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ABSTRACT
Modern society is getting accustomed to the Internet of Things (IoT) and Cyber-Physical Systems (CPS) for a variety of applications that involves security-
critical user data and information transfers. In the lower end of the spectrum, these devices are resource-constrained with no attack protection. They become 
a soft target for malicious code modification attacks that steals and misuses device data in malicious activities. The resilient system requires continuous 
detection, prevention, and/or recovery and correct code execution (including in degraded mode). By end large, existing security primitives (e.g., secure-
boot, Remote Attestation RA, Control Flow Attestation (CFA) and Data Flow Attestation (DFA)) focuses on detection and prevention, leaving the proof 
of code execution and recovery unanswered.

To this end, the proposed work presents lightweight FRARE: FPGA based Reconfigurable Attack Resilient Engine with Ver- ified Proof-of-Execution. It 
leverages a custom control register (Ctrl_register) based runtime memory modification attacks classification and detection technique. It uses the Proof Of 
Con- cept (POC) implementation of re-configurable use-case-specific attacks prevention and onboard recovery techniques. The proto- type implementation 
on Artix 7 Field Programmable Gate Array (FPGA) and state-of-the-art comparison demonstrates very low (2.5%) resource overhead and efficacy of the 
proposed solution.

Keywords: Runtime Resilient Soc, Memory Modification at- 
tacks Resilient System

Introduction
Industry 4.0 has proliferated the use of connected small Internet 
of Things (IoT) and Cyber-Physical Systems (CPS) in applications 
ranging from home security systems, smart controllers, actuators, 
sensor nodes, activity trackers, and alarm systems [1]. Often these 
devices are used for security- critical user data and information 
transfers. A majority of them are resource-constrained, with no 
onboard security support, which makes them vulnerable to code 
modification attacks [2,3]. For example, the Electric Control Unit 
(ECU) of car measures various sensors (e.g., humidity, speed, 
temperature, speed) and performs different actuation tasks such 
as speed or heat controls. If an attacker modifies the temperature 
sensor code to give a low reading, it can overheat the car or damage 
other parts. Here are few more examples of such attacks [4-6].

The resilience of a system is defined as its ability to detect (including 
boot-time and continuous runtime) the presence of attacks, prevent 
adversarial effects and keep the device operational (including in 
degraded mode) before it can reach a fail-safe or recovery state. 
Fig 1 shows the resilient system operational timeline. The phases 
P1 and P5 depict the normal mode of operation. Phase P2 covers 
attack occurrence andruntime detection. The phases-3 and 4 (P3 
& P4) represent the prevention and recovery operations.

Figure 1: Depicts the resilient system operation flow timeline

From Figure 1, the resilient system requires a secure-boot like 
boot-time software integrity validation technique before the 
device enters in phase P1 [7-10]. Recent implementa- tions of 
APEX [11] presents lightweight continuous runtime attacks 
detection, prevention and verified proof of execution techniques 
(covering phase 2 and 3 from Fig 1). However, it resets the systems 
abruptly for attack prevention. Considering the wide applications 
spectrum of these devices (e.g., aircraft controllers, automotive 
Electronic Control Unit (ECU)), an abrupt system reset can result 
in adverse effects. These devices requires to operate (including 
degraded mode) until they can fail-safe or recover completely. 
Furthermore, they requires use- case-specific prevention and 
recovery techniques.
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To this end, this paper presents RARES: a novel lightweight 
Runtime Attack Resilient Embedded System design using verified 
proof of execution.

Research Contributions: The design and implementation of
RARES presents the following research contributions:

•	 Runtime Attacks Classification & Detection: It clas- sifies 
runtime memory modification attacks into three categories 
and presents a novel lightweight 16 bit control register (Ctrl_
register) based detection technique.

	
•	 Prevention Technique: It demonstrates novel use-case-

specific re-configurable runtime attacks prevention tech- 
niques. It gives the control in the hands of system devel- 
opers to design use-case-specific prevention and recovery 
techniques on FPGA.

Related Work
As shown in Figure 1, the resilient system design involves various 
phases of detection, prevention, and recovery. Un- fortunately, 
RARES was unable to find a single state-of- art implementation 
supporting all of these. Therefore, we have studied and analyzed 
the state-of-the-art works in three main categories: 1) detection, 
2) prevention, and 3) recovery techniques.

Detection Techniques: Remote Attestation (RA) is widely used 
client-server based security primitive that per- forms integrity 
verification of software state of the un-trusted prover device upon 
request from third party trusted verifier. Previous implementations 
of hardware-based, software-based and hybrid RAs can detect 
runtime memory modification attacks periodically. Control Flow 
Attestation (CFA) and Data Flow Attestation (DFA) techniques 
are used for continuous runtime attacks detection [12-25].

Prevention Techniques: The resource isolation is well- known 
technique to prevent / limit the adverse effect of attacks. The 
hardware-based techniques uses Trusted Platform Module (TPM), 
Arm TrustZone, Trusted Execution Environ- ment (TEE), or 
Physical Memory Protection (PMP) to isolate the shared resources 
and limit the attacking surface. By end large, these are resource-
heavy techniques and not suit- able for targeted devices [12-
14,26]. Recent lightweight implementation of VRASED (formally 
verified remote attestation) uses custom hardware module to detect 
different security property based attacks [27]. APEX extends 
VRASED to provide verified Proof Of eXecution (POX). They 
both resets the system to prevent the runtime attack. RARES 
advocates the development of use-case-specific prevention or 
recovery techniques to avoid adverse effects from abrupt system 
reset. The detailed system design is discussed in subsection III-B 
[11].

Recovery Techniques: The affected device can be re- covered 
by Over-The-Air (OTA) or manually code re-flash. Recent 
implementation of Healed [28] presents Merkle Hash Tree 
(MHT) based technique, which requires at least one node in the 
network to be untampered, and its firmware is used to re-flash the 
corrupted node. [29] keeps the software receiver-transmitter code 
in trusted ROM for connecting the affected device to a recovery 
server for re-flash. Recent implementations of CARE [30] presents 
lightweight secure- boot with onboard recovery technique for the 
system where manual or over-the-air code reflash are not possible. 
SRACARE extends CARE by adding secure communication and 
RA capabilities [26].

In summary, RA can only detect periodic runtime attacks and it 
suffers from CWE 367-Time-of-Check-Time-of-Use (TOCTOU) 
attacks [31]. Both CFA and DFA bloats the sys- tem memory 
by storing runtime execution flow logs, which makes them 
unsuitable for targeted low-end devices. The lightweight runtime 
attacks detection technique presented by APEX provides only 
one solution of resetting the system for preventing all different 
attacks. Furthermore, they do not cover the boot-time attacks 
detection or recovery techniques. In addition, RARES have 
presented lightweight control register based runtime attack 
detection, application specific prevention technique. The drawback 
of RARES is all the attack scenarios and its remedial flows needs 
to be known before the asic implementation.

Therefore, current work presents a FPGA based re- configurable 
recovery engine. Additionally, it presents the lightweight 
implementation of FPGA based recovery and automatic memory 
relocation/mapping for providing resiliency to future unknown 
attacks.

FRARE Overview
This section covers the details about the targeted platform,
FRARE based system architecture, design, and operation.

Targeted Platform
The low-end microcontrollers (e.g., Texas Instrument’s MSP430 
or Atmel AVR ATMega micro-controllers) are widely used in 
applications ranging from automotive ECU’s, indus- trial control 
systems, actuators, aviation, sensors, smart IoT, and Cyber-
Physical System (CPS). These devices have very low hardware 
foot print with only a few KB of address and data memories. They 
do not have sophisticated hardware or OS support to detect and/
or prevent the malware attacks. Therefore, FRARE was designed 
targeting the OpenMSP430 platform as well-maintained open 
cores implementation of OpenMSP430 [2] was readily available. 
However, the pro- posed concept of custom control register (Ctrl 
register) based continuous runtime attacks classification and 
detection, use- case-specific prevention, and onboard recovery can 
be applied to other low-end devices such as Atmel AVR ATmega.

FRARE Design
Figure 2 Shows the high-level design architecture of FRARE.

Figure 2: Top-level design of lightweight runtime attacks resilient 
FRARE system. Highlighted are the key components of the 
proposed system.

FRARE was designed on top of APEX and RARES. It leverages 
underlying architecture to provide verified proof-of- execution 
(POX). FRARE tapes out the seven control signals
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(Pc, Irq, Ren, Wen, Daddr, DMAen, DMAaddr) to its custom 
hardware module (Hw mod). It has carefully designed and modified 
the internal Finite State Machines (FSMs) of both VRASED and 
APEX for detecting different categories of attacks in only one 
machine clock cycle (mclk), as discussed in subsection §IV. It 
stores different attack bits in 16-bit control register Ctrl_register, 
which are discussed in detail in subsection §V. The Ctrl_register 
does not have high- level write Application Program Interface 
(API) access. The memory backbone acts as arbitration between 
the front end, DMA, and execution-unit interfaces for any system 
memory (e.g., program, data, and peripheral) accesses, and it is 
used by FRARE for attack prevention. FRARE includes separate 
secure recovery ROM and a small FPGA attached to the system 
to provide configurable mitigation and recovery.

FRARE Operation
Upon power-on the first-stage boot-loader (FSBL) code (from 
ROM) gets executed in reserved RAM memory and performs 
the secure-boot verification on flash image. It re- flashes the 
corrupted flash memory using recovery image upon integrity 
failure detection, else the system operates normally. FRARE 
satisfies all the security properties of APEX and uses the formally 
verified software HMC SHA256 code (SW-Att (HACL*) from 
ROM for secure-boot and RA function- ality. After that, the test 
application code (App Code) from flash gets executed in a specific 
region of (App. Avail. Mem.) RAM as shown in Figure 2 [32]. 
(Due to the page limitations here, interested readers are requested 
to refer for RA and POX operation). FRARE performs use-case-
specific prevention and recovery operation as discussed in section 
?? upon runtime attack detection [11].

Runtime Attacks Classification
Based on the seven control signals (Pc, Irq, Ren, Wen, Daddr, 
DMAen, DMAaddr) input to the custom hardware module and 
security properties of APEX, FRARE has classified memory 
modification attacks in three categories, namely: 1) CPU access 
violation, 2) DMA access violation, and 3)

Figure 3: Runtime Memory Modification Attacks Classification 
Atomicity violation as shown in Figure 3.

CPU Access Violation: For the system shown in Figure 2, while 
executing the program code from RAM the CPU can only read 
the data from reserved stack and ROM (Sw-Att code). However, 
it cannot access the device’s secret key (K) from the key ROM. 
Similarly, The key (K) is only accessed by the CPU while it 
is executing the (Sw-Att) code inside the reserved stack. All 
other ROM and stack read accesses are detected as CPU access 
violation by the hardware FSM in Ctrl_register. Furthermore, any 
unauthorized RAM access (both read and write) violation during 
Sw-Att code execution are detected as CPU related RAM access 
violations. This sub-module focuses on (Pc, Ren, Wen, Daddr) 
control signals to detect any unauthorized memory read or write 
access request by the CPU. The corresponding detection bits are 
updated in Ctrl_register as discussed in subsection V.

DMA Access Violation: During the program code ex-ecution 
from RAM, direct memory access (DMA) read re- quest from the 
reserved stack and ROM (Sw-Att code) are allowed. However, 
DMA cannot access the device secret key (K), while executing 
the program code from RAM. Similarly, the DMA can access the 
key (K) only during Sw-Att code execution inside the reserved 
stack. All other ROM and stack related read accesses are identified 
as DMA access violation by the hardware FSMs and detected in 
Ctrl_register. Furthermore, unauthorized RAM access (both read 
and write) violations while running Sw-Att code are detected under 
DMA- related RAM access violation. This sub-module focuses on 
(Pc, Ren, Wen, DMAen, DMAaddr) control signals to detect any 
unauthorized memory read or write access request using DMA. 
The corresponding detection bits are updated in Ctrl_register as 
discussed in subsection V.

Atomicity Violation: This category detects any interrupt trigger 
violation during the code execution inside RAM and reserved 
stack (Sw-Att). The atomicity violation usually results in interrupt 
service routine (IRQ) code execution, intermittent data and secure 
key (K) leakage or loss. This sub-module detects mainly (Irq) 
IRQ during the code execution from the RAM and reserved stack 
(Sw-Att). The POC atomicity violation prevention technique is 
discussed in subsection ??.

Detection Technique
Based on attacks classification of section §IV, specific attack 
detection bits are updated in 16-bit Ctrl_register as depicted in Fig 
4. Note that, at current stage FRARE has classified and detected 
total ten different types of memory modification attacks and stored 
them in bit positions D0-D9. The Ctrl_register bit (D0) and (D1) 
detects atomicity violations during RAM and stack code execution. 
The DMA related RAM write access violation is detected by flag bit 
(D2). The DMA read access violations for RAM, stack, and ROM 
are detected in bits (D3) (D4) and (D5), respectively. Similarly, 
CPU related RAM write access violation is detected by flag bit 
(D6). CPU read access violations for RAM,stack, and ROM
are detected in bits (D7) (D8) and (D9), respectively.
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Table I: State-of-The-Art (Qualitative) Comparison of  Lightweight Attack Resilient Systems
Parameters FRARE RARES Ref. [11] Ref. [18] Ref. [7] ref. [22] Ref. [21] Ref. [20] Ref. [26] Ref. [28]
Design Type Hybrid Hybrid Hybrid Hybrid HW Hybrid Hybrid Hybrid Hybrid SW
Secure Communication yes yes yes yes no yes yes yes yes no
Lightweight yes yes yes yes no yes yes no yes no
Secure boot yes yes no no yes no no no yes no
Remote Attestation 
(periodic RA)

yes yes yes yes no no no no yes yes

Runtime Attacks 
Detection

yes yes yes yes no yes yes yes no no

System Reset for Attacks 
Prevention

no no yes yes yes no no no no no

Memory Mod. Attacks 
Prevention

yes yes no no no no no no no no

Recovery Techniques yes yes no no no no no no yes yes
Reconfigurable eFPGA yes no no no no no no no no no

Figure 4: Depicts 16 bit Ctrl_register for each attacks detection by FRARE. Note that only 11-bits of the 16-bit Ctrl_register are 
used currently, and remaining D11-D15 bits are left for future development.

From this point the system developer can write use-case- specific runtime attack prevention or recovery technique.

Evaluation
This section performs qualitative and quantitative evaluation of FRARE based resilient system. The subsection §VI-A covers the 
resource utilization (and overheads) for quantitative analysis and subsection §VI-B performs the state-of-the-art comparison for 
qualitative analysis.

Resource Utilization - Quantitative Comparison
FRARE was implemented on top of APEX [11] and com- plete verilog Resistor Transistor Logic (RTL) was synthesized on Artix-7 
Field Programmable Gate Array (FPGA) board using Xilinx Vivado 2018. As shown in Figure 2, the new control register (Ctrl register) 
was added into APEX’s METADATA with only read access from the software. Therefore, FRARE increases the reserved memory 
of APEX by two bytes to store 16-bit Ctrl_register And the hardware FPGA module was attached to the system with SPI interface. 
The FPGA was loaded with the recovery image externally. In the even of update neded for never attact this method can be scaled to 
provide resiliency to the attack via FPGA. Table II shows the hardware and memory resource utilization for a FRARE based system 
and compares it with different state- of-the-art implementations. The baseline Openmsp430 has the lowest hardware resources and 
requires no reserved memory. VRASED uses approximately 2 KB of reserved stack memory for computing the RA (using SW-Att 
code) and storing results. APEX adds nine bytes to store the verified proof of execution. RARES-A extends it further by 2 bytes for 
storing 16-bit Ctrl_register at runtime.
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Table 2: Resource Utilization- Quantitative Comparison
Architecture
Details

Hardware 
Reg.

Resources 
LUT

Reserved Mem. RAM 
(bytes)

Verified # LTL
# LTL

OpenMSP430 [2] 691 1904 0 -
V RASED [18] 729 1980 2332 10
APEX [11] 755 2290 2341 20
RARES − A 773 2330 2343 20
RARES − B 830 2572 2343 20
FRARE 830 2720 2343 25

FRARE based system and compares it with different state- of-the-
art implementations. The baseline Openmsp430 has the lowest 
hardware resources and requires no reserved memory. VRASED 
uses approximately 2 KB of reserved stack memory for computing 
the RA (using SW-Att code) and storing results. APEX adds nine 
bytes to store the verified proof of execution. RARES-A extends 
it further by 2 bytes for storing 16-bit Ctrl_register at runtime.

This work has calculated hardware resource foot- print for two 
implementations, 1) RARES-A with 16-bit Ctrl_register and 2) 
RARES-B which includes the addi- tional onboard recovery 
ROM. RARES-A requires 2.3% more hardware registers and 
approximately 1.7% more LUT than APEX. RARES-B adds the 
recovery memory (as shown in Fig 2) and it requires 7.37% more 
hardware registers and approximately 10.3% more LUT than 
RARES-A (for 16KB ROM). FRARE maintains all twenty formal 
LTL specification verification of APEX.

State-of-the-Art Qualitative Comparison
FRARE was compared with state-of-the-art secure-boot, remote 
attestation, control flow attestation, and recovery-based resilience 
systems for qualitative analysis as shown in Table I. RAs provide 
periodic runtime software state verification. CFA and DFA provides 
continuous runtime attacks detection [20-22]. However, they are 
resource-heavy and bloats the system memory by logs storing. The 
lightweight implementa- tions of APEX [11], VRASED, and resets 
the systems to prevent the attacks. Only FRARE based system 
offers lightweight runtime attacks detection, use-case-specific 
pre- vention, secure-boot and onboard recovery techniques without 
an abrupt system reset [18,7].

Conclusion
The lightweight attack resilient system design requires runtime 
memory modification attacks detection, prevention, and/or 
recovery techniques. FRARE demonstrates the first implementation 
and efficacy of a novel FPGA based recovery and attack prevention 
engine along wirh lightweight control register (Ctrl register) based 
continuous runtime attacks detec- tion technique. This approach 
enables the system developers to design use-case-based prevention 
techniques.
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