Journal of Engineering and Applied

Sciences Technology

Review Article

ISSN: 2634 - 8853

AN
&(ﬁgj"&SCIENTIFIC

S Research and Community

v
Open @ Access

Harnessing Kubernetes for Container Orchestration with
Review on Benefits, Challenges & Best Practices

Harika Sanugommula

Independent Researcher

ABSTRACT

Kubernetes has emerged as a leading container orchestration platform, enabling organizations to automate the deployment, scaling, and management
of containerized applications. This paper explores the architecture of Kubernetes, its key components, and common use cases and comparison of EKS,
AKS & GKE. The advantages and challenges of implementing Kubernetes in production environments are also discussed along with the best practices.

*Corresponding author
Harika Sanugommula, Independent Researcher.

Received: February 07, 2022; Accepted: February 14, 2022; Published: February 21, 2022

Keywords: Kubernetes, Container Orchestration, Microservices,
Automation and Cloud Native

Introduction

The rapid adoption of containerization has transformed application
deployment and management practices. Kubernetes, originally
developed by Google, is an open source platform that automates
the deployment, scaling, and operations of application containers
across clusters of hosts. As organizations increasingly adopt
cloud native architectures, Kubernetes provides the necessary
tools for orchestrating containers, enabling efficient resource
management and enhancing application resilience. This paper aims
to provide a comprehensive overview of Kubernetes, highlighting
its architecture, features, and practical applications.

Kubernetes Architecture

Kubernetes operates on a master worker architecture, where the
master node manages the cluster, and worker nodes host the
application containers.

The key components of Kubernetes include:

Master Node: Manages the Kubernetes cluster and contains the

following components:

e API Server: The central management component that
exposes the Kubernetes API.

¢ Scheduler: Responsible for scheduling pods to nodes based
on resource availability.

e Controller Manager: Ensures the desired state of the cluster
by managing controllers.

e eted: A distributed key-value store used for storing cluster
state data.

Worker Nodes: Execute the applications and contain:

e Kubelet: An agent that communicates with the master and
manages pod lifecycles.

e Kube-proxy: Manages network communication to and from
pods.

e Container Runtime: The software responsible for running
containers (e.g., Docker).

Diagram: Kubernetes Architecture

Key Value Store - etcd

Optional Add-Ons
(DNS, UL..)

Worker Node

Optional Add-Ons
{DNS, Ul...)

B

Worker Node

Source: https://mohan08p.medium.com/simplified-kubernetes-architecture-3febe12480eb

J Eng App Sci Technol, 2022

Volume 4(1): 1-3



Citation: Harika Sanugommula (2022) Harnessing Kubernetes for Container Orchestration with Review on Benefits, Challenges & Best Practices. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-152. DOI: doi.org/10.47363/JEAST/2022(4)E152

Key Features of Kubernetes
Self Healing: Automatically restarts failed containers, replaces
and reschedules containers, and kills containers that do not respond
to user defined health checks.

Scaling: Allows users to scale applications up or down seamlessly
with simple commands or automatically based on CPU utilization.

Service Discovery and Load Balancing: Automatically exposes
containers using a DNS name or IP address and balances traffic
between them.

Storage Orchestration: Automatically mounts storage systems,
whether from local storage, public cloud providers, or network
storage.

Use Cases and Examples

1. Microservices Architecture: Kubernetes is ideal for
deploying microservices, allowing independent scaling of
each service. For example, an e-commerce application can
scale its payment and inventory services based on demand.

YAML.:

apiVersion: apps/vl

kind: Deployment

metadata:

name: payment-service

spec:

replicas: 3

selector:

matchLabels:

app: payment

template:

metadata:

labels:

app: payment

spec:

containers:

- name: payment

image: payment-service:latest

2. CI/CD Pipelines: Kubernetes can streamline Continuous
Integration and Continuous Deployment (CI/CD) processes
by managing application versions and ensuring consistent
environments.

Table: Here's a Comparison table for Azure Kubernetes Service, Amazon Elastic Kubernetes Service and Google Kubernetes

Engine (GKE)
Feature AKS EKS GKE
Cloud Provider Microsoft Azure Amazon Web Services (AWS) Google Cloud Platform (GCP)

Ease of Setup Easy to set up with Azure CLI

Requires IAM roles and policies Very straightforward with GCP

Integration with CI/CD Integrates with Azure DevOps

Integrates with AWS
CodePipeline

Integrates with Cloud Build

Pricing Model Free control plane, pay for VMs

Charges for control plane and Charges for control plane and

VMs VMs
Node Management Managed scaling and upgrades Managed scaling and upgrades Autopilot mode for automatic
management
Networking Azure CNI and kubenet options Amazon VPC for networking VPC-native with advanced
options
Monitoring Azure Monitor & Log Analytics CloudWatch integration Stackdriver integration
Global Reach Global Azure regions Global AWS regions Global GCP regions
Security Features Azure Active Directory IAM roles for Kubernetes IAM integration
integration
Multi-Cloud Support Limited to Azure Limited to AWS Limited to GCP

Customizability High, with Azure CLI and APIs

High, with AWS CLI and APIs High, with cloud CLI and APIs

User Community Growing community, extensive

docs

Large community, extensive
resources

Strong community support

Advantages of Implementing Kubernetes in Production

The benefits of Kubernetes in production environments are
extensive. It offers scalability, automatically adjusting applications
to meet the high demand. Its high availability is enhanced by
self-healing capabilities, ensuring minimal downtime. Kubernetes
also promotes resource efficiency by optimizing the resource
utilization through containerization. Additionally, Kubernetes
supports portability, enabling applications to run consistently
across different environments, be it on-premises or in the cloud.
With its support for microservices architecture, Kubernetes
facilitates better modularity. Furthermore, Kubernetes enables
declarative configuration, allowing infrastructure to be defined
and managed as code using YAML files.

Challenges of Implementing Kubernetes in Production
Despite its benefits, Kubernetes introduces certain challenges. Its
complexity results in a steeper learning curve for teams unfamiliar
with container orchestration. There is also operational overhead,
as ongoing management and monitoring of clusters is essential.
Security concerns are prominent if Kubernetes clusters are not
properly configured. Resource management can be tricky, as
balancing resource allocation for applications is not always
straightforward. Integration with existing tools and workflows
may also pose compatibility challenges. Lastly, networking
configuration within Kubernetes can be complex and often requires
expertise.

J Eng App Sci Technol, 2022

Volume 4(1): 2-3



Citation: Harika Sanugommula (2022) Harnessing Kubernetes for Container Orchestration with Review on Benefits, Challenges & Best Practices. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-152. DOI: doi.org/10.47363/JEAST/2022(4)E152

To optimize Kubernetes Usage, Several best Practices Should
be Followed

Organizing the resources logically enhances manageability and
security. We can Implement Role-Based Access Control (RBAC)
which will secure access to resources by limiting user permissions.
Monitoring and Logging can be helpful, tools like Prometheus
and Grafana can be employed for real-time monitoring, while
the ELK stack can be used for centralized logging. Automating
the Deployments- CI/CD pipelines streamline deployments and
reduce manual errors. Regular update can ensure Kubernetes, and
its components are up to date to maintain security and performance
issues. Another important factor is to have backup and disaster
recovery. Backing up critical data and configurations regularly will
ease when in disaster situations. Jumping into the resource requests
and limits defining the resource requests and limits ensures better
resource management and prevents over-allocation which avoid
any bottle neck problems that may occur anytime.

Conclusion

Kubernetes is a powerful platform that simplifies the complexities
of container orchestration. Its robust architecture, combined
with features like self-healing, scalability, and efficient resource
management, makes it a preferred choice for modern application
deployment. Despite its advantages, organizations must navigate
challenges related to complexity and resource requirements. By
following best practices and leveraging Kubernetes effectively,
businesses can unlock the full potential of their cloudnative
applications [1-3].

References

1. Kelsey Hightower, Brendan Burns, Joe Beda (2017)
Kubernetes Up and Running: Dive into the Future of
Infrastructure. O'Reilly Media.

2. Tamer Elsayed (2019) Kubernetes in Action. Manning
Publications.

3. Mohan Pawar, “Simplified Kubernetes Architecture”,
Medium, (2020) https://mohan08p.medium.com/simplified-
kubernetes-architecture-3febe12480eb (Architecture diagram.

Copyright: ©2022 Harika Sanugommula. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

J Eng App Sci Technol, 2022

Volume 4(1): 3-3



