

Review Article
Open Access

Cardiovascular Risk Associated with Dyslipidemias in Children

Ana Paula Marte Chacra¹, Anita L R Saldanha², Ana Paula Pantoja Margeotto², André Luis Valera Gasparoto³, and Tania Leme da Rocha Martinez^{2*}

¹Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil

²Nephrology Department, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil

³Intensive Care Unit, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil

ABSTRACT

Atherosclerosis begins in childhood and can be aggravated by dyslipidemias, such as hypercholesterolemia and hypertriglyceridemia, especially in the presence of obesity and metabolic syndrome. The infant lipid profile should be assessed with a fast of 8 to 9 hours. Primary dyslipidemias, usually genetic, include heterozygous familial hypercholesterolemia and homozygous hypercholesterolemia, with diagnosis based on LDL-c levels and family history. Treatment involves diet, physical activity, and statins, and may include ezetimibe and PCSK9 inhibitors in more severe cases. Hypertriglyceridemia's can be mild to severe, with primary causes (such as familial chylomicronemia syndrome) or secondary causes (related to diet, endocrine disease, and medications). Combined dyslipidemia is common in children with obesity and insulin resistance. Treatment is based on lifestyle changes and, in more severe cases, the use of statins, fibrates, or omega-3s. Secondary dyslipidemias are associated with diseases such as diabetes, hypothyroidism, and lupus. Treating the underlying cause can normalize lipids, but medications may be indicated in cases of moderate or high risk. Early screening is essential and should be done universally between 9-11 and 17-21 years, and selectively between 2-8 and 12-16 years for children with risk factors. Early identification and management of these conditions are key to reducing cardiovascular risk in adulthood.

*Corresponding author

Tania Leme da Rocha Martinez, Nephrology Department, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.

Received: June 16, 2024; **Accepted:** June 23, 2025; **Published:** June 29, 2025

Keywords: Pediatrics, Cholesterol Fractions, Triglycerides, Cardiovascular Risk, Treatment

Abbreviations

HDL-c: High Density Lipoprotein Cholesterol

LDL-c: Low Density Lipoprotein Cholesterol

PCSK9: Proprotein Convertase Subtilisin/Kexin Type 9

TG: Triglycerides

Introduction

Atherosclerosis is a progressive process that begins in childhood, aggravated by high cholesterol, obesity and metabolic syndrome, increasing cardiovascular risk in adulthood. Knowledge about dyslipidemias in children has advanced, favoring more accurate diagnoses and effective treatments.

Child Lipid Profile

In children and adolescents, the lipid profile varies with age and sex. The analysis should be done after fasting for 8 to 9 hours, including total cholesterol, high density lipoprotein cholesterol (HDL-c), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-c), which can be calculated or measured directly [1].

Primary Dyslipidemias

They are genetic, present from an early age, and are divided into monogenic or polygenic. The main ways are:

- Heterozygous familial hypercholesterolemia (HeFH) [2].
- Dominant genetic disease, with elevated LDL-c from birth.

- It affects 1 in 250-300 people and is among the most common inherited causes of cardiovascular disease [3].
- It is caused by mutations in the LDL receptor genes, Apolipoprotein B, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), among others [4].

Diagnosis: LDL-c \geq 190 mg/dL or \geq 160 mg/dL with a positive family history. Genetic testing is useful, but it can be replaced by phenotypic evaluation. LDL-c should be measured at least twice in three months [5].

Treatment: includes diet, physical activity, and statins, which should be started between 8 and 10 years old (or earlier in severe cases). Statins lower LDL-c by an average of 32% and are safe. Studies show that early initiation drastically reduces future cardiovascular events. The therapeutic goal is LDL-c \leq 130 mg/dL [6-9].

Additional Therapies

- Ezetimibe lowers LDL-c by up to 27% and can be associated with statins [10,24].
- PCSK9 inhibitors (such as evolocumab and alirocumab) are indicated in cases that are resistant to or intolerant to statins.
- Evolocumab can reduce LDL-c by up to 44.5% in children. Both are approved for pediatric use [11-14].

Homozygous Familial Hypercholesterolemia (HoFH)

Severe and rare form (1:300,000), caused by mutations inherited from both parents [15,16].

LDL-c usually > 400 mg/dL, with early xanthomas and high risk of cardiovascular disease in childhood [16].

Diagnosis: based on extremely high LDL-c levels, clinical signs, and family history. Genetic testing confirms the condition and guides family treatment and screening [16].

Treatment

Early initiation with statins and ezetimibe (from 2 years old) [16]. LDL-apheresis is indicated before the age of 5 years, especially in severe cases [16].

PCSK9 inhibitors, lomitapide (not yet available for children), and evinacumab (effective even without LDL receptor action) are emerging options [17-21].

LDL-c target < 115 mg/dL, being lower in cases with established atherosclerotic cardiovascular disease, although difficult to achieve [16].

Hypertriglyceridemia's

They result from increased production of very low-density lipoprotein (VLDL) or reduction in lipolysis. TG levels between 175-885 mg/dL are mild to moderate; above 885 mg/dL are severe. Secondary causes include poor diet, endocrine disorders, medications, and alcohol [22-24].

Combined Dyslipidemia: Prevalent in children with obesity and insulin resistance. TG between 150-400 mg/dL, HDL-c < 40 mg/dL. LDL-c may be normal, but with small, dense particles that are more atherogenic [25,26].

Treatment

- Lifestyle: diet and physical activity.
- Pharmacotherapy: statins (reduce TG by up to 30%) from the age of 10; fibrates and omega-3s can be used at TG ≥ 400 mg/dL [27].

Severe, Monogenic Hypertriglyceridemia

- Familial chylomicronemia syndrome: a rare, recessive disease caused by mutations in lipoprotein lipase and related genes. It manifests in childhood with TG > 1000 mg/dL, recurrent pancreatitis, retinal lipemia, and xanthomas. Treatment is based on a diet with severe fat restriction (8–10% of calories) and use of medium-chain fatty acids [28,29,30].
- Multifactorial chylomicronemia syndrome (MCS): caused by multiple genes and aggravated by factors such as diabetes, obesity, and certain medications. It is more common than familial chylomicronemia syndrome. It responds well to lifestyle changes and treatment of comorbidities [31].

Secondary Dyslipidemias

Caused by diseases or medications. The most common include [1]:

- Type 1 and 2 diabetes mellitus
- Hypothyroidism
- Chronic kidney disease
- Lupus
- Use of isotretinoin, corticosteroids, oral contraceptives
- Pregnancy
- Liver disease, among others

Treatment of the underlying condition usually normalizes the lipid profile. Lipid-lowering drugs are only indicated in patients at moderate or high risk. Statins can be initiated along with lifestyle changes in high-risk children (e.g., type 2 diabetes mellitus, end-stage renal disease), with a target LDL-c < 100 mg/dL. For moderate risk (e.g., obesity, hypertension), the goal is LDL-c ≤ 130 mg/dL [9].

Tracing

It aims to detect dyslipidemia early and prevent cardiovascular events. Studies show that risk factors present in childhood, such as high body mass index, high cholesterol, and smoking, significantly increase cardiovascular risk in adulthood. Universal screening is recommended between 9-11 years and 17-21 years, preferably fasting, regardless of family history. Selective screening is indicated between 2-8 years and between 12-16 years for children with risk factors such as [32-34].

- Family history of hypercholesterolemia or premature cardiovascular disease
- Overweight/obesity
- Diabetes, hypertension or smoking

Conclusion

The early identification and management of pediatric dyslipidemias are essential for the prevention of atherosclerosis and cardiovascular diseases in adulthood. Early introduction of lifestyle interventions, judicious use of medications, and appropriate screening are proven strategies to reduce long-term risk.

Acknowledgments: None.

Conflict of Interest: None.

References

1. National Heart, Lung, and Blood Institute (2011) Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report 2011 Pediatrics 128: 213-256.
2. Santos RD (2017) Phenotype vs. genotype in severe familial hypercholesterolemia: what matters most for the clinician? Curr Opin Lipidol 28: 130-135.
3. Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG (2020) Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. J Am Coll Cardiol 75: 2553-2566.
4. Berberich AJ, Hegele RA (2019) The complex molecular genetics of familial hypercholesterolemia. Nat Rev Cardiol 16: 9-20.
5. Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, et al.. (2015) European Atherosclerosis Society Consensus Panel. Familial hypercholesterolemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 36: 2425-2437.
6. Vuorio A, Kuoppala J, Kovanen PT, Humphries SE, Tonstad S, et al.. (2017) Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev 7: 1-47.
7. Newman CB, Preiss D, Tobert JA, Jacobson TA, Goldstein LB, et al.. (2019) Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol 39: 38-81.
8. Luijink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, et al.. (2019) 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med 381: 1547-1556.
9. Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, et al.. (2019) Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation 139: 603-634.
10. Kusters DM, Caceres M, Coll M, Cuffie C, Gagné C, et al.. (2015) Efficacy and safety of ezetimibe monotherapy in children with heterozygous familial or nonfamilial hypercholesterolemia. J Pediatr. 166: 1377-1384.

11. Santos RD, Ruzza A, Hovingh GK, Wiegman A, Mach F, et al.. (2020) Evolocumab in pediatric heterozygous familial hypercholesterolemia. *N Engl J Med* 383: 1317-1327.
12. Santos RD, Ruzza A, Hovingh GK, Stefanutti C, Mach F, et al.. (2022) Paediatric patients with heterozygous familial hypercholesterolemia treated with evolocumab for 80 weeks (HAUSER-OLE): a single-arm, multicentre, open-label extension of HAUSER-RCT. *Lancet Diabetes Endocrinol* 10: 732-740.
13. Santos RD, Ruzza A, Wang B, Maruff P, Schembri A, et al. (2024) Evolocumab in paediatric heterozygous familial hypercholesterolemia: cognitive function during 80 weeks of open-label extension treatment. *Eur J Prev Cardiol* 31: 302-310.
14. Santos R, Wiegman A, Caprio S, Cariou B, Averna M, et al. (2023) Efficacy and safety of alirocumab in children and adolescents with heterozygous familial hypercholesterolemia inadequately controlled with statins. *Eur Heart J* 44: 1-3.
15. Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG (2020) Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. *JACC* 75: 2553-2566.
16. Cuchel M, Raal FJ, Hegele RA, Al-Rasadi K, Arca M, (2023) Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolemia: new treatments and clinical guidance. *European Heart Journal* 44: 2277-2291.
17. Ben-Omran T, Masana L, Kolovou G, Ariceta G, Növoa FJ, et al. (2019) Real-world outcomes with lomitapide use in paediatric patients with homozygous familial hypercholesterolemia *Advances in Therapy* 36: 1786-1811.
18. Chacra APM, Ferrari MC, Rocha VZ, Santos RD (2019) Case report: The efficacy and safety of lomitapide in a homozygous familial hypercholesterolemic child. *Journal of Clinical Lipidology* 13: 397-401.
19. Masana L, Zambon A, Schmitt C, Taylan C, Dreimeyer J (2024) Lomitapide for the treatment of paediatric homozygous familial hypercholesterolemia patients - Results from the efficacy phase of the APH-19 study. *Atherosclerosis* 379: 1.
20. Wiegman A, Greber-Platzer S, Ali S, Reijman MD, Brinton EA, et al. (2024) Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. *Circulation* 149: 343-353.
21. Blom DJ, Marais AD, Raal FJ (2025) Homozygous familial hypercholesterolemia treatment: new developments. *Current Atherosclerosis Reports* 27: 22.
22. Gagnon CA, Ashraf AP (2024) Beyond the guidelines: perspectives on management of pediatric patients with hypertriglyceridemia. *Curr Atheroscler Rep* 26: 617-628.
23. Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, et al. (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. *Lancet Diabetes Endocrinol* 2: 655-666.
24. Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, et al. (2012) Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 97: 2969-2989.
25. Kavey RW (2023) Combined dyslipidemia in children and adolescents: a proposed new management approach. *Curr Atheroscler Rep* 25: 237-245.
26. Berardis S, Sokal E (2014) Pediatric non-alcoholic fatty liver disease: an increasing public health issue. *Eur J Pediatr* 173: 131-139.
27. Gagnon CA, Ashraf AP (2024) Beyond the guidelines: perspectives on management of pediatric patients with hypertriglyceridemia. *Curr Atheroscler Rep* 26: 617-628.
28. Izar MCO, Santos Filho RDD, Assad MHV, Chagas ACP, Toledo Júnior AO, (2023) Brazilian position statement for familial chylomicronemia syndrome - 2023. *Arq Bras Cardiol* 120: e20230203.
29. Brahm AJ, Hegele RA (2015) Chylomicronaemia--current diagnosis and future therapies. *Nat Rev Endocrinol* 11: 352-362.
30. Valdivielso P, Ramírez-Bueno A, Ewald N (2014) Current knowledge of hypertriglyceridemic pancreatitis. *Eur J Intern Med* 25: 689-694.
31. Gotoda T, Shirai K, Ohta T, Kobayashi J, Yokoyama S, et al. (2012) Diagnosis and management of type I and type V hyperlipoproteinemia. *J Atheroscler Thromb* 19: 1-12.
32. Nuotio J, Laitinen TT, Magnussen CG, Sinaiko AR, Bazzano LA, et al. (2024) Predictors in youth of adult cardiovascular events. *Pediatrics* 154: e2024066736.
33. Mosca S, Araújo G, Costa V, Correia J, Bandeira A, et al.. (2022) Dyslipidemia diagnosis and treatment: risk stratification in children and adolescents. *J Nutr Metab* 2022: 4782344.
34. Drastal MS, de Ferranti S, Gooding H (2025) Recent updates on the screening, diagnosis, and management of lipids disorders in children and adolescents. *Current Opinion in Pediatrics* 37. doi: 10.1097/MOP.0000000000001460.

Copyright: ©2025 Tania Leme da Rocha Martinez, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.