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ABSTRACT

Localization and quantification of structural damages and find a failure probability is the key important in reliability assessment of structures. In this study,
a Self-Organizing Neural Network (SONN) with Shannon Information Entropy simulation is used to reduce the computational effort required for reliability
analysis and damage detection. To this end, one demonstrative structure is modeled and then several damage scenarios are defined. These scenarios are
considered as training datasets for establishing a Self-Organizing Neural Network model. In this regard, the relation between structural responses (input)
and structural stiffness (output) is established using Self-Organizing Neural Network models. The established SONN is more economical and achieves
reasonable accuracy in detection of structural damages under ground motion. Furthermore, in order to assess the reliability of structure, five random variables
are considered. Namely, columns’ area of first, second and third floor, elasticity modulus and gravity loads. The SONN is trained by Shannon Information
Entropy simulation technique. Finally, the trained neural network specifies the failure probability of purposed structure. Although MCS can predict the
failure probability for a given structure, the SONN model helps simulation techniques to receive an acceptable accuracy and reduce computational effort.
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Introduction

The main reason of structural failure is a sudden damage.
In the past decades, special attention was given to avoid the
unexpected failure of structural components by damage detection
in structures in the early states. To this end, in recent years, various
developments of non-destructive techniques based on changes in
the structural responses have been widely published. They can
only detect the presence of damage but also identify the location
and the quantification of the damage. Additionally, the need to
be able to detect in the early stages the presence of damage in
complex structures and infrastructure has led to the increase of
non-destructive techniques and new developments. During the past
decades, many researches has been studying to purpose different
and efficient techniques. Friswell presented a brief overview of
the use of inverse methods in damage detection and location from
response data [1]. A review based on the detection of structural
damage through changes in frequencies has been discussed by
Salawu [2]. However, in the presentence of complicated structures,
many of them are not applicable. Therefore, the methods that are
much more economical to achieve reasonable accuracy are always
required. In recent years, there has been a growing interest in
using Artificial Neural Networks (ANNs), a computing technique
that works in a way similar to that of biological nervous systems.
Many researchers used ANN to study a beam using multilayer
perceptron (MLP) ANN [3,4]. Furthermore, another application of
ANN is to evaluation of the failure probability and safety levels of

structural systems.Bakhshi and Vazirizade used a radial network
in order to predict the stiffness of the each member in a frame
according to its response to a record [5]. In fact, they showed ANN
can provide a mapping from the maximum story drifts to columns
stiffness. Gomes et al. and Bucher used ANN for obtaining the
failure probability for a cantilever beam and compared ANN with
other conventional methods [6,7]. They found that ANN methods
that can approximate the limit state function may decrease the
total computational effort on the reliability assessment, but more
studies, including large systems with non-linear behavior must
be studied. Elhewy et al. studied about the ability of ANN model
to predict the failure probability of a composite plate [8]. They
compared the performance of the ANN-based RSM (Response
Surface Methods) (ANN-based FORM and ANN-based MCS)
with that of the polynomial-based RSM. Their results showed
that the ANN-based RSM was more efficient and accurate than
the polynomial-based RSM. It was shown that the RSM may not
be precise when the probability of failure was extremely small
as well as the RSM requires a relatively long computation time
as the number of random variables increases [9,10]. Zhang and
Foschi employed ANN for seismic reliability assessment of a
bridge bent with and without seismic isolation, but in that case
they used explicit limit states [11]. However, most of them are
utilized explicit and approximate limit states and more focused
on the reliability assessment of components by ANN. In this
regard, this study is focused on two separate parts; (1) localization
and quantification of structural damages using ANN; (2) seismic
reliability assessment of one steel structure using ANN-based
Shannon Information Entropy simulation.
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Self-Organizing Neural Network (SONN)

Pattern recognition is a branch of machine learning that focuses on
the recognition of patterns and regularities in data, although it is
in some cases considered to be nearly synonymous with machine
learning. Pattern recognition systems are in many cases trained
from labeled “training” data (supervised learning), but when no
labeled data are available other algorithms can be used to discover
previously unknown patterns (unsupervised learning).

Typically the categories are assumed to be known in advance,
although there are techniques to learn the categories (clustering).
Methods of pattern recognition are useful in many applications
such as information retrieval, data mining, document image
analysis and recognition, computational linguistics, forensics,
biometrics and bioinformatics.

In Pattern Recognition applications many algorithms and models
have been proposed for seismology, especially for clustering,
regression and classification between earthquakes and explosions.
Applications in which a training data set with categories and
attributes is available and the goal is to assign a new object to one
of a finite number of discrete categories are known as supervised
classification problems [12]. We present the use of the SONN
and Shannon Information Entropy simulation as an alternative
for modeling earthquakes aftershocks distribution. They are
suitable tools in statistics for modeling multiple dependence such
as carthquakes. For this reason, they have been widely used in
earthquake prediction, and more recently in other fields such as
geophysics, oceanography, hydrology, geodesy.

Self-Organizing Feature Mapping (SOFM) algorithm is an
unsupervised-learning process. The SOFM defines a mapping from
the input data space on to an output layer by the processing units of
e.g. 2-D laminar. Kohonen’s algorithm creates a vector quantizer
by adjusting weights from common input nodes to M output nodes
arranged in a two dimensional grid as shown in Figure. 3.
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Figure 3: Two-dimensional array of output nodes used to form
feature maps

Weights between input and output nodes are initially set to small
random values and an input is presented.

For building the Kohonen layer, two steps should be considered.
First, to make sure that the weight vectors of the neurodes in the
layer are properly initialized. Second, the weight vectors and
input vectors should be normalized before its use to a constant,
fixed length usually one.

Only two-dimensional inputs with the weight vectors to unit length
have been used. Each neurode in the Kohonen layer receives the
input pattern and computes the scaler product of its weight vector
with that input vector, in other words, the relative distance between

its weight vector and the input vector. Each neurode has been
computed how close its weight vector is to the input vector. The
neurodes then compete for the privilege of learning. In essence,
the neurode with the largest scaler product is declared the winner
in the competition. This neurode is the only neurode that will
generate an output signal; all others generate 0.

During training, after enough input vectors, weights will specify
cluster or vector centers that sample the input space [13].
Therefore the point density function of the vector centers tends
to approximate probability density function of the input vectors.
An optimal mapping would be the one that matches the probability
density function best; i.e., to preserve at least the local structures
of the probability function.

For training the neural network, all of the input vectors are presented,
one at a time, to the network. Each input vector is compared to every
weight vector associated with every neuron, i.e. the Euclidean distance
is computed. The one feature map neuron having the weight vector
with the smallest difference to the current input is the winning neuron.
The weight of this winning neuron is now updated in the direction
of the input vector. This means, if this input vector is presented to
the network for a second time, this neuron is very likely to be the
winner again, and thus represent the class (or cluster) for this particular
input vector. Clearly, similar input vectors will be associated with the
winning neurons that are close together on the map.

The Kohonen network, models the probability distribution function
of the input vectors used during training, with many weight vectors
clustering in portions of the hypersphere that have relatively many
inputs, and few weight vectors in portions of the hypersphere
that have relatively few inputs. The Kohonen networks perform
this statistical modeling, even in the cases where no closed-form
analytic expression can describe the distribution. The basic SOFM
learning algorithm is to:

Choose initial values randomly for all reference vectors.
Repeat steps (3), (4), and (5) for discrete time.

Perform steps (4) and (5) for each input feature vector.
Find the best matching node according to (1).

Adjust the feature vectors of all the nodes for each node of
the output layer according to:

w (t+D)=w(t) (O x(t)-w(D).

SNk W=

Repeat this procedure until convergence, e.g. until the error
between the input data and the corresponding neuron representing
their class falls below a certain threshold.

If the input pattern is allowed to be in any unusual pattern or
distribution, the Kohonen network will always generate a map of
that distribution. These plots look a little like a topological map
of a hilly region. Where many input vectors are clustered, the
grid is similarly bunched and crowded. Where only a few input
vectors are clustered, the grid is much sparser. In this work, input
sample space is latitude and longitude and the discrete output space
respectively are 9*9 neurons that receive input from the previous
layer and generate output to the next layer or outside world.
When the network converges to its final stable state following
a successful learning process, it displays three major properties:

1. The SOFM map is a good approximation to the input
sample space. This property is important since it provide
a concentration of representation of the given input space.

2. The feature map naturally forms a topologically ordered
output space such that the spatial location of a neuron in the
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lattice corresponds to a particular domain in input space.

3. The feature map embodies a statistical law. In other words,
the input with more frequent occurrence occupies a larger
output domain of the output space.

This property helps to make the SOFM an optimum codebook of
the given input space. The straightforward way to take advantage
of the above properties for prediction is to create a SOFM from
the input vector, since such a feature map provides a faithful
topologically organized output of the input vectors.

The prominence of these methods is that they are based on
approximate reasoning. First, neural networks, as an intelligent
system, solve problems in the non-algorithm way so that, the
networks can give an approximate solution by providing solved
examples. So, they are optimized by the recognition of desired
data. Secondly, parallel processing and massive connections
lead to extremely high computing performance. Thirdly, non-
linear processing makes them different in the capabilities of their
flexibility and accuracy from conventional methods [14-16].

Methodology and Analysis

In this study, a 3-story steel frame building is modeled by Open
System for Earthquake Engineering Simulation Software (Open
Sees) Figure.2 [17]. The steel constitutive behavior is modeled using
the elastic perfectly plastic steel model. The initial design of all
stories for columns and beams is the same. The purposed structure
is analyzed under the seismic load of Tabas earthquake [18].

ANN model for damage detection

In order to find the location and quantification of damages in the
purposed structure, two different data sets are considered; (a) 64
different damage scenarios-4 scenarios for each story-(b) 729 different
damage scenarios-9 scenarios for each story. It is noteworthy that
these damage scenarios are based on damages in the columns, which
are presented as cross section reductions. The initial area of each
column is roughly equal to IPE20. According to the aforementioned
damage scenarios, 64 and 729 different sets of areas less than IPE20
are defined. For each damage scenario, Open Sees analyses the
damaged structure and its outputs are the inputs of the SONN model.
Subsequently, the maximum relative displacement of each story is
selected as an input for the SONN model. Thus, the SONN model
has three Process Elements (PEs). The number of hidden node is
specified based on equation (2). This procedure is performed through
the interaction between MATLAB and Open Sees.

Each the aforementioned data set is divided to three different
sub-sets; (a) training, (b) cross validation and (c) test. The ANN
model accuracy is verified by Root Mean Square Error (RMSE),
i.e. the difference between the responses predicted by ANN model
and actual data, and is calculated as
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Figure 1: Overview of the three-story frame

ANN model for damage detection

In order to find the location and quantification of damages in
the purposed structure, two different data sets are considered;
(a) 64 different damage scenarios-4 scenarios for each story-(b)
729 different damage scenarios-9 scenarios for each story. It is
noteworthy that these damage scenarios are based on damages in
the columns, which are presented as cross section reductions. The
initial area of each column is roughly equal to IPE20. According
to the aforementioned damage scenarios, 64 and 729 different sets
of areas less than IPE20 are defined. For each damage scenario,
Open Sees analyses the damaged structure and its outputs are the
inputs of the SONN model. Subsequently, the maximum relative
displacement of each story is selected as an input for the SONN
model. Thus, the SONN model has three Process Elements (PEs).
The number of hidden node is specified based on equation (2).
This procedure is performed through the interaction between
MATLAB and Open Sees.

Each the aforementioned data set is divided to three different
sub-sets; (a) training, (b) cross validation and (c) test. The ANN
model accuracy is verified by Root Mean Square Error (RMSE),
i.e. the difference between the responses predicted by ANN model
and actual data, and is calculated as

RMSE=MSE — 3)

In the above expression, y,,y,,....y, are instances of response values
in the dataset,, y,...», are predicted values and n is the total
number of points in the dataset. If the error with respect to this
subset is not acceptable, the training may be repeated. Indeed, this
test is critical to insure that the network has successfully learned

the correct functional relationship within the whole set of data.

The maximum relative displacements of each story for each data
set scenario base on their epoch, which is a measure of the number
of times all of the training vectors are used once to update the
weights, are plotted in the Figs. 4and 5. RMSEs calculated for
each scenario are plotted in the Figures. 6 and 7.
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Figure 5: RMSEs calculated for 800 scenarios for train data set

As it has been shown, the very small RMSE means that the ANN
model is trained on base on data set. Thereafter, the trained data is
able to determine the location of damages in columns and check
whether the structure is reliable or not. In this regard, 20 different
random data as a test data. The performance of ANN model is
checked for these data sets in the Figures 8 and 9. Moreover, the
final RMSE:s for the whole of trained and test data for 64 and 729
scenarios are presented in Table 1.
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Figure 6: RMSEs calculated for 64 scenarios for random data set
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Figure 7: RMSE:s calculated for 729 scenarios for random data set

Table 1: Final RMSEs for train and random data sets for
each scenario

Story 64 Scenarios Scenarios
RMSE | RMSE_TEST | RMSE | RMSE_TEST
1 0.006 0.0104 0.01 0.014
2 0.003 0.007 0.016 0.011
0.004 0.017 0.01 0.01

With reference to the plots and final results of two different
scenarios, it can be perceived that there is not much difference
between these data scenarios. In other words, the trained ANN
model does not care about the increment of input data. This is
one of the most important benefits of ANN methods that can
reduce the computational effort without any significantly decrease
inaccuracy. This feature is helpful in structural damage detection
as well as seismic reliability.

Linking ANN model to seismic reliability assessment

Once the ANN model is created, it will be used as a reliability
method. Five random variables are considered for the purposed
steel structure; namely, columns’ areas of first, second and third
floor, elasticity modulus and gravity loads. The distribution, lower
and upper bound, of each random variable are selected based on
Ref. and are shown in Table 2 [19,20]. All stories have the same
distribution parameters, but this does not necessarily mean that all
structures have the same columns’ sections. Generally speaking,
the procedure in the reliability assessment is the same as damage
detection with this difference that the inputs and outputs of the
SONN model should be the same as Open Sees. Subsequently, the
SONN model has five PEs related to each random variables in the
input layer and three PEs corresponding to the maximum relative
displacement of each story in the output layer. This procedure is,
exactly the same as before, performed through the interaction
between MATLAB and Open Sees-a network and a finite element
model, Figure. 10.

Table 2: Statistical Distribution and Moments of Random
Variables

Random Distribution Mean Gravity Loads
Variables

Columns’ Normal 25 cm? 2.5cm?
Sections

Elasticity Normal 2x10"kN/m? 2x10°kN/m?
Modulus

Gravity Loads Normal S0kN 10kN

The failure probability for each number of iteration is obtained by
MCS Table3.The failure probability is the likelihood of passing
through the Immediate Occupancy limit state (10), which is equal
to maximum relative displacement of 1%.Although MCS can
calculate the failure probability readily, it can achieve to acceptable
accuracy in high number of iterations. In other words, the failure
probability in the high number of iterations is time-consuming
and sometimes MCS is not applicable for complicated structures,
such as airplane, helicopter, bridge, and so forth. Therefore, in
these cases, ANN models can help MCS have a decent accuracy
in the failure probability estimation. With reference to Table 4, the
ANN model is trained by MCS. In fact a certain number—1000
in this study—training pairs is needed to train the network. The
training data can be obtained by Shannon Information Entropy
simulation with a certain number of iteration. Afterward, the ANN
learns this process and try to imitate the relation between input
and output data. Therefore, a combination of ANN and Shannon
Information Entropy simulation with only a certain iteration can
take the place of Shannon Information Entropy simulation in
the large number of iterations and address the problem of time-
consuming in Shannon Information Entropy simulation although
this replacement has an approximation.

In this study the number of training pairs and the network is which
trained by 1000 training data is called ANN1000.

The ANN accuracy is acceptable after 1000 iterations (here,
which is named ANN1000 model). The failure probability for
each iteration is calculated by the ANN1000 model. Owing to
RMSE, the ANN1000 model works accurately. This model can
be applied to calculate the failure probability for any arbitrary
iteration number that MCS could not be applied (for instance, the
failure probability for 10000 iterations in this case).
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Conclusions

In this study, an artificial neural network approach is employed
to determine the quantification and location of damages in the
columns. In addition to damage detection, the SONN model
can evaluate the failure probability after training. The SONN
model is successfully connected to Shannon Information Entropy
simulation in order to reduce the computational effort required
for reliability analysis of complicated structures to an acceptable
level. In other words, the SONN model learns and imitates the
relation between inputs and outputs. The SONN -based Shannon
Information Entropy simulation method is more accurate than the
SONN -based response surface and polynomial-based methods
that were done in past studies. Additionally, this research has
shown the capacity of this method in substitution of every other
method with high accuracy. It has shown that the SONN model,
which is trained after only 1000 iterations can calculate the failure
probability for any arbitrary iteration number. Although in this
research 1000 iterations, this value can increase according to the
complexity of the problem and required accuracy, and this limit
can be determined by assorted methods such as RMSE. This
approach can be applied to the realistic models with implicit limit
state functions. Furthermore, the application of this approach for
large structures and infrastructures reduces time and computational
efforts [21-31].
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