

Research Article

Open Access

Novel Ultrasensitive Eco-Friendly Spectrophotometric Determination of Carvedilol in Pharmaceutical Preparations and Environmental Wastewater Samples: Application to Content Uniformity Testing

Nief Rahman Ahmad^{1*} and Ghfran Naif Rahman²

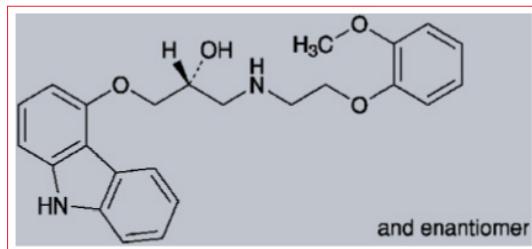
¹College of Environmental, University of Mosul-Iraq, Iraq

²Student at Medical College, University of Mosul, Mosul-Iraq, Iraq

ABSTRACT

A simple, novel, accurate, precise, rapid, economical and sensitive Ultra violet spectrophotometric method has been developed for the determination of Carvedilol in pharmaceutical preparations and environmental wastewater samples, which shows maximum absorbance at 242 nm in methanol. Beer's law was obeyed in the range of 0.5 -10 μ g/ ml, with molar absorptivity of 5.4467×10^4 L.mol⁻¹.cm⁻¹, relative standard deviation of the method was less than 1.6%, and accuracy (average recovery %) was 100 ± 1.3 . No interference was observed from common excipients and additives often accompany with Carvedilol in pharmaceutical preparations. The method was successfully applied to the determination of Carvedilol in some pharmaceutical formulations (tablets) and industrial wastewater samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of Carvedilol in true samples.

*Corresponding author


Nief Rahman Ahmad, College of Environmental, University of Mosul-Iraq, Iraq.

Received: May 31 2025; **Accepted:** June 24, 2025; **Published:** June 26, 2025

Keywords: Carvedilol, Spectrophotometry, Pharmaceutical Preparations, Environmental Samples

Introduction

Carvedilol is a non-cardioselective beta blocker. It has vasodilating properties, which are attributed mainly to its blocking activity at alpha1 receptors; at higher doses calcium-channel blocking activity may contribute. It also has antioxidant properties. Carvedilol is reported to have no intrinsic sympathomimetic activity and only weak membrane-stabilising activity [1]. Carvedilol is used in the management of hypertension and angina pectoris, and as an adjunct to standard therapy in symptomatic heart failure Action and us Beta-adrenoceptor antagonist; arteriolar vasodilator. Carvedilol occurs as white to pale yellowish white crystals or crystalline powder. Solubility Practically insoluble in water, slightly soluble in alcohol, practically insoluble in dilute acids and practically insoluble in water [2-5].

C24H26N2O4: 406.47
 2-Propanol, 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy) ethyl] amino]-, (±)-;
 (±)-1-(Carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy) ethyl] amino]-2-propanol.

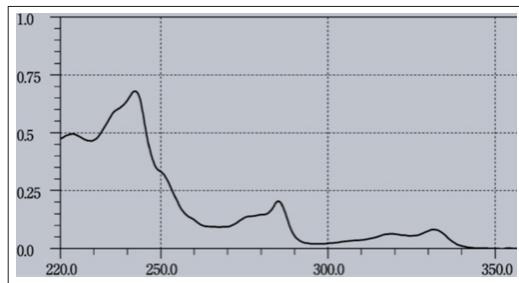
Figure 1: Carvedilol Chemical Structure

The literature survey reveals that various methods have been reported for estimation of Carvedilol by Titrimetric method. Spectrofluorometric methods Spectrophotometric methods, RP-HPLC methods, and HPTLC analysis method [6-13]. In the view of the need in the industry for routine analysis of Carvedilol, attempts are being made to develop simple and accurate instrumental methods for quantitative estimation of Carvedilol [14, 15]. Thus, there is need for the development of new, simple, sensitive and accurate analytical method for the quantitative estimation of Carvedilol as an active pharmaceutical ingredient. The present work describes simple and accurate Spectrophotometric methods for the estimation of Carvedilol hydrochloride in bulk and dosage form.

Experimental

Apparatus

Shimadzu UV- 1700 pharm spec (double beam) spectrophotometer with 1.0 cm quartz cells was used for absorption measurement.


Reagents

All chemical used were of analytical or pharmaceutical grade and Carvedilol standard material and tablets were provided from ALhokamaa company for pharmaceutical industries (HPI) Mosul-Iraq.

Carvedilol stock solution (100 ppm) was prepared by dissolving 0.01g of Carvedilol in 100 ml methanol in a volumetric flask. Carvedilol standard solution (10 ppm) was prepared by diluting 10 ml of stock solution to 100 ml by methanol in a volumetric flask.

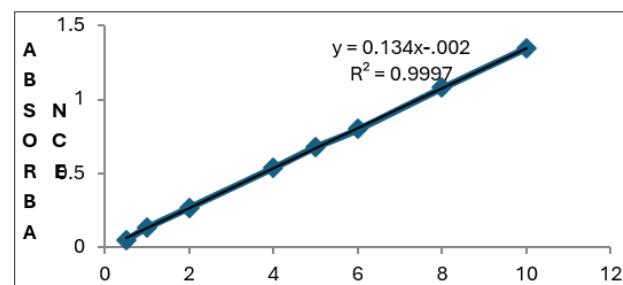
Determination of Absorption Maxima

The standard solution of Carvedilol (5 μ g/ml) was scanned in the range of 220-350 nm which shows maxima located at 242 nm Figure 2. Therefore, 242 nm wavelength was selected for the construction of calibration curve.

Figure 2: Absorption Spectra of 5 (μ g/ml) Carvedilol Against Methanol

Recommended Procedure

From the absorption maxima, calibration curve was prepared in the concentration range of 0.5-10 μ g/ml. The absorbance was measured at 242 nm against methanol as a blank. The concentration of the sample solution can be determined by using the calibration curve.


Procedure for Real Water Samples

To demonstrate the practical applicability of the proposed method, real water samples were analyzed by this method. Industrial waste water from the state company of drug industries and medical appliance (HPI) Mosul – Iraq, were fortified with the concentrations in the range of 1,5,10 μ g/ml of Carvedilol. The fortified water samples were analyzed as described above for recommended procedure and the concentration was calculated by using the calibration curve of this method.

Procedure for pharmaceutical preparations (tablets) Weight and powder 10 tablets [Tablets 25,50 mg]. Dissolve a quantity of the powdered tablets containing 0.01 gm. of Carvedilol in about 100 ml methanol and mixed for 20 mint and then filtered. The filtrate was take 10ml and mad up to 100 ml with methanol and aliquot of this solution was treated as described above for recommended procedure and the concentration was calculated by using the calibration curve of this method.

Result and Discussion

UV visible spectrophotometry is still considered to be a convenient and low cost method for the determination of pharmaceuticals [16-26]. The method used for the determination of Carvedilol in pharmaceutical preparations and environmental wastewater samples was found to be sensitive, simple, accurate, and reproducible. Beer's law was obeyed in the concentration range of 0.5-10 μ g/ml. Figure 3 with correlation coefficient of 0.9997, intercept of 0.002 and slope of 0.134. The molar absorptivity was found to be 5.4467×10^4 l/mol.cm.

Figure 3: Calibration Curve

The accuracy and precision of the method, a pure drug solution was analyzed at three different concentrations, each determination being repeated ten times. The relative error (%) and relative standard deviation values are summarized in table 1. From table 1 the values of standard deviation were satisfactory and the recovery studies were close to 100%, The RSD% value is less than 1.6 indicative of accuracy of the method.

Table 1: Accuracy and Precision of the Proposed Method

Carvedilol taken (μ g/ml)	Er (%) ^a	RSD (%)
0.5	1.1	1.4
5	1.1	1.5
10	1.2	1.5

* Average of Ten replicate determinations,
The optical characteristics and statistical data for regression equation of the proposed method. Data presented in Table 2

Table 2: Optical Characteristics and Statistical Data for Regression Equation of the Proposed Method

Parameter	Result
λ Max .nm	242
Beer's law limits μ g/ml	0.5-10
Molar extinction coefficient (l. mol ⁻¹ . cm ⁻¹)	5.4467×10^4 L.mol ⁻¹ .cm ⁻¹
Correlation coefficient (r^2)	0.9997
Regression equation (b+ ac)	
Slope(a)	0.134
Intercept(b)	0.002

Limit of detection. $\mu\text{g.ml}^{-1}$	1.5×10^{-3}
Limit of quantification. $\mu\text{g.ml}^{-1}$	4.9×10^{-3}
Average recovery %	close to 100%.
RSD%	<1.6

Analytical Application

The proposed method was satisfactorily applied to the determination of Carvedilol in its pharmaceutical preparations tablets and wastewater samples, the results of the assay of the pharmaceutical preparations reveals that there is close agreement between the results obtained by the proposed method and the label claim Table 3, and the results of water samples Table 4 show that the recovery values obtained were closed to 100%.

Table 3: Assay of Carvedilol in Pharmaceutical Formulations

Pharmaceutical formulation supplied by HPI	Amount of Carvedilol* Proposed method	Label claim	%Recovery
Tablet 25mg	25.06mg	25 mg	100.24
Tablet 50 mg	50.1mg	50mg	100.2

*Mean of ten determinations.

Table 4: Determination of Carvedilol in Spiked Industrial Waste Water Sample

Water samples	Carvedilol ($\mu\text{g/ml}$) * Taken	Recovery%
Industrial wastewater	1	1.001
	5	5.004
	10	10.01

*Mean of ten determinations.

Application of the Method to Content Uniformity [27-31]. The proposed method proved to be suitable for the content uniformity test, where a great number of assays on tablets are required. Data presented in Table 5 indicate that the proposed method can accurately and precisely quantitate Carvedilol in its commercially available tablets. The mean percentage (with RSD) of the labeled claim found in ten tablets was (0.518%) which fall within the content uniformity limits specified by the USP 33.

Table 5: Content Uniformity Testing of Carvedilol Tablets Using the Proposed Method

Parameter	% of the label claim
Tablet NO. 1	100.28
Tablet NO. 2	100.11
Tablet NO. 3	99.56
Tablet NO. 4	100.71
Tablet NO. 5	99.38
Tablet NO. 6	99.35
Tablet NO. 7	99.72
Tablet NO. 8	100.55
Tablet NO. 9	100.66
Tablet NO. 10	99.76
Mean (x)	100.008
% RSD	0.518
Max. allowed unit [29]	$\pm 15\%$

Conclusion

In this work, a simple, rapid, precise and accurate spectrophotometric method was developed and validated for the determination of

Carvedilol in pharmaceutical preparations and industrial waste water samples. The method free from such experimental variables as heating or solvent extraction step. The method rely on the use of simple and cheap chemicals and techniques and can be used for rapid routine determination and quality control of Carvedilol in pure form, bulk sample, pharmaceutical preparations and real industrial waste water sample.

Acknowledgments

The author wishes to express gratitude to his former company [the state company of drug industries and medical appliance (HPI) Mousul – Iraq for providing gift samples of Carvedilol standard materials and pharmaceutical preparations(tablets).

References

1. British National Formulary (BNF) (2009) 58, Royal Pharmaceutical Society of Great Britain Publishing 142.
2. The Japanese Pharmacopoeia (2016) 17th edn, English Version, The Ministry of Health, Labor and Welfare 589. <https://www.pmda.go.jp/english/rs-sb-std/standards-development/jp/0019.html>
3. British Pharmacopoeia (2014) HM. Stationery office, London, UK 418.
4. The United States pharmacopeia convection inc (2018) USP 41 and NF 36: 729-731.
5. Mucklow JC (2000) Martindale: the complete drug reference, 36ed, pharmaceutical press London. 49: 613..
6. Derayea SM, Omar MA, Abdel-Lateef MAK, Hassan AI (2016) Development and validation of a new spectrofluorimetric method for the determination of some beta-blockers through fluorescence quenching of eosin Y. Application to content uniformity test. Open Chem. 14: 258-266.
7. Abdelwahab NS (2016) Spectrophotometric methods for simultaneous determination of Carvedilol and Hydrochlorothiazide in combined dosage form. Arab J Chem 9: 355-360.
8. Nayabaniya A, Seetharaman R, Lakshmi KS (2020) Spectrophotometric determination of carvedilol in bulk drug and its formulation by multivariate calibration technique. Res J.Pharm Technol 13: 915-922.
9. Rele RV, Tiwatane PP (2014) UV spectrophotometric estimation of carvedilol hydrochloride by second order derivative methods in bulk and pharmaceutical dosage form. Res J Pharm Technol 7: 1459-1462.
10. Theivarasu C, Ghosh S, Indumathi T (2010) UV spectrophotometric determination of carvedilol in pharmaceutical formulations. Asian J Pharm Clin Res 3: 64-68.
11. Ahmed S, Khan A, Sheraz MA, Bano R, Ahmad I (2018) Development and Validation of a Stability-IHPIcating HPLC Method for the Assay of Carvedilol in Pure and Tablet Dosage Forms. Curr Pharm Anal 14: 139-152.
12. Swetha E, Vijitha C, Veeresham C, Swetha E, Vijitha C, et al. (2015) HPLC Method Development and Validation of S (-)-Carvedilol from API and Formulations. Am J.Anal Chem 6: 437-445.
13. Patel LJ, Suhagia BN, Shah PB, Shah RR (2006) RP-HPLC and HPTLC methods for the estimation of carvedilol in bulk drug and pharmaceutical formulations. IHPIan J Pharm Sci 68: 790-793.
14. Prajapati P, Naik K, Tailor P, Shah S (2022) Screening Design and Response Surface Methodology for the Simultaneous Estimation of Carvedilol and Ivabradine HCl by HPTLC Method. J Chromatogr Sci 60: 859-870.
15. Mohammad SF, Zrien N, Mustafa S, Md Habban A, Javed

A, et al. (2017) Stability Evaluating High-Performance Thin-Layer Chromatography for Carvedilol in Bulk Drug and in Solid Lipid Nanoparticles. *Int J Life Sci Rev* 5: 50-59.

16. Nief Rahman Ahmed, Mohammad Jassim Essa AL-ETEWI, Alaa Ali Hussein (2024) A Simple Spectrophotometric Determination of Lidocaine Hydrochloride in Environmental Wastewater Samples and Pharmaceutical Preparations. *Journal of Healthcare and Nursing Research* 6: 1-5.

17. Hussein Al-Salim Ta, Rahman Ahmad Nb, Taha Al-Salim Ac (2024) Fluoride Ion Concentration in Ground Water of Bashiqa Area- Mosul City and Its Effects on Human Health. *Journal of Healthcare and Nursing Research* 6: 1-4.

18. Ghfran Naif Rahman, Nief Rahman Ahmad (2024) A simple Eco-Friendly Novel Estimation of Folic Acid in pharmaceutical preparations and environmental wastewater samples: Application to Content Uniformity Testing. *Journal of Oral and Dental Health Research* 6: 1-5.

19. Ghfran Naif Rahman, Nief Rahman Ahmad (2024) Spectrophotometric Assay of Tetracycline Hydrochloride in Pharmaceutical Preparations and Spiked Industrial Waste Water Samples. Application to Content Uniformity Testing. *Journal of Medical and Clinical Studies* 7: 1-6.

20. Nief Rahman Ahmad, Ghfran Naif Rahma (2024) Novel Spectrophotometric Determination of Isopropamide Iodide in Pharmaceutical Formulations and Environmental Wastewater Samples: Application to Content Uniformity Testing. *Biomed J Sci & Tech Res* 56: 48218-48222.

21. Nief Rahman Ahmed, Mohammad Jassim Essa AL-ETEWI (2023) Eco - Friendly method for the estimation of Bisacodyl in pharmaceutical preparations and environmental wastewater samples: Application to content uniformity testing. *Journal of Physics and Chemistry Research* 5: 1-4.

22. Nief Rahman Ahmed, Lujein Mohammad Kasim, Muna Sobhi Abdullah (2019) Application of Chloramine-T, Methylene Blue in the Assay of Mesna in Pharmaceutical Analysis. Tablets, Injections and Wastewater Samples. *Research & Reviews: Journal* 8: 33-37.

23. Ahmed NR, Ibrahim FKb, Abdullah MS (2019) HPCL Method for Estimation of Losartan Potassium in Pharmaceutical Formulation and Environmental Water Samples. *Journal of Physics and Chemistry Research* 1: 1-4.

24. Ghfran Naif Rahman, Nief Rahman Ahmad (2025) A fast, Greener and Sensitive Estimation of Vitamin B1 in Pharmaceutical Preparations and Environmental Wastewater Samples: Application to Content Uniformity Testing. *Journal of Healthcare and Nursing Research* 7: 1-4.

25. Ghfran Naif Rahman, Nief Rahman Ahmad (2025) A Smart, Sensitive Estimation of Thiamine Chloride Hydrochloride (Vitamin B1) in Pharmaceutical Preparations and Environmental Wastewater Samples: Application to Content Uniformity Testing. *Journal of Gastroenterology & Hepatology Reports* 6: 1-4.

26. Ghfran Naif Rahman, Nief Rahman Ahmad (2025) Determination of Propranolol HCL in Pharmaceutical Preparations and Environmental Wastewater Samples Application to Content uniformity Testing. *Journal of Ophthalmology Research Reviews & Reports* 6: 1-4.

27. Nief Rahman Ahmed, Al Mustansiriyah (2017) High Performance Liquid Chromatographic Method for the Determination of Chlordiazepoxide in Pharmaceutical Preparations Application to content uniformity testing. *Journal for Pharmaceutical Sciences* 17: 54-51.

28. Nief Rahman Ahmed (2019) HPLC method for determination of dimetindene maleate in pharmaceutical preparations and environmental water samples: Application to content uniformity testing. *International Journal of Pharma Sciences and Research (IJPSR)* 10: 195-199.

29. The United State Pharmacopeia (2010) 33-NF 28: 418.

30. Nief Rahman Ahmed (2020) Estimation of Metformin Hydrochloride in Pharmaceutical Formulations, Environmental Water Samples: Application to Content Uniformity Testing. *International Journal of Endocrinology and Diabetes* 3: 1-4.

31. Nief Rahman Ahmed, Wael Abdulqader al-qazzaz (2019) Spectrophotometric estimation of thiamine in tablet form; Application to content uniformity testing. *Raf J Sci* 28: 146-151.

Copyright: ©2025 Nief Rahman Ahmad. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.