
 Volume 4(1): 1-3J Eng App Sci Technol, 2022

Review Article Open Access

Harnessing Kubernetes for Container Orchestration with
Review on Benefits, Challenges & Best Practices

Independent Researcher

Harika Sanugommula

*Corresponding author
Harika Sanugommula, Independent Researcher.

Received: February 07, 2022; Accepted: February 14, 2022; Published: February 21, 2022

Keywords: Kubernetes, Container Orchestration, Microservices,
Automation and Cloud Native

Introduction
The rapid adoption of containerization has transformed application
deployment and management practices. Kubernetes, originally
developed by Google, is an open source platform that automates
the deployment, scaling, and operations of application containers
across clusters of hosts. As organizations increasingly adopt
cloud native architectures, Kubernetes provides the necessary
tools for orchestrating containers, enabling efficient resource
management and enhancing application resilience. This paper aims
to provide a comprehensive overview of Kubernetes, highlighting
its architecture, features, and practical applications.

Kubernetes Architecture
Kubernetes operates on a master worker architecture, where the
master node manages the cluster, and worker nodes host the
application containers.

The key components of Kubernetes include:
Master Node: Manages the Kubernetes cluster and contains the
following components:
•	 API Server: The central management component that

exposes the Kubernetes API.
•	 Scheduler: Responsible for scheduling pods to nodes based

on resource availability.
•	 Controller Manager: Ensures the desired state of the cluster

by managing controllers.
•	 etcd: A distributed key-value store used for storing cluster

state data.

Worker Nodes: Execute the applications and contain:
•	 Kubelet: An agent that communicates with the master and

manages pod lifecycles.
•	 Kube-proxy: Manages network communication to and from

pods.
•	 Container Runtime: The software responsible for running

containers (e.g., Docker).

ABSTRACT
Kubernetes has emerged as a leading container orchestration platform, enabling organizations to automate the deployment, scaling, and management
of containerized applications. This paper explores the architecture of Kubernetes, its key components, and common use cases and comparison of EKS,
AKS & GKE. The advantages and challenges of implementing Kubernetes in production environments are also discussed along with the best practices.

ISSN: 2634 - 8853

Journal of Engineering and Applied
Sciences Technology

Diagram: Kubernetes Architecture

Source: https://mohan08p.medium.com/simplified-kubernetes-architecture-3febe12480eb

Citation: Harika Sanugommula (2022) Harnessing Kubernetes for Container Orchestration with Review on Benefits, Challenges & Best Practices. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-152. DOI: doi.org/10.47363/JEAST/2022(4)E152

 Volume 4(1): 2-3J Eng App Sci Technol, 2022

Key Features of Kubernetes
Self Healing: Automatically restarts failed containers, replaces
and reschedules containers, and kills containers that do not respond
to user defined health checks.

Scaling: Allows users to scale applications up or down seamlessly
with simple commands or automatically based on CPU utilization.

Service Discovery and Load Balancing: Automatically exposes
containers using a DNS name or IP address and balances traffic
between them.

Storage Orchestration: Automatically mounts storage systems,
whether from local storage, public cloud providers, or network
storage.

Use Cases and Examples
1.	 Microservices Architecture: Kubernetes is ideal for

deploying microservices, allowing independent scaling of
each service. For example, an e-commerce application can
scale its payment and inventory services based on demand.

YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: payment-service
spec:
 replicas: 3
 selector:
 matchLabels:
 app: payment
 template:
 metadata:
 labels:
 app: payment
 spec:
 containers:
 - name: payment
 image: payment-service:latest
2.	 CI/CD Pipelines: Kubernetes can streamline Continuous

Integration and Continuous Deployment (CI/CD) processes
by managing application versions and ensuring consistent
environments.

Table: Here's a Comparison table for Azure Kubernetes Service, Amazon Elastic Kubernetes Service and Google Kubernetes
Engine (GKE)

Feature AKS EKS GKE
Cloud Provider Microsoft Azure Amazon Web Services (AWS) Google Cloud Platform (GCP)
Ease of Setup Easy to set up with Azure CLI Requires IAM roles and policies Very straightforward with GCP
Integration with CI/CD Integrates with Azure DevOps Integrates with AWS

CodePipeline
Integrates with Cloud Build

Pricing Model Free control plane, pay for VMs Charges for control plane and
VMs

Charges for control plane and
VMs

Node Management Managed scaling and upgrades Managed scaling and upgrades Autopilot mode for automatic
management

Networking Azure CNI and kubenet options Amazon VPC for networking VPC-native with advanced
options

Monitoring Azure Monitor & Log Analytics CloudWatch integration Stackdriver integration
Global Reach Global Azure regions Global AWS regions Global GCP regions
Security Features Azure Active Directory

integration
IAM roles for Kubernetes IAM integration

Multi-Cloud Support Limited to Azure Limited to AWS Limited to GCP
Customizability High, with Azure CLI and APIs High, with AWS CLI and APIs High, with cloud CLI and APIs
User Community Growing community, extensive

docs
Large community, extensive

resources
Strong community support

Advantages of Implementing Kubernetes in Production
The benefits of Kubernetes in production environments are
extensive. It offers scalability, automatically adjusting applications
to meet the high demand. Its high availability is enhanced by
self-healing capabilities, ensuring minimal downtime. Kubernetes
also promotes resource efficiency by optimizing the resource
utilization through containerization. Additionally, Kubernetes
supports portability, enabling applications to run consistently
across different environments, be it on-premises or in the cloud.
With its support for microservices architecture, Kubernetes
facilitates better modularity. Furthermore, Kubernetes enables
declarative configuration, allowing infrastructure to be defined
and managed as code using YAML files.

Challenges of Implementing Kubernetes in Production
Despite its benefits, Kubernetes introduces certain challenges. Its
complexity results in a steeper learning curve for teams unfamiliar
with container orchestration. There is also operational overhead,
as ongoing management and monitoring of clusters is essential.
Security concerns are prominent if Kubernetes clusters are not
properly configured. Resource management can be tricky, as
balancing resource allocation for applications is not always
straightforward. Integration with existing tools and workflows
may also pose compatibility challenges. Lastly, networking
configuration within Kubernetes can be complex and often requires
expertise.

Citation: Harika Sanugommula (2022) Harnessing Kubernetes for Container Orchestration with Review on Benefits, Challenges & Best Practices. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-152. DOI: doi.org/10.47363/JEAST/2022(4)E152

 Volume 4(1): 3-3J Eng App Sci Technol, 2022

To optimize Kubernetes Usage, Several best Practices Should
be Followed
Organizing the resources logically enhances manageability and
security. We can Implement Role-Based Access Control (RBAC)
which will secure access to resources by limiting user permissions.
Monitoring and Logging can be helpful, tools like Prometheus
and Grafana can be employed for real-time monitoring, while
the ELK stack can be used for centralized logging. Automating
the Deployments- CI/CD pipelines streamline deployments and
reduce manual errors. Regular update can ensure Kubernetes, and
its components are up to date to maintain security and performance
issues. Another important factor is to have backup and disaster
recovery. Backing up critical data and configurations regularly will
ease when in disaster situations. Jumping into the resource requests
and limits defining the resource requests and limits ensures better
resource management and prevents over-allocation which avoid
any bottle neck problems that may occur anytime.

Conclusion
Kubernetes is a powerful platform that simplifies the complexities
of container orchestration. Its robust architecture, combined
with features like self-healing, scalability, and efficient resource
management, makes it a preferred choice for modern application
deployment. Despite its advantages, organizations must navigate
challenges related to complexity and resource requirements. By
following best practices and leveraging Kubernetes effectively,
businesses can unlock the full potential of their cloudnative
applications [1-3].

References
1.	 Kelsey Hightower, Brendan Burns, Joe Beda (2017)

Kubernetes Up and Running: Dive into the Future of
Infrastructure. O'Reilly Media.

2.	 Tamer Elsayed (2019) Kubernetes in Action. Manning
Publications.

3.	 Mohan Pawar, “Simplified Kubernetes Architecture”,
Medium, (2020) https://mohan08p.medium.com/simplified-
kubernetes-architecture-3febe12480eb (Architecture diagram.

Copyright: ©2022 Harika Sanugommula. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

