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ABSTRACT

Modern society is getting accustomed to the Internet of Things (IoT) and Cyber-Physical Systems (CPS) for a variety of applications that involves security-
critical user data and information transfers. In the lower end of the spectrum, these devices are resource-constrained with no attack protection. They become
a soft target for malicious code modification attacks that steals and misuses device data in malicious activities. The resilient system requires continuous
detection, prevention, and/or recovery and correct code execution (including in degraded mode). By end large, existing security primitives (e.g., secure-
boot, Remote Attestation RA, Control Flow Attestation (CFA) and Data Flow Attestation (DFA)) focuses on detection and prevention, leaving the proof
of code execution and recovery unanswered.

To this end, the proposed work presents lightweight FRARE: FPGA based Reconfigurable Attack Resilient Engine with Ver- ified Proof-of-Execution. It
leverages a custom control register (Ctrl_register) based runtime memory modification attacks classification and detection technique. It uses the Proof Of
Con- cept (POC) implementation of re-configurable use-case-specific attacks prevention and onboard recovery techniques. The proto- type implementation
on Artix 7 Field Programmable Gate Array (FPGA) and state-of-the-art comparison demonstrates very low (2.5%) resource overhead and efficacy of the

proposed solution.

*Corresponding author
Avani Dave and Krunal Dave, USA.

Received: March 05, 2022; Accepted: March 15, 2022; Published: March 25, 2022

Keywords: Runtime Resilient Soc, Memory Modification at-
tacks Resilient System

Introduction

Industry 4.0 has proliferated the use of connected small Internet
of Things (/oT) and Cyber-Physical Systems (CPS) in applications
ranging from home security systems, smart controllers, actuators,
sensor nodes, activity trackers, and alarm systems [1]. Often these
devices are used for security- critical user data and information
transfers. A majority of them are resource-constrained, with no
onboard security support, which makes them vulnerable to code
modification attacks [2,3]. For example, the Electric Control Unit
(ECU) of car measures various sensors (e.g., humidity, speed,
temperature, speed) and performs different actuation tasks such
as speed or heat controls. If an attacker modifies the temperature
sensor code to give a low reading, it can overheat the car or damage
other parts. Here are few more examples of such attacks [4-6].

The resilience of a system is defined as its ability to detect (including
boot-time and continuous runtime) the presence of attacks, prevent
adversarial effects and keep the device operational (including in
degraded mode) before it can reach a fail-safe or recovery state.
Fig 1 shows the resilient system operational timeline. The phases
P1 and PS5 depict the normal mode of operation. Phase P2 covers
attack occurrence andruntime detection. The phases-3 and 4 (P3
& P4) represent the prevention and recovery operations.

Runllme Attack Resilient Embedded ﬁystem

: RA/CFA :  Use Case Specific
Attacks Attacking | | Runtime Prevent/ || Recovery
Entering : Event Attacks | 1| Mitigate |:|to Normal
System | |occurrence| | Detection : Attacks Mode
Normal Malicious Code D;Sé:g::;t Normal
Operation (P1) Operation (P2) Operation (P3 & P4) Operation (P5)

Resilient System Operational Timeline

Figure 1: Depicts the resilient system operation flow timeline

From Figure 1, the resilient system requires a secure-boot like
boot-time software integrity validation technique before the
device enters in phase P1 [7-10]. Recent implementa- tions of
APEX [11] presents lightweight continuous runtime attacks
detection, prevention and verified proof of execution techniques
(covering phase 2 and 3 from Fig 1). However, it resets the systems
abruptly for attack prevention. Considering the wide applications
spectrum of these devices (e.g., aircraft controllers, automotive
Electronic Control Unit (ECU)), an abrupt system reset can result
in adverse effects. These devices requires to operate (including
degraded mode) until they can fail-safe or recover completely.
Furthermore, they requires use- case-specific prevention and
recovery techniques.
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To this end, this paper presents RARES: a novel lightweight
Runtime Attack Resilient Embedded System design using verified
proof of execution.

Research Contributions: The design and implementation of
RARES presents the following research contributions:

*  Runtime Attacks Classification & Detection: It clas- sifies
runtime memory modification attacks into three categories
and presents a novel lightweight 16 bit control register (Ctrl
register) based detection technique.

*  Prevention Technique: It demonstrates novel use-case-
specific re-configurable runtime attacks prevention tech-
niques. It gives the control in the hands of system devel-
opers to design use-case-specific prevention and recovery
techniques on FPGA.

Related Work

As shown in Figure 1, the resilient system design involves various
phases of detection, prevention, and recovery. Un- fortunately,
RARES was unable to find a single state-of- art implementation
supporting all of these. Therefore, we have studied and analyzed
the state-of-the-art works in three main categories: 1) detection,
2) prevention, and 3) recovery techniques.

Detection Techniques: Remote Attestation (RA) is widely used
client-server based security primitive that per- forms integrity
verification of software state of the un-trusted prover device upon
request from third party trusted verifier. Previous implementations
of hardware-based, software-based and hybrid RAs can detect
runtime memory modification attacks periodically. Control Flow
Attestation (CFA) and Data Flow Attestation (DFA) techniques
are used for continuous runtime attacks detection [12-25].

Prevention Techniques: The resource isolation is well- known
technique to prevent / limit the adverse effect of attacks. The
hardware-based techniques uses Trusted Platform Module (7PM),
Arm TrustZone, Trusted Execution Environ- ment (7EE), or
Physical Memory Protection (PMP) to isolate the shared resources
and limit the attacking surface. By end large, these are resource-
heavy techniques and not suit- able for targeted devices [12-
14,26]. Recent lightweight implementation of VRASED (formally
verified remote attestation) uses custom hardware module to detect
different security property based attacks [27]. APEX extends
VRASED to provide verified Proof Of eXecution (POX). They
both resets the system to prevent the runtime attack. RARES
advocates the development of use-case-specific prevention or
recovery techniques to avoid adverse effects from abrupt system
reset. The detailed system design is discussed in subsection III-B

[11].

Recovery Techniques: The affected device can be re- covered
by Over-The-Air (OTA) or manually code re-flash. Recent
implementation of Healed [28] presents Merkle Hash Tree
(MHT) based technique, which requires at least one node in the
network to be untampered, and its firmware is used to re-flash the
corrupted node. [29] keeps the software receiver-transmitter code
in trusted ROM for connecting the affected device to a recovery
server for re-flash. Recent implementations of CARE [30] presents
lightweight secure- boot with onboard recovery technique for the
system where manual or over-the-air code reflash are not possible.
SRACARE extends CARE by adding secure communication and
RA capabilities [26].

In summary, R4 can only detect periodic runtime attacks and it
suffers from CWE 367-Time-of-Check-Time-of-Use (TOCTOU)
attacks [31]. Both CF4 and DFA bloats the sys- tem memory
by storing runtime execution flow logs, which makes them
unsuitable for targeted low-end devices. The lightweight runtime
attacks detection technique presented by APEX provides only
one solution of resetting the system for preventing all different
attacks. Furthermore, they do not cover the boot-time attacks
detection or recovery techniques. In addition, RARES have
presented lightweight control register based runtime attack
detection, application specific prevention technique. The drawback
of RARES is all the attack scenarios and its remedial flows needs
to be known before the asic implementation.

Therefore, current work presents a FPGA based re- configurable
recovery engine. Additionally, it presents the lightweight
implementation of FPGA based recovery and automatic memory
relocation/mapping for providing resiliency to future unknown
attacks.

FRARE Overview
This section covers the details about the targeted platform,
FRARE based system architecture, design, and operation.

Targeted Platform

The low-end microcontrollers (e.g., Texas Instrument’s MSP430
or Atmel AVR ATMega micro-controllers) are widely used in
applications ranging from automotive ECU’s, indus- trial control
systems, actuators, aviation, sensors, smart [oT, and Cyber-
Physical System (CPS). These devices have very low hardware
foot print with only a few KB of address and data memories. They
do not have sophisticated hardware or OS support to detect and/
or prevent the malware attacks. Therefore, FRARE was designed
targeting the OpenMSP430 platform as well-maintained open
cores implementation of OpenMSP430 [2] was readily available.
However, the pro- posed concept of custom control register (Ctrl
register) based continuous runtime attacks classification and
detection, use- case-specific prevention, and onboard recovery can
be applied to other low-end devices such as Atmel AVR ATmega.

FRARE Design
Figure 2 Shows the high-level design architecture of FRARE.

Efpgabased |

Figure 2: Top-level design of lightweight runtime attacks resilient
FRARE system. Highlighted are the key components of the
proposed system.

FRARE was designed on top of APEX and RARES. It leverages
underlying architecture to provide verified proof-of- execution
(POX). FRARE tapes out the seven control signals
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(Pc, Irq, Ren, Wen, Daddr, DMAen, DMAaddr) to its custom
hardware module (Hw mod). It has carefully designed and modified
the internal Finite State Machines (FSMs) of both VRASED and
APEX for detecting different categories of attacks in only one
machine clock cycle (mclk), as discussed in subsection §IV. It
stores different attack bits in 16-bit control register Ctrl_register,
which are discussed in detail in subsection §V. The Ctrl register
does not have high- level write Application Program Interface
(API) access. The memory backbone acts as arbitration between
the front end, DMA, and execution-unit interfaces for any system
memory (e.g., program, data, and peripheral) accesses, and it is
used by FRARE for attack prevention. FRARE includes separate
secure recovery ROM and a small FPGA attached to the system
to provide configurable mitigation and recovery.

FRARE Operation

Upon power-on the first-stage boot-loader (FSBL) code (from
ROM) gets executed in reserved RAM memory and performs
the secure-boot verification on flash image. It re- flashes the
corrupted flash memory using recovery image upon integrity
failure detection, else the system operates normally. FRARE
satisfies all the security properties of APEX and uses the formally
verified software HMC SHA256 code (SW-Att (HACL*) from
ROM for secure-boot and RA function- ality. After that, the test
application code (App Code) from flash gets executed in a specific
region of (App. Avail. Mem.) RAM as shown in Figure 2 [32].
(Due to the page limitations here, interested readers are requested
to refer for R4 and POX operation). FRARE performs use-case-
specific prevention and recovery operation as discussed in section
?? upon runtime attack detection [11].

Runtime Attacks Classification

Based on the seven control signals (Pc, Irq, Ren, Wen, Daddr,
DMAen, DMAaddr) input to the custom hardware module and
security properties of APEX, FRARE has classified memory
modification attacks in three categories, namely: 1) CPU access
violation, 2) DMA access violation, and 3)

| Runtime Memory Modification Attacks Classiﬁcat{nd

| CPU Access Violation | DMA Access Violationl | Atomicity Violationl

ROM | [Stack [ RAM |  |RAM | Stack|

[ROM | | Stack | RAM |

=]

M AR MR BER

Figure 3: Runtime Memory Modification Attacks Classification
Atomicity violation as shown in Figure 3.

CPU Access Violation: For the system shown in Figure 2, while
executing the program code from RAM the CPU can only read
the data from reserved stack and ROM (Sw-Att code). However,
it cannot access the device’s secret key (K) from the key ROM.
Similarly, The key (K) is only accessed by the CPU while it
is executing the (Sw-Att) code inside the reserved stack. All
other ROM and stack read accesses are detected as CPU access
violation by the hardware FSM in Ctrl_register. Furthermore, any
unauthorized RAM access (both read and write) violation during
Sw-Att code execution are detected as CPU related RAM access
violations. This sub-module focuses on (Pc, Ren, Wen, Daddr)
control signals to detect any unauthorized memory read or write
access request by the CPU. The corresponding detection bits are
updated in Ctrl_register as discussed in subsection V.

DMA Access Violation: During the program code ex-ecution
from RAM, direct memory access (DMA) read re- quest from the
reserved stack and ROM (Sw-Att code) are allowed. However,
DMA cannot access the device secret key (K), while executing
the program code from RAM. Similarly, the DMA can access the
key (K) only during Sw-A#t code execution inside the reserved
stack. All other ROM and stack related read accesses are identified
as DMA access violation by the hardware FSMs and detected in
Ctrl_register. Furthermore, unauthorized RAM access (both read
and write) violations while running Sw-Att code are detected under
DMA- related RAM access violation. This sub-module focuses on
(Pc, Ren, Wen, DMAen, DMAaddr) control signals to detect any
unauthorized memory read or write access request using DMA.
The corresponding detection bits are updated in Ctrl register as
discussed in subsection V.

Atomicity Violation: This category detects any interrupt trigger
violation during the code execution inside RAM and reserved
stack (Sw-Att). The atomicity violation usually results in interrupt
service routine (IRQ) code execution, intermittent data and secure
key (K) leakage or loss. This sub-module detects mainly (/rq)
IRQ during the code execution from the RAM and reserved stack
(Sw-Atf). The POC atomicity violation prevention technique is
discussed in subsection ??.

Detection Technique

Based on attacks classification of section §IV, specific attack
detection bits are updated in 16-bit Ctrl register as depicted in Fig
4. Note that, at current stage FRARE has classified and detected
total ten different types of memory modification attacks and stored
them in bit positions D0-D9. The Ctrl_register bit (D0) and (D1)
detects atomicity violations during RAM and stack code execution.
The DMA related RAM write access violation is detected by flag bit
(D2). The DMA read access violations for RAM, stack, and ROM
are detected in bits (D3) (D4) and (D5), respectively. Similarly,
CPU related RAM write access violation is detected by flag bit
(D6). CPU read access violations for RAM,stack, and ROM

are detected in bits (D7) (D8) and (D9), respectively.
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Table I: State-of-The-Art (Qualitative) Comparison of Lightweight Attack Resilient Systems

Parameters FRARE | RARES | Ref. [11] | Ref. [18] Ref. [7] ref. [22] | Ref. [21] | Ref. [20] | Ref. [26] | Ref. [28]
Design Type Hybrid | Hybrid Hybrid Hybrid HW Hybrid Hybrid Hybrid Hybrid SW
Secure Communication yes yes yes yes no yes yes yes yes no
Lightweight yes yes yes yes no yes yes no yes no
Secure boot yes yes no no yes no no no yes no
Remote Attestation yes yes yes yes no no no no yes yes
(periodic RA)
Runtime Attacks yes yes yes yes no yes yes yes no no
Detection
System Reset for Attacks no no yes yes yes no no no no no
Prevention
Memory Mod. Attacks yes yes no no no no no no no no
Prevention
Recovery Techniques yes yes no no no no no no yes yes
Reconfigurable eFPGA yes no no no no no no no no no
Ctrl_llwegister
[ 1
3;3;2:1 DID|D9 D8 | D7 |D6|D5 | D4 | D3| D2 | D1 DO
T— Atomicity_RAM
- IR

Atomicity_Stack } =

DMA_RAM_Wr

DMA_RAM_Rd

DMA_Stack_Rd [DMA

DMA_ROM_Rd

CPU_RAM_Wr

CPU_RAM_Rd

CPU_Stack_ra [ U

CPU_ROM_Rd

Reset

Figure 4: Depicts 16 bit Ctrl_register for each attacks detection by FRARE. Note that only 11-bits of the 16-bit Ctrl register are
used currently, and remaining D11-D15 bits are left for future development.

From this point the system developer can write use-case- specific runtime attack prevention or recovery technique.

Evaluation

This section performs qualitative and quantitative evaluation of FRARE based resilient system. The subsection §VI-A covers the
resource utilization (and overheads) for quantitative analysis and subsection §VI-B performs the state-of-the-art comparison for
qualitative analysis.

Resource Utilization - Quantitative Comparison

FRARE was implemented on top of APEX [11] and com- plete verilog Resistor Transistor Logic (R7L) was synthesized on Artix-7
Field Programmable Gate Array (FPGA) board using Xilinx Vivado 2018. As shown in Figure 2, the new control register (Ctrl register)
was added into APEX's METADATA with only read access from the software. Therefore, FRARE increases the reserved memory
of APEX by two bytes to store 16-bit Ctrl_register And the hardware FPGA module was attached to the system with SPI interface.
The FPGA was loaded with the recovery image externally. In the even of update neded for never attact this method can be scaled to
provide resiliency to the attack via FPGA. Table Il shows the hardware and memory resource utilization for a FRARE based system
and compares it with different state- of-the-art implementations. The baseline Openmsp430 has the lowest hardware resources and
requires no reserved memory. VRASED uses approximately 2 KB of reserved stack memory for computing the RA (using SW-Att
code) and storing results. APEX adds nine bytes to store the verified proof of execution. RARES-A extends it further by 2 bytes for
storing 16-bit Ctrl register at runtime.
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Table 2: Resource Utilization- Quantitative Comparison

Architecture Hardware Resources Reserved Mem. RAM Verified # LTL
Details Reg. LUT (bytes) #LTL
OpenMSP430 [2] 691 1904 0 -

V RASED [18] 729 1980 2332 10
APEX [11] 755 2290 2341 20
RARES — A 773 2330 2343 20
RARES - B 830 2572 2343 20
FRARE 830 2720 2343 25

FRARE based system and compares it with different state- of-the-
art implementations. The baseline Openmsp430 has the lowest
hardware resources and requires no reserved memory. VRASED
uses approximately 2 KB of reserved stack memory for computing
the RA (using SW-Att code) and storing results. APEX adds nine
bytes to store the verified proof of execution. RARES-A extends
it further by 2 bytes for storing 16-bit Ctrl register at runtime.

This work has calculated hardware resource foot- print for two
implementations, 1) RARES-A with 16-bit Ctrl_register and 2)
RARES-B which includes the addi- tional onboard recovery
ROM. RARES-A requires 2.3% more hardware registers and
approximately 1.7% more LUT than APEX. RARES-B adds the
recovery memory (as shown in Fig 2) and it requires 7.37% more
hardware registers and approximately 10.3% more LUT than
RARES-A (for 16KB ROM). FRARE maintains all twenty formal
LTL specification verification of APEX.

State-of-the-Art Qualitative Comparison

FRARE was compared with state-of-the-art secure-boot, remote
attestation, control flow attestation, and recovery-based resilience
systems for qualitative analysis as shown in Table I. RAs provide
periodic runtime software state verification. CFA and DFA provides
continuous runtime attacks detection [20-22]. However, they are
resource-heavy and bloats the system memory by logs storing. The
lightweight implementa- tions of APEX[11], VRASED, and resets
the systems to prevent the attacks. Only FRARE based system
offers lightweight runtime attacks detection, use-case-specific
pre- vention, secure-boot and onboard recovery techniques without
an abrupt system reset [18,7].

Conclusion

The lightweight attack resilient system design requires runtime
memory modification attacks detection, prevention, and/or
recovery techniques. FRARE demonstrates the first implementation
and efficacy of a novel FPGA based recovery and attack prevention
engine along wirh lightweight control register (Ctrl register) based
continuous runtime attacks detec- tion technique. This approach
enables the system developers to design use-case-based prevention
techniques.
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