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ABSTRACT

In this paper, a new two-parameter extended inverted Weibull distribution called the Inverted Weibull Poisson distribution is introduced using the
Poisson generator. This method adds one shape parameter to a baseline distribution thereby increasing its flexibility and applicability in modeling
lifetime data. We study the structural properties of the new distribution such as the mean, variance, quantile function, median, ordinary and incomplete
moments, reliability analysis, Lorenz and Bonferroni curves, Renyi entropy, mean waiting time, mean residual life, stress-strength parameter, and
order statistics. We use the method of maximum likelihood technique for estimating the model parameters of inverted Weibull Poisson distribution
and the corresponding confidence intervals are obtained. Two lifetime data sets are presented to demonstrate the applicability of the new model and
it is found that the new model has superior modeling power when compare to the Inverted Weibull distribution.
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Introduction

Adding an extra shape parameter to a classical (conventional)
distribution is very common in statistical distribution theory. Often
introducing an extra parameter(s) brings more flexibility to a class
of distribution functions essentially for data analysis purposes to
improve the modeling potential of the classical distribution. For
example, Azzalini introduced the skew-normal distribution by
introducing an extra parameter to the normal distribution to induce
more flexibility into the normal distribution [1]. Mudholkar and
Srivastava proposed a method that introduced an extra parameter
to a two-parameter Weibull distribution and called it exponentiated
Weibull model which has two shape parameters and one scale
parameter [2]. Marshall and Olkin introduced another method that
adds a parameter to any distribution function; two special cases
were considered namely when X follows exponential or Weibull
distribution and derived many properties of this proposed model
[3]. The well-known generators are the following: the beta-G
family of distribution which was developed and studied by Eugene
et al., Cordeiro and de Castro developed the Kumaraswamy-G
family of distribution, Nofal et al. developed the generalized
transmuted-G family of distribution, transmuted exponentiated
generalized-G family of distribution was proposed and studied by
Yousof et al., transmuted geometric-G family of distribution was
developed and studied by Afify et al., Kumaraswamy transmuted-G
family of distribution was studied by Afify et al. [4-8]. Alizadeh et

al. developed the generalized odd generalized exponential family
of distribution, exponentiated Weibull-H family of distribution
was proposed and developed by Cordeiro et al., exponentiated
generalized-G Poisson family of distribution was developed and
studied by Aryal and Yousof, Alizadeh et al. proposed and studied
transmuted Weibull-G family of distribution, Marshall-Olkin
generalized-G Poisson family of distribution was developed and
studied by Korkmaz et al. [9-13]. Oluyede, et al. introduced
the gamma Weibull-G family of distributions by combining the
gamma generator with the Weibull-G family of distributions which
was defined by Bourguignon et al. and odd Lomax-G family of
distribution was studied by Cordeiro et al. [14-16].

Motivated by the advantages offered by a generalized distribution
which makes it more relevant in modeling lifetime data that
are non-monotonic exhibiting different shapes of the hazard
function ranges from increasing, decreasing, and bathtub shapes,
as well as the versatility of compounding Inverted Weibull
and Poisson distribution in modeling real-life data, we study a
new generalization called the Inverted Weibull Poisson (IWP)
distribution which possesses these properties.

We are also motivated to study the IWP distribution because of
its simplicity and extensive usage of IW distribution in modeling
lifetime events. Also, the current generalization provides a wider
application even to complex situations that involve different shapes
of the hazard function.
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The Model, Sub-Models, and Properties of the Inverted
Weibull Poisson (IWP) Distribution

The probability density function (PDF) and the associated
distribution function (CDF) of the two-parameter inverse Weibull
(IW) distribution is given by

1 -x"

g(r;0)=wx e 1, »>0,0>0 (D

and

G(xw)=e™", x>0,0>0 (2)

Where w is a positive shape parameter (@ >0), respectively.
Keller et al. used the IW distribution to study the wear and tear
phenomena of some mechanical components such as pistons,
and crankshaft, of diesel engines [17]. In addition, the [IW model
has many important applications in useful life, wear-out periods,
Insurance, reliability engineering, service records, and life testing,
see Khan and King [18].

Several generalizations of the Inverted Weibull distribution
have been proposed and studied, see, for example, transmuted
inverted Weibull, exponentiated transmuted Inverted Weibull,
Weibull Inverted weibull, Alpha Power extended inverted weibull,
modified Extended Inverted Weibull distributions, respectively,
by Ogunde et al. [19-23]. Suppose that X has the Inverted Weibull
distribution where its PDF and CDF are given in (1) and (2)
respectively. Given N, let X1,...,Xv be independent and identically
distributed random variables from APEIW distribution. Let N be
distributed according to the zero truncated Poisson distribution
with pdf

n -}

P(N=n)= L

= >
R .

Let X=max(Z1,...,ZN), then the CDF of X/ N=n is given by
- n
Fx/n=n (X):(e'x -1) ,

Which is the exponentiated Inverted Weibull distribution. The
Inverted Weibull Poisson distribution is the marginal CDF of X,
given by

Lewp/2(")]

F(w,)= x>0;1,0>0 3)

Where ®, and A are positive shape parameters respectively. The
corresponding IWP density function is given by

lx e exp /—Ae"‘ “ /

@) x>0;4,0>0 (4)

J&)=

Where w, and 1 are positive shape parameters respectively. The
graph of the CDF and PDF are respectively drawn below in figure
(1) for various values of the parameters of IWP distribution.

Graph of distribution function of IWP distribution Graph of density function of WP distribution

Figure 1: The Graph of the CDF and the PDF of the /WP
Distribution

The survival function “(S(x)) “ is obtained by using the relation,
SC)=1-F(x) ®)
i l-exp[-/le'x-w]
=

And the hazard function is given as

h(x):fs% (6)

_ wx! e exp[-/le"’w]

Figures 2 is the graph of the survival and the hazard function of
IWP distribution for various values of the parameters. The graph
shows that the hazard function of IWP model exhibits the non-
monotone failure rate or upside-down bathtub failure rate for the
values of the parameters considered.

Graph of Reliability function of IWP distribution

Graph of hazard function of IWP distribution

R(x)

Figure 2: The Graph of the Reliability and Hazard Function of
IWP Distribution

Quantile Function
Quantile function can be defined as an inverse of the distribution
function. Consider the relation

FXO)=U=X=F"(U)

Where U follows standard Uniform distribution. The u quantile
of IWP distribution is given by

s [Coetratey)| )
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The lower quartile, mean, and the upper quartile /WP distribution
can be obtained from (7) by setting the value of # to be 0.25,
0.5, and 0.75 respectively. An expression for the lower quartile,
median, and upper quartile is given as

XMS:[Glog{l-o.zs(e-ﬂ‘-l)})]_]/w (8)

Xo5= [G log{l-O.S(e‘A-l)})]il/w ©)

and

Xo.75= [G log{l—0.75(e'i-1)})]-l/w (10)

Random Numbers Generation

Random numbers can be generated for the /WP (4,w) distribution,
for this let, simulating values of random variable X with the CDF
given in (3) and “u” denote a uniform random variable in (0, 1),
then the simulated values of X are obtained by as,

XZ/(% log{ -u[e‘*-l}]}/-l/w

Mixture Representation for the Density Function

The mixture representation of the density function is a very useful
tool used in deriving the statistical properties of generalized
distribution. In this section, the mixture representation of the
IWP density function is obtained. Using the following series
representation:

(11)

o=y L (12)

We derive

w /1.
R e ) e
X o-le

fe)=

(13)

(64 D&

The above expression is a density of inverted Weibull distribution
with scale parameter (1+7) and shape parameter @

Ordinary and Incomplete Moment

The ordinary moments of distribution play a very important role
in statistical applications. The " moment of a random variable
X can be obtained using

B0~ [ s (14)
Putting (20) in (21), we have
| (_/’{)l
m= (e A -1) z (15)
where
(16)

o0
fﬂ) J-xrwl (1+k)x“’
=00

1
By letting z=(1+k)x®, x:z'i ((+k) }_“ and putting it in (16), we

have
1 r
f"”ZZ ((1+0))°T(1- /)

Finally " moment of /WP distribution is given by

R L r
b= 2 ()T (-77e) (17
=0
r<w. Fo r=1,2,..T'(.) is the gamma function. By taking =1, we
obtain the mean of X that is, #,=#. The variance of X obtained
by ?=E[(X-1)*]=,-1>. Also, we can determine the
central moment and 7" cumulant of X respectively defined by

krlu Z( ) m/'trma

Taking k=u, several measures of skewness and kurtosis based on
the central moments (or cumulants) can be obtained.

r

u Bl 1= ) (1 )i, G,

m=0

Subsequently, an expression for an Incomplete moment is given by

t
9, (= f X f(x)dx (18)
0
Putting (20) in (24), we have
_ (-A)’
0= 1)2
where
t
/= f ot IO g (19)

0
1

Also, by letting z=(1+k)x®, Fz‘i ((+k) ) and putting it in (19),

we have

f"’:%) ((1+k))?rvr(1- Y (1+R) )
Finally the 7" incomplete moment of IWP distribution is given by

1 D -
%((1+k))“F(1-f/w.(1+k)fw).

PO~ (20)

Where M Jik s defined in (20), r(mm)=[" v™le¥ dv

is the complementary incomplete gamma function.. the first
incomplete moment of IWP distribution is given as

1 <D 1
Wl(f):(éd—_l)z%((l'i'k))‘“r(l' Y (148 ) 21)
=0

The mean deviation, y;(x) and median deviation, y,(x) can be
obtained by using the relation, y; (x)=2uF(W)-2y () and p,(x)=u-
2y,(M). Where y=E(X) and M is the median of the /WP random
variable. Both the y;(u) and y;(M) are calculated from the first
incomplete moment as given in (21)
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Inequality Measures

Inequality measures can be applied in biomedical sciences, product
quality control economics, insurance and demography, and many
more. Here we consider the following inequality measures:

Mean Residual Life (MRL): Residual life is defined as the
expected additional life length for a unit that is alive at age ¢, and
it is represented mathematically by m,()=E(X-t/ X> 1), £>0.

The MRL of X can be obtained by using the formula:

[1-¢1 (8]

S5t (22)

my ()=

Where S(7) is the survival function of X'and ¢,(¥) as given in (21).
Then we have

2’ L
m(H= S(t)((gﬂ 1)2 (4R)T(1- 1/ (L4 )) (23)

The mean inactivity time (MI7) (mean waiting time) is defined by
M(H=E(tX/X<D), £>0, and it can be obtained by the formula:

401(0]

M=t G

24

Also putting (27) in (30), we obtain an expression for MIT for
APEIWP distribution as

r © ('/Di

1
| mZ-ﬁoT((Hk))Z’F(l-1/w.(1+k)f‘”)]|

25
5 (25)

Mx(l): -

Bonferroni and Lorenz Curves
The Bonferroni and Lorenz curve of IWP distribution are
respectively given by

f X x)dx (26)

R

Since,

- 1/w'(1+k)fw)

B

fx’f(x)dx= C

therefore
A A
F(t) (e-1) (e* DL

(/1)

Bif=—— ((1+k))wr(1 Y +be?) (27)

And the Lorenz curve

Lﬁ(t):%of X'(x)dx (28)

1 1

14 (z) '
~u(et1) s

(1+k);7)wr(1 Y, (+0 )

Stress-Strenght Parameter

Suppose X1 and X2 be two continuous and independent random

variables where X,~IWP (1,,0) and X,~IWP (J,,0), then the stress-

strength parameter, say, S, is defined as
8- f 1 QF> () (29)

Using the CDF and the PDF of IWP in (35), the stress-strength

parameters can be obtained as

_F®) ;Z( I)H,i(;)
Tea D LN iiplgt \(g+1)
Lpq

e

(30)

Entropy
The Renyi entropy of IWP distribution can be obtained using a
formula suggested by Renyi (1961) as

1 [ee]
R=T7 f Frdx 31)

Inserting (4) in (31), we have

V

1 r wlxleX” exp[-1e™”] Vd
_1f (e7-1) (32

Using Taylor series expansion in (12), we have

1 v & .1/ °
w” A Z(V/Dﬂ( 1 f @+ D) G (DX gy

J- (x)dx= T 2,

By letting the value of z=(/Hv)x %, x=7"4 o(Hv)) e @,

WA i (D(-1)
G

(e-1)v4 . 1
=

f f(x)dx=

Where,

(a)+ 1) (1)
w
Finally, the Renyi entropy of IWP distribution is given by

- S )

(33)

Order Statistics
Suppose a random sample is drawn from the /WP (w,1) denoted
by X of size m have the following order statistics denoted by

X1.,<X,.,<...<X.,. Then, the PDF of the " order statistics
is given by
S.,)= WFV ([1-FC)]"™fx) (34)
Using the series expansion (12) in (34), we have
+r-1 35
s ),Z( (") Fre 69
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Considering, ! (x)A(x) and further applying the Taylor
series, we have

0

Fy+rl(x)f(x) ( — 1)]+r -w-l Z

1,m,p,q=0

(_1)l+m+p m (1
m!q!(a-1)m+! (-40+1) <p)

o
X(];I)Qﬂﬂﬁéw”V“ (36)

Finally the »" order statistics of /WP distribution is given by

nlwl -
z(r-l)!(n-r)!Z

() e
P

Maximum Likelihood Estimation
Let X1, X2, . . . ,Xu be a random sample drawn from IWP (4, ®)
then the likelihood function is given by

r o te exp [fale™™ )]
Lisio) Ijo (1) ’

(_ 1 )j+7[+m+p

£y MWHWM%?)

19! (e
:Om.q.(e

(37

(3%)

Then, taking z%=¢"™ " the loglikelihood function (logL=I) is

given by
o 55 S S
=nlog (8%_1))-(60- ) Z X;- Z X - “ e

We differentiate (39) with respect 4 and w, to obtain the element

(39)

T
of the score vector (VA:%,VCU:;}—Z) . The elements of the score

vector are given by

n ne* - s
e L (40)
=1
and
V=2 xlog(@) - ) xie ™ nog(@) Z X log() e (41)

i=1 i=1

By setting the non-linear system of equations V;=Vo=0 and
obtaining a feasible solution by solving the simultaneously, the
MLE of the parameters of the IWP model are obtained. However,
these equations cannot be solved analytically, statistical software
can be employed to solve them numerically by using iterative
methods such as Newton-Raphson algorithms. To carry out
interval estimation of the model parameters, we require the
observed information matrix

o=l )

Under certain standard regularity conditions as n—oo, the
distribution of & can be approximated by a multivariate normal

N (0.H(3)") distribution to construct approximate confidence

intervals for the parameters. Here, #(€) represent the total observed
information matrix calculated at &

Asymptotic (1-p)100% confidence intervals for parameters can

be obtained as
z:l:Zp/21/21 N a\)ﬂ:ZP/zﬂle

Least Square Method (LSE)

Let xi,...,x, be a random sample from IWP distribution with
parameters A, and w. By considering the corresponding order
statistics Xi.,,....X,.,, taking E/F (X, )]— . The least square

estimates can be obtained by minimizing the following expression
n n . 2
2@ Y [Fe)-BFe)) = ) [
=1 =1

Minimizing L’(§) with respect to A, and w, we have the following
system of non-linear equations:

29 =2i |Feo-—=|Fea-o

Where F()=2F(x) and F(x),==F(x). These equations can be

solved numerically by any software to obtain the estimates 7z,

4o
and Orsp

Weighted Least Square (WLS)
Let x,,...,X, be a random sample from IWP distribution with
parameters a4, and w. The likelihood function for a weighted
least square estimate is given by

TGl )Z(n+2)

W@)z 7y

]

Minimizing W(&) with respect to 4, and, we have the following
system of non-linear equations:

BW((:) (n+1)*(n+2)
Z i(n-i+1) [F(x) —I]F(X) =0
aw@) O (rHD2(n2)
i(n-i+1)

[F(x‘)- nfl] F@),=0

This system of non-linear equations can be solved numerically
by any software to obtain the estimates 7,5, and @,

Cramer Von Mises (CVM)

Crammer von Mises is a type of minimum distance estimators.
Let x1,...,x, be a random sample from APEIWP distribution with
parameters A,and . The likelihood function for Crammer von
Mises estimate is given by

O 2 freo> 1/

Minimizing C(¢) with respect to /,and w, we have the following
system of non-linear equations:

aW(@ 22 [F(x, -—]F(x,),l

aL © 722 [F(x, __] F(x),=0

These equations can be solved numerically by any software to
obtain the estimates 7, and &,
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Practical Applications

In this subsection, we evaluate the performance of the IWP
distributions with the other four competing models to two
reliability data sats. The data sets are described as follows:

The data set (data set 1). The data set was presented by Murthy
et al. on the failure times (in weeks) of 50 components [24]. The
data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535,
0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838,
3.269,3.977,3.981,4.520,4.789, 4.849, 5.202, 5.291, 5.349, 5.911,
6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596,
9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152,
17.283,19.418, 23.471, 24.777, 32.795, 48.105.

The data set (data set 2). The data set is made up of failure time
in hours of Kevlar 49/epoxy strands with pressure at 90% and
was already studied by Andrews and Herzberg [25]. The data
consists of 101 observations and the numbers are: 0.01, 0.01,
0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08,
0.09,0.09,0.10, 0.10,0.11,0.11,0.12,0.13, 0.18, 0.19, 0.20,0.23,
0.24,0.24,0.29,0.34,0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54,
0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,0.72, 0.72, 0.72, 0.73, 0.79,
0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02,
1.03,1.05,1.10,1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34,
1.40,1.43,1.45,1.50,1.51,1.52,1.53,1.54,1.54,1.55, 1.58,1.60,
1.63,1.64,1.80,1.80,1.81,2.02,2.05,2.14,2.17,2.33,3.03, 3.03,
3.34,4.20,4.69, 7.89.

The descriptive statistics of the two data sets are given in Table
1 and the graph of Total Time on Test plot is given in figure 3
and Boxplot in figure 4. From this table, it can be observed that
the two data sets are over-dispersed, leptokurtic, and positively
skewed. Also, from figure 5, it can be observed that data 1 exhibits
decreasing failure rate and data 2 exhibit a non-monotone failure
rate

Table 1: Exploratory Data Analysis of Failure Data

Diagram I Diagram 2

Figure 4: Box Plot for the Two Failure Data

The ML estimates along with their standard error (SE) and the
confidence interval in a curly bracket of the model parameters
are provided in Tables 2 and 3. In the same tables, the analytical
measures including; minus 2*log-likelihood (-2log L), Akaike
Information Criterion (AIC), Bayesian information criterion (BIC),
and Kolmogorov Smirnov (KS) test statistic are obtained for the
model considered. The fit of the proposed /WP distribution is
compared with its sub model Inverted Weibull distribution

Table 2: Analytical Results of the IWP Model and Other
Competing Models for Kevlar 45/Epoxy Data

Model o A 21 AlC BIC K

WP 207841 | 05134 | 33566 | 339.66 | 34348 | 0.1960
(0.5275) | (0.0473)

W 0.4893 =@ 337.90 | 33990 | 34181 0.2412
(0.0452)

Table 3: Analytical Results of the IWP Model and Other
Competing Models for Failure Time of Components

Discriptive statistics Data 1 Data 2
Sample size 50 101
Mean 7.82 1.03
Lower quartile 1.39 0.24
Upper quartile 10.04 1.45
Median 5.32 0.80
Variance 84.75 1.25
Kurtosis 7.23 14.41
Skewness 2.38 3.05

N7

v

"
/
ER / ER // 7
£ A
Diagram [ Diagram 2

Figure 3: TTT Plot for the Two Failure Data

Model A ® 21 AlC BIC K

wp 27524 | 04474 | 262.53 266.53 27176 | 0.2038
(0.4095) | (0.0245)

w 0.4365 =@ 31606 | 31806 | 32068 | 0.4406
(0.0254)

Based on Tables 2 and 3, it is evident that /WP model provides
the best fit than its sub-model, and can therefore be taken as the
best model based on the data considered.

Conclusion

In this work, we study the inverted Weibull Poisson distribution.
Some structural properties of the /WP distribution are derived
such as ordinary and incomplete moments, Renyi entropy, order
statistics, mean residual life, mean inactivity time, Bonferroni
and Lorenz curves, and stress strength reliability. Estimation of
the population parameters is carried out by using the maximum
likelihood estimation method. We recommend that further studies
should be carried out by using different estimations techniques
such as the Weighted Least Square method, Minimum spacing
method, and Bayesian method, etc., and compare the performance
of the estimation techniques [26-34].
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