
J Eng App Sci Technol, 2025                         Volume 7(12): 1-7

Review Article Open    Access

Inverted Weibull Poisson Distribution: Properties, Inference, and 
Applications to Engineering Data

1Department of Statistics, Ogun State Institute Of Technology, Igbesa Ogun State, Nigeria

2Department of Statistics, Federal School of Statistics, Ibadan, Oyo State, Nigeria

3Department of Statistics, University of Ibadan, Ibadan, Oyo State, Nigeria

Adeleye NA1*, Phillips SA2 and Edeki George3

*Corresponding author
Adeleye NA, Department of Statistics, Ogun State Institute of Technology, Igbesa Ogun State, Nigeria.

Received: December 03, 2025; Accepted: December 10, 2025; Published: December 18, 2025

Keywords: Reliability Analysis, Lorenz and Bonferroni and Curves, 
Order Statistics, Moments, Maximum Likelihood Estimation

Introduction
Adding an extra shape parameter to a classical (conventional) 
distribution is very common in statistical distribution theory. Often 
introducing an extra parameter(s) brings more flexibility to a class 
of distribution functions essentially for data analysis purposes to 
improve the modeling potential of the classical distribution. For 
example, Azzalini introduced the skew-normal distribution by 
introducing an extra parameter to the normal distribution to induce 
more flexibility into the normal distribution [1]. Mudholkar and 
Srivastava proposed a method that introduced an extra parameter 
to a two-parameter Weibull distribution and called it exponentiated 
Weibull model which has two shape parameters and one scale 
parameter [2]. Marshall and Olkin introduced another method that 
adds a parameter to any distribution function; two special cases 
were considered namely when X follows exponential or Weibull 
distribution and derived many properties of this proposed model 
[3]. The well-known generators are the following: the beta-G 
family of distribution which was developed and studied by Eugene 
et al., Cordeiro and de Castro developed the Kumaraswamy-G 
family of distribution, Nofal et al. developed the generalized 
transmuted-G family of distribution, transmuted exponentiated 
generalized-G family of distribution was proposed and studied by 
Yousof et al., transmuted geometric-G family of distribution was 
developed and studied by Afify et al., Kumaraswamy transmuted-G 
family of distribution was studied by Afify et al. [4-8]. Alizadeh et 

al. developed the generalized odd generalized exponential family 
of distribution, exponentiated Weibull-H family of distribution 
was proposed and developed by Cordeiro et al., exponentiated 
generalized-G Poisson family of distribution was developed and 
studied by Aryal and Yousof, Alizadeh et al. proposed and studied 
transmuted Weibull-G family of distribution, Marshall-Olkin 
generalized-G Poisson family of distribution was developed and 
studied by Korkmaz et al.  [9-13]. Oluyede, et al. introduced 
the gamma Weibull-G family of distributions by combining the 
gamma generator with the Weibull-G family of distributions which 
was defined by Bourguignon et al. and odd Lomax-G family of 
distribution was studied by Cordeiro et al. [14-16].  

Motivated by the advantages offered by a generalized distribution 
which makes it more relevant in modeling lifetime data that 
are non-monotonic exhibiting different shapes of the hazard 
function ranges from increasing, decreasing, and bathtub shapes, 
as well as the versatility of compounding Inverted Weibull 
and Poisson distribution in modeling real-life data, we study a 
new generalization called the Inverted Weibull Poisson (IWP) 
distribution which possesses these properties.

We are also motivated to study the IWP distribution because of 
its simplicity and extensive usage of IW distribution in modeling 
lifetime events. Also, the current generalization provides a wider 
application even to complex situations that involve different shapes 
of the hazard function.
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The Model, Sub-Models, and Properties of the Inverted 
Weibull Poisson (IWP) Distribution 
The probability density function (PDF) and the associated 
distribution function (CDF) of the two-parameter inverse Weibull 
(IW) distribution is given by 

                                                                                           (1)

and 

                                                                                           (2)

Where ω is a positive shape parameter (ω >0), respectively. 
Keller et al. used the IW distribution to study the wear and tear 
phenomena of some mechanical components such as pistons, 
and crankshaft, of diesel engines [17]. In addition, the IW model 
has many important applications in useful life, wear-out periods, 
Insurance, reliability engineering, service records, and life testing, 
see Khan and King [18]. 

Several generalizations of the Inverted Weibull distribution 
have been proposed and studied, see, for example, transmuted 
inverted Weibull, exponentiated transmuted Inverted Weibull, 
Weibull Inverted weibull, Alpha Power extended inverted weibull, 
modified Extended Inverted Weibull distributions, respectively, 
by Ogunde et al. [19-23]. Suppose that X has the Inverted Weibull 
distribution where its PDF and CDF are given in (1) and (2) 
respectively. Given N , let X1,…,XN be independent and identically 
distributed random variables from APEIW  distribution. Let N be 
distributed according to the zero truncated Poisson distribution 
with pdf

Let X=max(Z1,…,ZN), then the CDF of X ⁄ N=n is given by

Which is the exponentiated Inverted Weibull distribution. The 
Inverted Weibull Poisson distribution is the marginal CDF of X, 
given by

                                                                                           (3)
         

Where ω, and λ are positive shape parameters respectively. The 
corresponding IWP density function is given by

                                                                                          (4)
 

Where ω, and λ are positive shape parameters respectively. The 
graph of the CDF and PDF are respectively drawn below in figure 
(1) for various values of the parameters of IWP distribution.

Figure 1: The Graph of the CDF and the PDF of the IWP  
Distribution

The survival function “(S(x)) “ is obtained by using the relation,

                                                                                        (5)

And the hazard function is given as

                                                                                       (6)

Figures 2 is the graph of the survival and the hazard function of 
IWP distribution for various values of the parameters. The graph 
shows that the hazard function of IWP  model exhibits the non-
monotone failure rate or upside-down bathtub failure rate for the 
values of the parameters considered.

Figure 2: The Graph of the Reliability and Hazard Function of 
IWP Distribution

Quantile Function
Quantile function can be defined as an inverse of the distribution 
function. Consider the relation

Where U  follows standard Uniform distribution. The uth quantile 
of  IWP  distribution is given by

                                                                                      (7)
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0.5, and 0.75 respectively. An expression for the lower quartile, 
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Random Numbers Generation
Random numbers can be generated for the IWP  (λ,ω) distribution, 
for this let, simulating values of random variable X with the CDF 
given in (3) and “u”  denote a uniform random variable in (0, 1), 
then the simulated values of X are obtained by as, 
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Mixture Representation for the Density Function
The mixture representation of the density function is a very useful 
tool used in deriving the statistical properties of generalized 
distribution. In this section, the mixture representation of the 
IWP density function is obtained. Using the following series 
representation:
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The above expression is a density of inverted Weibull distribution 
with scale parameter (1+i)  and shape parameter ω

Ordinary and Incomplete Moment
The ordinary moments of distribution play a very important role 
in statistical applications. The rth  moment of a random variable 
X can be obtained using 
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r<ω. Fo r=1,2,...Γ(.) is the gamma function. By taking r=1, we 
obtain the mean of  X  that is,           The variance of X obtained 
by                               Also, we can determine the rth 
central moment and rth cumulant of X respectively defined by

Taking k=μ, several measures of skewness and kurtosis based on 
the central moments (or cumulants) can be obtained.

Subsequently, an expression for an Incomplete moment is given by
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Also, by letting                                        and putting it in (19), 
we have

Finally the rth incomplete moment of IWP distribution is given by
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Where            is defined in (20),                                    

is the complementary incomplete gamma function.. the first 
incomplete moment of IWP distribution is given as 
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The mean deviation, γ1(x) and median deviation, γ2(x) can be 
obtained by using the relation, γ1(x)=2μF(μ)-2γ1(μ) and γ2(x)=μ-
2γ1(M). Where μ=E(X) and M is the median of the IWP random
variable. Both the γ1(µ) and γ1(M) are calculated from the first 
incomplete moment as given in (21)
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shape parameter ω 
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Inequality Measures
Inequality measures can be applied in biomedical sciences, product 
quality control economics, insurance and demography, and many 
more. Here we consider the following inequality measures:

Mean Residual Life (MRL): Residual life is defined as the 
expected additional life length for a unit that is alive at age t, and 
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Stress-Strenght Parameter
Suppose X1 and X2 be two continuous and independent random 
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strength parameter, say, Ꞩ, is defined as
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Using the CDF and the PDF of IWP in (35), the stress-strength 
parameters can be obtained as

                                                                                        (30) 

Entropy
The Renyi entropy of IWP distribution can be obtained using a 
formula suggested by Renyi (1961) as
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4.2   Bonferroni and Lorenz curves:  
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4.3 Stress-Strenght Parameter 

Suppose X1 and X2 be two continuous and independent random variables where X1~IWP  (λ1,ω) 

and X2~IWP  (λ2,ω), then the stress-strength parameter, say, Ꞩ, is defined as 
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5.1   Order statistics 

Suppose a random sample is drawn from the IWP  (ω,λ)  denoted by X  of size m  have the 

following order statistics denoted by X1:r<X2:n<. . . <Xr:n . Then, the PDF of the rth order 
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5.2 Maximum Likelihood Estimation 

By letting the value of z=(i+v)x-ω, x=z-1 ω⁄ ((i+v))-1 ω⁄ , 

∫ fv(x)dx
∞

-∞

=
ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i

i!

∞

i=0

Gω
*  

 

Where, 

Gω
* =((i+v))

1-v(ω+1)
ω Γ {1+

(ω+1)(v-1)
ω

} 

 

Finally, the Renyi entropy of IWP distribution is given by 

 

Rν=
1
v-1

ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i+j

i!

∞

i=0

(i
j
)Gω

*                                                 (33) 

 

Order Statistics 

Suppose a random sample is drawn from the IWP (ω,λ) denoted by X of size m have the following 

order statistics denoted by X1:r<X2:n<. . . <Xr:n. Then, the PDF of the rthorder statistics is given by 

 

fr:n(x)=
n!

(r-1)!(n-r)!F
r-1(x)[1-F(x)]n-rf(x)                                           (34) 

 

Using the series expansion (12) in (34), we have 

 

fr:n(x)=
n!

(r-1)!(n-r)!∑(-1)j (n-r
j
)

n-r

j=0

Fj+r-1(x)f(x)                                                   (35) 

 

Considering, Fj+r-1(x)f(x) and further applying the Taylor series, we have 

 

Fj+r-1(x)f(x)= ωλ
(e-λ-1)j+r x

-ω-1 ∑
(-1)l+m+p

m!q!(α-1)m+1 (-λ(l+1))m (m
p
)

∞

l,m,p,q=0

 

 

By letting the value of z=(i+v)x-ω, x=z-1 ω⁄ ((i+v))-1 ω⁄ , 

∫ fv(x)dx
∞

-∞

=
ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i

i!

∞

i=0

Gω
*  

 

Where, 

Gω
* =((i+v))

1-v(ω+1)
ω Γ {1+

(ω+1)(v-1)
ω

} 

 

Finally, the Renyi entropy of IWP distribution is given by 

 

Rν=
1
v-1

ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i+j

i!

∞

i=0

(i
j
)Gω

*                                                 (33) 

 

Order Statistics 

Suppose a random sample is drawn from the IWP (ω,λ) denoted by X of size m have the following 

order statistics denoted by X1:r<X2:n<. . . <Xr:n. Then, the PDF of the rthorder statistics is given by 

 

fr:n(x)=
n!

(r-1)!(n-r)!F
r-1(x)[1-F(x)]n-rf(x)                                           (34) 

 

Using the series expansion (12) in (34), we have 

 

fr:n(x)=
n!

(r-1)!(n-r)!∑(-1)j (n-r
j
)

n-r

j=0

Fj+r-1(x)f(x)                                                   (35) 

 

Considering, Fj+r-1(x)f(x) and further applying the Taylor series, we have 

 

Fj+r-1(x)f(x)= ωλ
(e-λ-1)j+r x

-ω-1 ∑
(-1)l+m+p

m!q!(α-1)m+1 (-λ(l+1))m (m
p
)

∞

l,m,p,q=0

 

 

By letting the value of z=(i+v)x-ω, x=z-1 ω⁄ ((i+v))-1 ω⁄ , 

∫ fv(x)dx
∞

-∞

=
ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i

i!

∞

i=0

Gω
*  

 

Where, 

Gω
* =((i+v))

1-v(ω+1)
ω Γ {1+

(ω+1)(v-1)
ω

} 

 

Finally, the Renyi entropy of IWP distribution is given by 

 

Rν=
1
v-1

ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i+j

i!

∞

i=0

(i
j
)Gω

*                                                 (33) 

 

Order Statistics 

Suppose a random sample is drawn from the IWP (ω,λ) denoted by X of size m have the following 

order statistics denoted by X1:r<X2:n<. . . <Xr:n. Then, the PDF of the rthorder statistics is given by 

 

fr:n(x)=
n!

(r-1)!(n-r)!F
r-1(x)[1-F(x)]n-rf(x)                                           (34) 

 

Using the series expansion (12) in (34), we have 

 

fr:n(x)=
n!

(r-1)!(n-r)!∑(-1)j (n-r
j
)

n-r

j=0

Fj+r-1(x)f(x)                                                   (35) 

 

Considering, Fj+r-1(x)f(x) and further applying the Taylor series, we have 

 

Fj+r-1(x)f(x)= ωλ
(e-λ-1)j+r x

-ω-1 ∑
(-1)l+m+p

m!q!(α-1)m+1 (-λ(l+1))m (m
p
)

∞

l,m,p,q=0

 

 



Citation: Adeleye NA, Phillips SA, Edeki George (2025) Inverted Weibull Poisson Distribution: Properties, Inference, and Applications to Engineering Data. Journal 
of Engineering and Applied Sciences Technology. SRC/JEAST-473. DOI: DOI: doi.org/10.47363/JEAST/2025(7)340

J Eng App Sci Technol, 2025                         Volume 7(12): 5-7

Considering,                       and further applying the Taylor 
series, we have

                                                                                           (36)

Finally the rth order statistics of IWP distribution is given by

                                                                                             (37)

Maximum Likelihood Estimation
Let X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) 
then the likelihood function is given by

                                                                                            (38) 

Then, taking                the loglikelihood function (logL=l) is 
given by

                                                                                            (39)

We differentiate (39) with respect λ and ω, to obtain the element 

of the score vector                             The elements of the score 

vector are given by

                                                                                           (40)      

and

                                                                                           (41)

By setting the non-linear system of equations Vλ=Vω=0 and 
obtaining a feasible solution by solving the simultaneously, the 
MLE of the parameters of the IWP model are obtained. However, 
these equations cannot be solved analytically, statistical software 
can be employed to solve them numerically by using iterative 
methods such as Newton-Raphson algorithms. To carry out 
interval estimation of the model parameters, we require the 
observed information matrix

Under certain standard regularity conditions as n→∞, the 
distribution of     can be approximated by a multivariate normal 
                 distribution to construct approximate confidence 
intervals for the parameters. Here,          represent the total observed 
information matrix calculated at

Asymptotic (1-p)100% confidence intervals for parameters can 
be obtained as

Least Square Method (LSE)
Let x1,…,xn be a random sample from IWP distribution with 
parameters λ, and ω. By considering the corresponding order 
statistics                   taking                          The least square 
estimates can be obtained by minimizing the following expression

Minimizing Ls(ξ) with respect to λ, and ω, we have the following 
system of non-linear equations:

Where                     and                       These equations can be 
solved numerically by any software to obtain the estimates
and 

Weighted Least Square (WLS)
Let x1,…,xn be a random sample from IWP distribution with 
parameters          and ω. The likelihood function for a weighted 
least square estimate is given by

Minimizing W(ξ) with respect to λ, and, we have the following 
system of non-linear equations:

This system of non-linear equations can be solved numerically 
by any software to obtain the estimates       and

Cramer Von Mises (CVM)
Crammer von Mises is a type of minimum distance estimators. 
Let x1,…,xn be a random sample from APEIWP distribution with 
parameters λ,and ω. The likelihood function for Crammer von 
Mises estimate is given by

Minimizing C(ξ) with respect to λ,and ω, we have the following 
system of non-linear equations:

These equations can be solved numerically by any software to 
obtain the estimates       and 

By letting the value of z=(i+v)x-ω, x=z-1 ω⁄ ((i+v))-1 ω⁄ , 

∫ fv(x)dx
∞

-∞

=
ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i

i!

∞

i=0

Gω
*  

 

Where, 

Gω
* =((i+v))

1-v(ω+1)
ω Γ {1+

(ω+1)(v-1)
ω

} 

 

Finally, the Renyi entropy of IWP distribution is given by 

 

Rν=
1
v-1

ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i+j

i!

∞

i=0

(i
j
)Gω

*                                                 (33) 

 

Order Statistics 

Suppose a random sample is drawn from the IWP (ω,λ) denoted by X of size m have the following 

order statistics denoted by X1:r<X2:n<. . . <Xr:n. Then, the PDF of the rthorder statistics is given by 

 

fr:n(x)=
n!

(r-1)!(n-r)!F
r-1(x)[1-F(x)]n-rf(x)                                           (34) 

 

Using the series expansion (12) in (34), we have 

 

fr:n(x)=
n!

(r-1)!(n-r)!∑(-1)j (n-r
j
)

n-r

j=0

Fj+r-1(x)f(x)                                                   (35) 

 

Considering, Fj+r-1(x)f(x) and further applying the Taylor series, we have 

 

Fj+r-1(x)f(x)= ωλ
(e-λ-1)j+r x

-ω-1 ∑
(-1)l+m+p

m!q!(α-1)m+1 (-λ(l+1))m (m
p
)

∞

l,m,p,q=0

 

 

By letting the value of z=(i+v)x-ω, x=z-1 ω⁄ ((i+v))-1 ω⁄ , 

∫ fv(x)dx
∞

-∞

=
ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i

i!

∞

i=0

Gω
*  

 

Where, 

Gω
* =((i+v))

1-v(ω+1)
ω Γ {1+

(ω+1)(v-1)
ω

} 

 

Finally, the Renyi entropy of IWP distribution is given by 

 

Rν=
1
v-1

ωv-1λv

(e-λ-1)v∑
(vλ)i(-1)i+j

i!

∞

i=0

(i
j
)Gω

*                                                 (33) 

 

Order Statistics 

Suppose a random sample is drawn from the IWP (ω,λ) denoted by X of size m have the following 

order statistics denoted by X1:r<X2:n<. . . <Xr:n. Then, the PDF of the rthorder statistics is given by 

 

fr:n(x)=
n!

(r-1)!(n-r)!F
r-1(x)[1-F(x)]n-rf(x)                                           (34) 

 

Using the series expansion (12) in (34), we have 

 

fr:n(x)=
n!

(r-1)!(n-r)!∑(-1)j (n-r
j
)

n-r

j=0

Fj+r-1(x)f(x)                                                   (35) 

 

Considering, Fj+r-1(x)f(x) and further applying the Taylor series, we have 

 

Fj+r-1(x)f(x)= ωλ
(e-λ-1)j+r x

-ω-1 ∑
(-1)l+m+p

m!q!(α-1)m+1 (-λ(l+1))m (m
p
)

∞

l,m,p,q=0

 

 
× (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

× (j+r-1
l

) (p+1)qe-(q+1)x-ω                                                                          (36) 

 

Finally the rthorder statistics of IWP distribution is given by  

 

fr:n(x)=
n!ωλ

(r-1)!(n-r)!∑ ∑
(-1)j+_l+m+p

m!q!(e-λ-1)j+r (-λ(l+1))m (n-r
j
)

∞

l,m,p,q=0

∞

j=0

 

× (m
p
) (j+r-1

l
) (p+1)qe-(q+1)x-ω                                                        (37) 

 

Maximum Likelihood Estimation 

Let  X1, X2, . . . ,Xn be a random sample drawn from IWP (λ,ω) then the likelihood function is 

given by  

L(x,λ,ω)=∏ωλx-ω-1e-x-ωexp[-λ(e-ηx-ω)]
(e-λ-1) ,                                           (38)

n

i=0

 

 

Then, taking zxi=e-ηx-ω
the loglikelihood function (logL=l) is given by 

 

l=nlog ( ωλ
(e-λ-1)

) -(ω-1)∑ xi-∑ x-ω
n

i=1

n

i=1

-λ∑ e-x-ω
n

i=1

                                              (39) 

 

We differentiate (39) with respect λ and 𝜔𝜔, to obtain the element of the score vector 

(Vλ=
∂l
∂λ

,Vω= ∂l
∂ω
)
T
 . The elements of the score vector are given by  

 

Vλ=
n
λ

-
ne-λ

e-λ-1 -∑ e-x-ω,  
n

i=1

                                                                                               (40)   

and 

Vω=
n
ω

-∑ xi-ωlog(α)
n

i=1

-∑ xi-ωe-x-ω-ηog(α)∑ xi-ω log(x) e-x-ω
n

i=1

.                                (41)
n

i=1

 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

By setting the non-linear system of equations Vλ=Vω=0 and obtaining a feasible solution by solving 

the simultaneously, the MLE of the parameters of the IWP model are obtained. However, these 

equations cannot be solved analytically, statistical software can be employed to solve them 

numerically by using iterative methods such as Newton-Raphson algorithms. To carry out interval 

estimation of the model parameters, we require the observed information matrix 

 

H(ξ)=- [Vλλ Vλω
Vωλ Vωω

] 

 

Under certain standard regularity conditions as n⟶∞, the distribution of ξ̂ can be approximated 

by a multivariate normal N4 (0,H(ξ̂)-1) distribution to construct approximate confidence intervals 

for the parameters. Here, H(ξ̂) represent the total observed information matrix calculated at ξ̂. 

 

Asymptotic (1-p)100% confidence intervals for parameters can be obtained as 

 

     λ̂±Zp
2⁄
√Σ11,       ω̂±Zp

2⁄
√Σ11 

 

Least Square Method (LSE) 

Let x1,…,xn be a random sample from IWP distribution with parameters λ, and ω. By considering 

the corresponding order statistics X1:n,…,Xn:n, taking E[F(Xi:n)]= I
n+1

.  The least square estimates 

can be obtained by minimizing the following expression 

 

Ls(ξ)=∑[F(xi)-E[F(xi)]]
2

n

i=1

=∑[F(xi)-
i
n+1]

2n

i=1

 

 

Minimizing Ls(ξ) with respect to λ, and ω, we have the following system of non-linear equations: 

∂Ls(ξ)
∂λ =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 
∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

C(ξ)= 1
12n +∑[F(xi)-

2i-1
2n ]

2n

i=1

 

 

Minimizing C(ξ) with respect to λ,and ω, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑[F(xi)-

2i-1
2n ]

n

i=1

F'(xi)λ=0 

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

2i-1
2n ]

n

i=1

F'(xi)ω=0 

 

These equations can be solved numerically by any software to obtain the estimates  λ̂LSE, and ω̂LSE 

 

Practical Applications 

In this subsection, we evaluate the performance of the IWP distributions with the other four 

competing models to two reliability data sats. The data sets are described as follows: 

 

The data set (data set 1). The data set was presented by Murthy et al. on the failure times (in weeks) 

of 50 components [24]. The data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535, 

0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520,4.789, 

4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 

9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 

32.795, 48.105. 

 

The data set (data set 2). The data set is made up of failure time in hours of Kevlar 49/epoxy strands 

with pressure at 90% and was already studied by Andrews and Herzberg [25]. The data consists 

of 101 observations and the numbers are: 0.01, 0.01, 0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 

0.07, 0.07, 0.08, 0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,0.23, 0.24, 0.24, 0.29, 

0.34, 0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,0.72, 0.72, 

0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 

C(ξ)= 1
12n +∑[F(xi)-

2i-1
2n ]

2n

i=1

 

 

Minimizing C(ξ) with respect to λ,and ω, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑[F(xi)-

2i-1
2n ]

n

i=1

F'(xi)λ=0 

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

2i-1
2n ]

n

i=1

F'(xi)ω=0 

 

These equations can be solved numerically by any software to obtain the estimates  λ̂LSE, and ω̂LSE 

 

Practical Applications 

In this subsection, we evaluate the performance of the IWP distributions with the other four 

competing models to two reliability data sats. The data sets are described as follows: 

 

The data set (data set 1). The data set was presented by Murthy et al. on the failure times (in weeks) 

of 50 components [24]. The data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535, 

0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520,4.789, 

4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 

9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 

32.795, 48.105. 

 

The data set (data set 2). The data set is made up of failure time in hours of Kevlar 49/epoxy strands 

with pressure at 90% and was already studied by Andrews and Herzberg [25]. The data consists 

of 101 observations and the numbers are: 0.01, 0.01, 0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 

0.07, 0.07, 0.08, 0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,0.23, 0.24, 0.24, 0.29, 

0.34, 0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,0.72, 0.72, 

0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 

∂Ls(ξ)
∂ω =2∑[F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

Where  F'(xi)λ=
∂y
∂λ
F(xi)  and F'(xi)ω= ∂y

∂ω
F(xi). These equations can be solved numerically by any 

software to obtain the estimates  λ̂LSE,  and ω̂LSE 

 

Weighted Least Square (WLS) 

Let x1,…,xn be a random sample from IWP distribution with parameters α,λ,η, and ω. The 

likelihood function for a weighted least square estimate is given by  

 

W(ξ)=∑(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

2n

i=1

 

 

Minimizing W(ξ) with respect to λ,and, we have the following system of non-linear equations: 

 

∂W(ξ)
∂λ =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)λ=0 

 

∂W(ξ)
∂ω =2∑

(n+1)2(n+2)
i(n-i+1) [F(xi)-

i
n+1]

n

i=1

F'(xi)ω=0 

 

This system of non-linear equations can be solved numerically by any software to obtain the 

estimates  λ̂LSE, and ω̂LSE 

 

Cramer Von Mises (CVM) 

Crammer von Mises is a type of minimum distance estimators. Let x1,…,xn be a random sample 

from APEIWP distribution with parameters λ,and ω. The likelihood function for Crammer von 

Mises estimate is given by  

 



Citation: Adeleye NA, Phillips SA, Edeki George (2025) Inverted Weibull Poisson Distribution: Properties, Inference, and Applications to Engineering Data. Journal 
of Engineering and Applied Sciences Technology. SRC/JEAST-473. DOI: DOI: doi.org/10.47363/JEAST/2025(7)340

J Eng App Sci Technol, 2025                         Volume 7(12): 6-7

Practical Applications
In this subsection, we evaluate the performance of the IWP 
distributions with the other four competing models to two 
reliability data sats. The data sets are described as follows:

The data set (data set 1). The data set was presented by Murthy 
et al. on the failure times (in weeks) of 50 components [24]. The 
data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535, 
0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 
3.269, 3.977, 3.981, 4.520,4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 
6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 
9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 
17.283, 19.418, 23.471, 24.777, 32.795, 48.105.

The data set (data set 2). The data set is made up of failure time 
in hours of Kevlar 49/epoxy strands with pressure at 90% and 
was already studied by Andrews and Herzberg [25]. The data 
consists of 101 observations and the numbers are: 0.01, 0.01, 
0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 
0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,0.23, 
0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54, 
0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,0.72, 0.72, 0.72, 0.73, 0.79, 
0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 
1.03, 1.05, 1.10,1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 
1.40,1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58,1.60, 
1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,2.33, 3.03, 3.03, 
3.34, 4.20,4.69, 7.89.

The descriptive statistics of the two data sets are given in Table 
1 and the graph of Total Time on Test plot is given in figure 3 
and Boxplot in figure 4. From this table, it can be observed that 
the two data sets are over-dispersed, leptokurtic, and positively 
skewed. Also, from figure 5, it can be observed that data 1 exhibits 
decreasing failure rate and data 2 exhibit a non-monotone failure 
rate

Table 1: Exploratory Data Analysis of Failure Data
Discriptive statistics Data 1 Data 2
Sample size 50 101
Mean 7.82 1.03
Lower quartile 1.39 0.24
Upper quartile 10.04 1.45
Median 5.32 0.80
Variance 84.75 1.25
Kurtosis 7.23 14.41
Skewness 2.38 3.05

Figure 3: TTT Plot for the Two Failure Data

Figure 4: Box Plot for the Two Failure Data

The ML estimates along with their standard error (SE) and the 
confidence interval in a curly bracket of the model parameters 
are provided in Tables 2 and 3. In the same tables, the analytical 
measures including; minus 2*log-likelihood (-2log L), Akaike 
Information Criterion (AIC), Bayesian information criterion (BIC), 
and Kolmogorov Smirnov (KS) test statistic are obtained for the 
model considered. The fit of the proposed IWP distribution is 
compared with its sub model Inverted Weibull distribution

Table 2: Analytical Results of the IWP Model and Other 
Competing Models for Kevlar 45/Epoxy Data

Model ω λ -2l AIC BIC K

IWP -0.7841
(0.5275)

0.5134
(0.0473)

335.66 339.66 343.48 0.1960

IW 0.4893 
(0.0452)

- (-) 337.90 339.90 341.81 0.2412

Table 3: Analytical Results of the IWP Model and Other 
Competing Models for Failure Time of Components

Model λ ω -2l AIC BIC K

IWP 2.7524 
(0.4095)

0.4474 
(0.0245)

262.53 266.53 271.76 0.2038

IW 0.4365 
(0.0254)

- (-) 316.06 318.06 320.68 0.4406

Based on Tables 2 and 3, it is evident that IWP model provides 
the best fit than its sub-model, and can therefore be taken as the 
best model based on the data considered.

Conclusion
In this work, we study the inverted Weibull Poisson distribution. 
Some structural properties of the IWP distribution are derived 
such as ordinary and incomplete moments, Renyi entropy, order 
statistics, mean residual life, mean inactivity time, Bonferroni 
and Lorenz curves, and stress strength reliability. Estimation of 
the population parameters is carried out by using the maximum 
likelihood estimation method. We recommend that further studies 
should be carried out by using different estimations techniques 
such as the Weighted Least Square method, Minimum spacing 
method, and Bayesian method, etc., and compare the performance 
of the estimation techniques [26-34].
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The ML estimates along with their standard error (SE) and the confidence interval in a curly 

bracket of the model parameters are provided in Tables 2 and 3. In the same tables, the analytical 

measures including; minus 2*log-likelihood (-2log L), Akaike Information Criterion (AIC), 

Bayesian information criterion (BIC), and Kolmogorov Smirnov (KS) test statistic are obtained 

for the model considered. The fit of the proposed IWP distribution is compared with its sub model 

Inverted Weibull distribution 

 

Table 2: Analytical Results of the IWP Model and Other Competing Models for Kevlar 

45/Epoxy Data 

Model ω λ -2l AIC BIC K

IWP -0.7841

(0.5275) 

0.5134

(0.0473) 

335.66 339.66 343.48 0.1960 

IW 0.4893

(0.0452)
-

(-)
337.90 339.90 341.81 0.2412 
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