction
The main reason of structural failure is a sudden damage. 
In the past decades, special attention was given to avoid the 
unexpected failure of structural components by damage detection 
in structures in the early states. To this end, in recent years, various 
developments of non-destructive techniques based on changes in 
the structural responses have been widely published. They can 
only detect the presence of damage but also identify the location 
and the quantification of the damage. Additionally, the need to 
be able to detect in the early stages the presence of damage in 
complex structures and infrastructure has led to the increase of 
non-destructive techniques and new developments. During the past 
decades, many researches has been studying to purpose different 
and efficient techniques. Friswell presented a brief overview of 
the use of inverse methods in damage detection and location from 
response data [1]. A review based on the detection of structural 
damage through changes in frequencies has been discussed by 
Salawu [2]. However, in the presentence of complicated structures, 
many of them are not applicable. Therefore, the methods that are 
much more economical to achieve reasonable accuracy are always 
required. In recent years, there has been a growing interest in 
using Artificial Neural Networks (ANNs), a computing technique 
that works in a way similar to that of biological nervous systems. 
Many researchers used ANN to study a beam using multilayer 
perceptron (MLP) ANN [3,4]. Furthermore, another application of 
ANN is to evaluation of the failure probability and safety levels of 

structural systems.Bakhshi and Vazirizade used a radial network 
in order to predict the stiffness of the each member in a frame 
according to its response to a record [5]. In fact, they showed ANN 
can provide a mapping from the maximum story drifts to columns 
stiffness. Gomes et al. and Bucher used ANN for obtaining the 
failure probability for a cantilever beam and compared ANN with 
other conventional methods [6,7]. They found that ANN methods 
that can approximate the limit state function may decrease the 
total computational effort on the reliability assessment, but more 
studies, including large systems with non-linear behavior must 
be studied. Elhewy et al. studied about the ability of ANN model 
to predict the failure probability of a composite plate [8]. They 
compared the performance of the ANN-based RSM (Response 
Surface Methods) (ANN-based FORM and ANN-based MCS) 
with that of the polynomial-based RSM. Their results showed 
that the ANN-based RSM was more efficient and accurate than 
the polynomial-based RSM. It was shown that the RSM may not 
be precise when the probability of failure was extremely small 
as well as the RSM requires a relatively long computation time 
as the number of random variables increases [9,10]. Zhang and 
Foschi employed ANN for seismic reliability assessment of a 
bridge bent with and without seismic isolation, but in that case 
they used explicit limit states [11]. However, most of them are 
utilized explicit and approximate limit states and more focused 
on the reliability assessment of components by ANN. In this 
regard, this study is focused on two separate parts; (1) localization 
and quantification of structural damages using ANN; (2) seismic 
reliability assessment of one steel structure using ANN-based 
Shannon Information Entropy simulation.
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ABSTRACT
Localization and quantification of structural damages and find a failure probability is the key important in reliability assessment of structures. In this study, 
a Self-Organizing Neural Network (SONN) with Shannon Information Entropy simulation is used to reduce the computational effort required for reliability 
analysis and damage detection. To this end, one demonstrative structure is modeled and then several damage scenarios are defined. These scenarios are 
considered as training datasets for establishing a Self-Organizing Neural Network model. In this regard, the relation between structural responses (input) 
and structural stiffness (output) is established using Self-Organizing Neural Network models. The established SONN is more economical and achieves 
reasonable accuracy in detection of structural damages under ground motion. Furthermore, in order to assess the reliability of structure, five random variables 
are considered. Namely, columns’ area of first, second and third floor, elasticity modulus and gravity loads. The SONN is trained by Shannon Information 
Entropy simulation technique. Finally, the trained neural network specifies the failure probability of purposed structure. Although MCS can predict the 
failure probability for a given structure, the SONN model helps simulation techniques to receive an acceptable accuracy and reduce computational effort.
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Self-Organizing Neural Network (SONN)
Pattern recognition is a branch of machine learning that focuses on 
the recognition of patterns and regularities in data, although it is 
in some cases considered to be nearly synonymous with machine 
learning. Pattern recognition systems are in many cases trained 
from labeled “training” data (supervised learning), but when no 
labeled data are available other algorithms can be used to discover 
previously unknown patterns (unsupervised learning).

Typically the categories are assumed to be known in advance, 
although there are techniques to learn the categories (clustering). 
Methods of pattern recognition are useful in many applications 
such as information retrieval, data mining, document image 
analysis and recognition, computational linguistics, forensics, 
biometrics and bioinformatics.

In Pattern Recognition applications many algorithms and models 
have been proposed for seismology, especially for clustering, 
regression and classification between earthquakes and explosions. 
Applications in which a training data set with categories and 
attributes is available and the goal is to assign a new object to one 
of a finite number of discrete categories are known as supervised 
classification problems [12]. We present the use of the SONN 
and Shannon Information Entropy simulation as an alternative 
for modeling earthquakes aftershocks distribution. They are 
suitable tools in statistics for modeling multiple dependence such 
as earthquakes. For this reason, they have been widely used in 
earthquake prediction, and more recently in other fields such as 
geophysics, oceanography, hydrology, geodesy.

Self-Organizing Feature Mapping (SOFM) algorithm is an 
unsupervised-learning process. The SOFM defines a mapping from 
the input data space on to an output layer by the processing units of 
e.g. 2-D laminar. Kohonen’s algorithm creates a vector quantizer 
by adjusting weights from common input nodes to M output nodes 
arranged in a two dimensional grid as shown in Figure. 3.

Figure 3: Two-dimensional array of output nodes used to form 
feature maps

Weights between input and output nodes are initially set to small 
random values and an input is presented.

For building the Kohonen layer, two steps should be considered. 
First, to make sure that the weight vectors of the neurodes in the 
layer are properly initialized. Second, the weight vectors and 
input vectors should be normalized before its use to a constant, 
fixed length usually one.

Only two-dimensional inputs with the weight vectors to unit length 
have been used. Each neurode in the Kohonen layer receives the 
input pattern and computes the scaler product of its weight vector 
with that input vector, in other words, the relative distance between 

its weight vector and the input vector. Each neurode has been 
computed how close its weight vector is to the input vector. The 
neurodes then compete for the privilege of learning. In essence, 
the neurode with the largest scaler product is declared the winner 
in the competition. This neurode is the only neurode that will 
generate an output signal; all others generate 0.

During training, after enough input vectors, weights will specify 
cluster or vector centers that sample the input space [13]. 
Therefore the point density function of the vector centers tends 
to approximate probability density function of the input vectors. 
An optimal mapping would be the one that matches the probability 
density function best; i.e., to preserve at least the local structures 
of the probability function.

For training the neural network, all of the input vectors are presented, 
one at a time, to the network. Each input vector is compared to every 
weight vector associated with every neuron, i.e. the Euclidean distance 
is computed. The one feature map neuron having the weight vector 
with the smallest difference to the current input is the winning neuron. 
The weight of this winning neuron is now updated in the direction 
of the input vector. This means, if this input vector is presented to 
the network for a second time, this neuron is very likely to be the 
winner again, and thus represent the class (or cluster) for this particular 
input vector. Clearly, similar input vectors will be associated with the 
winning neurons that are close together on the map.

The Kohonen network, models the probability distribution function 
of the input vectors used during training, with many weight vectors 
clustering in portions of the hypersphere that have relatively many 
inputs, and few weight vectors in portions of the hypersphere 
that have relatively few inputs. The Kohonen networks perform 
this statistical modeling, even in the cases where no closed-form 
analytic expression can describe the distribution. The basic SOFM 
learning algorithm is to:
1.	 Choose initial values randomly for all reference vectors.
2.	 Repeat steps (3), (4), and (5) for discrete time.
3.	 Perform steps (4) and (5) for each input feature vector.
4.	 Find the best matching node according to (1).
5.	 Adjust the feature vectors of all the nodes for each node of 

the output layer according to:

w (t +1)=w(t) +η(t)(x(t)-w(t)).

Repeat this procedure until convergence, e.g. until the error 
between the input data and the corresponding neuron representing 
their class falls below a certain threshold.

If the input pattern is allowed to be in any unusual pattern or 
distribution, the Kohonen network will always generate a map of 
that distribution. These plots look a little like a topological map 
of a hilly region. Where many input vectors are clustered, the 
grid is similarly bunched and crowded. Where only a few input 
vectors are clustered, the grid is much sparser. In this work, input 
sample space is latitude and longitude and the discrete output space 
respectively are 9*9 neurons that receive input from the previous 
layer and generate output to the next layer or outside world. 
When the network converges to its final stable state following 
a successful learning process, it displays three major properties:

1.	 The SOFM map is a good approximation to the input 
sample space. This property is important since it provide 
a concentration of representation of the given input space.

2.	 The feature map naturally forms a topologically ordered 
output space such that the spatial location of a neuron in the 

Citation: Mostafa AllamehZade (2020) Shannon Information Entropy for Seismic Reliability Assessment of Structures Using Self-Organizing Neural Networks. Journal 
of Engineering and Applied Sciences Technology. SRC/JEAST-119. DOI: https://doi.org/10.47363/JEAST/2020(2)111.



Volume 2(3): 3-5J Eng App Sci Technol, 2020

lattice corresponds to a particular domain in input space.
3.	 The feature map embodies a statistical law. In other words, 

the input with more frequent occurrence occupies a larger 
output domain of the output space.

This property helps to make the SOFM an optimum codebook of 
the given input space. The straightforward way to take advantage 
of the above properties for prediction is to create a SOFM from 
the input vector, since such a feature map provides a faithful 
topologically organized output of the input vectors.

The prominence of these methods is that they are based on 
approximate reasoning. First, neural networks, as an intelligent 
system, solve problems in the non-algorithm way so that, the 
networks can give an approximate solution by providing solved 
examples. So, they are optimized by the recognition of desired 
data. Secondly, parallel processing and massive connections 
lead to extremely high computing performance. Thirdly, non-
linear processing makes them different in the capabilities of their 
flexibility and accuracy from conventional methods [14-16].

Methodology and Analysis
In this study, a 3-story steel frame building is modeled by Open 
System for Earthquake Engineering Simulation Software (Open 
Sees) Figure.2 [17]. The steel constitutive behavior is modeled using 
the elastic perfectly plastic steel model. The initial design of all 
stories for columns and beams is the same. The purposed structure 
is analyzed under the seismic load of Tabas earthquake [18].

ANN model for damage detection
In order to find the location and quantification of damages in the 
purposed structure, two different data sets are considered; (a) 64 
different damage scenarios-4 scenarios for each story-(b) 729 different 
damage scenarios-9 scenarios for each story. It is noteworthy that 
these damage scenarios are based on damages in the columns, which 
are presented as cross section reductions. The initial area of each 
column is roughly equal to IPE20. According to the aforementioned 
damage scenarios, 64 and 729 different sets of areas less than IPE20 
are defined. For each damage scenario, Open Sees analyses the 
damaged structure and its outputs are the inputs of the SONN model. 
Subsequently, the maximum relative displacement of each story is 
selected as an input for the SONN model. Thus, the SONN model 
has three Process Elements (PEs). The number of hidden node is 
specified based on equation (2). This procedure is performed through 
the interaction between MATLAB and Open Sees.

Each the aforementioned data set is divided to three different 
sub-sets; (a) training, (b) cross validation and (c) test. The ANN 
model accuracy is verified by Root Mean Square Error (RMSE), 
i.e. the difference between the responses predicted by ANN model 
and actual data, and is calculated as

Figure 1: Overview of the three-story frame

ANN model for damage detection
In order to find the location and quantification of damages in 
the purposed structure, two different data sets are considered; 
(a) 64 different damage scenarios-4 scenarios for each story-(b) 
729 different damage scenarios-9 scenarios for each story. It is 
noteworthy that these damage scenarios are based on damages in 
the columns, which are presented as cross section reductions. The 
initial area of each column is roughly equal to IPE20. According 
to the aforementioned damage scenarios, 64 and 729 different sets 
of areas less than IPE20 are defined. For each damage scenario, 
Open Sees analyses the damaged structure and its outputs are the 
inputs of the SONN model. Subsequently, the maximum relative 
displacement of each story is selected as an input for the SONN 
model. Thus, the SONN model has three Process Elements (PEs). 
The number of hidden node is specified based on equation (2). 
This procedure is performed through the interaction between 
MATLAB and Open Sees.

Each the aforementioned data set is divided to three different 
sub-sets; (a) training, (b) cross validation and (c) test. The ANN 
model accuracy is verified by Root Mean Square Error (RMSE), 
i.e. the difference between the responses predicted by ANN model 
and actual data, and is calculated as

                                                                                        (3)

In the above expression, y1,y2,....yn are instances of response values 
in the dataset, y1,y2,....yn are predicted values and  n is the total 
number of points in the dataset. If the error with respect to this 
subset is not acceptable, the training may be repeated. Indeed, this 
test is critical to insure that the network has successfully learned 
the correct functional relationship within the whole set of data.

The maximum relative displacements of each story for each data 
set scenario base on their epoch, which is a measure of the number 
of times all of the training vectors are used once to update the 
weights, are plotted in the Figs. 4and 5. RMSEs calculated for 
each scenario are plotted in the Figures. 6 and 7.

Figure 2: The maximum relative displacements of each story 
for 55 scenarios

Figure 3: The maximum relative displacements of each story 
for 800 scenarios
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Figure 4: RMSEs calculated for 64 scenarios for train data set

Figure 5: RMSEs calculated for 800 scenarios for train data set

As it has been shown, the very small RMSE means that the ANN 
model is trained on base on data set. Thereafter, the trained data is 
able to determine the location of damages in columns and check 
whether the structure is reliable or not. In this regard, 20 different 
random data as a test data. The performance of ANN model is 
checked for these data sets in the Figures 8 and 9. Moreover, the 
final RMSEs for the whole of trained and test data for 64 and 729 
scenarios are presented in Table 1.

Figure 6: RMSEs calculated for 64 scenarios for random data set

Figure 7: RMSEs calculated for 729 scenarios for random data set

Table 1: Final RMSEs for train and random data sets for 
each scenario
Story 64 Scenarios Scenarios

RMSE RMSE_TEST RMSE RMSE_TEST
1 0.006 0.0104 0.01 0.014
2 0.003 0.007 0.016 0.011
3 0.004 0.017 0.01 0.01

With reference to the plots and final results of two different 
scenarios, it can be perceived that there is not much difference 
between these data scenarios. In other words, the trained ANN 
model does not care about the increment of input data. This is 
one of the most important benefits of ANN methods that can 
reduce the computational effort without any significantly decrease 
inaccuracy. This feature is helpful in structural damage detection 
as well as seismic reliability.

Linking ANN model to seismic reliability assessment
Once the ANN model is created, it will be used as a reliability 
method. Five random variables are considered for the purposed 
steel structure; namely, columns’ areas of first, second and third 
floor, elasticity modulus and gravity loads. The distribution, lower 
and upper bound, of each random variable are selected based on 
Ref. and are shown in Table 2 [19,20]. All stories have the same 
distribution parameters, but this does not necessarily mean that all 
structures have the same columns’ sections. Generally speaking, 
the procedure in the reliability assessment is the same as damage 
detection with this difference that the inputs and outputs of the 
SONN model should be the same as Open Sees. Subsequently, the 
SONN model has five PEs related to each random variables in the 
input layer and three PEs corresponding to the maximum relative 
displacement of each story in the output layer. This procedure is, 
exactly the same as before, performed through the interaction 
between MATLAB and Open Sees-a network and a finite element 
model, Figure. 10.

Table 2: Statistical Distribution and Moments of Random 
Variables

Random 
Variables

Distribution Mean Gravity Loads

Columns’ 
Sections

Normal 25 cm2 2.5cm2

Elasticity 
Modulus

Normal 2x1011kN/m2 2x109kN/m2

Gravity Loads Normal 50kN 10kN

The failure probability for each number of iteration is obtained by 
MCS Table3.The failure probability is the likelihood of passing 
through the Immediate Occupancy limit state (IO), which is equal 
to maximum relative displacement of 1%.Although MCS can 
calculate the failure probability readily, it can achieve to acceptable 
accuracy in high number of iterations. In other words, the failure 
probability in the high number of iterations is time-consuming 
and sometimes MCS is not applicable for complicated structures, 
such as airplane, helicopter, bridge, and so forth. Therefore, in 
these cases, ANN models can help MCS have a decent accuracy 
in the failure probability estimation. With reference to Table 4, the 
ANN model is trained by MCS. In fact a certain number—1000 
in this study—training pairs is needed to train the network. The 
training data can be obtained by Shannon Information Entropy 
simulation with a certain number of iteration. Afterward, the ANN 
learns this process and try to imitate the relation between input 
and output data. Therefore, a combination of ANN and Shannon 
Information Entropy simulation with only a certain iteration can 
take the place of Shannon Information Entropy simulation in 
the large number of iterations and address the problem of time-
consuming in Shannon Information Entropy simulation although 
this replacement has an approximation.

In this study the number of training pairs and the network is which 
trained by 1000 training data is called ANN1000.

The ANN accuracy is acceptable after 1000 iterations (here, 
which is named ANN1000 model). The failure probability for 
each iteration is calculated by the ANN1000 model. Owing to 
RMSE, the ANN1000 model works accurately. This model can 
be applied to calculate the failure probability for any arbitrary 
iteration number that MCS could not be applied (for instance, the 
failure probability for 10000 iterations in this case).
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Conclusions
In this study, an artificial neural network approach is employed 
to determine the quantification and location of damages in the 
columns. In addition to damage detection, the SONN model 
can evaluate the failure probability after training. The SONN 
model is successfully connected to Shannon Information Entropy 
simulation in order to reduce the computational effort required 
for reliability analysis of complicated structures to an acceptable 
level. In other words, the SONN model learns and imitates the 
relation between inputs and outputs. The SONN -based Shannon 
Information Entropy simulation method is more accurate than the 
SONN -based response surface and polynomial-based methods 
that were done in past studies. Additionally, this research has 
shown the capacity of this method in substitution of every other 
method with high accuracy. It has shown that the SONN model, 
which is trained after only1000 iterations can calculate the failure 
probability for any arbitrary iteration number. Although in this 
research 1000 iterations, this value can increase according to the 
complexity of the problem and required accuracy, and this limit 
can be determined by assorted methods such as RMSE. This 
approach can be applied to the realistic models with implicit limit 
state functions. Furthermore, the application of this approach for 
large structures and infrastructures reduces time and computational 
efforts [21-31].
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