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Introduction
Vibration analysis stands as a cornerstone in the realm of mechanical 
engineering and structural health monitoring, providing a powerful 
tool for understanding the dynamic behavior of systems subjected 
to mechanical oscillations [1-15]. This discipline involves the study 
and interpretation of vibrational patterns and characteristics within 
structures or machinery, offering insights into their performance, 
integrity, and potential issues [16-35].

As mechanical systems and structures continuously experience 
various forces and external stimuli, they respond with intricate 
vibrational patterns that carry valuable information about their 
condition [36-45]. Vibration analysis, therefore, serves as a 
diagnostic method to decipher these patterns, enabling engineers 
and analysts to gain a comprehensive understanding of a system’s 
health, identify potential faults, and optimize its performance 
[46-56].

Key components of vibration analysis include the study of 
frequencies, amplitudes, and phase relationships in vibrational 
signals. These parameters aid in the identification of natural 
frequencies, resonances, and potential modes of vibration within 
a system. Furthermore, vibration analysis plays a pivotal role in 
predictive maintenance strategies, allowing for the early detection 
of mechanical issues before they escalate into critical failures 
[57-75].

The methodologies within vibration analysis range from simple 
manual assessments to sophisticated computational techniques. 
This field incorporates various sensors, such as accelerometers, 

to capture vibrational data, and analytical tools, including Fast 
Fourier Transform (FFT) and modal analysis, to process and 
interpret this data [76-85].

By understanding the vibrational characteristics of systems, 
researchers and practitioners can make informed decisions about 
design, maintenance, and optimization, ultimately contributing 
to the reliability, safety, and efficiency of mechanical structures 
and machinery. Through this exploration, we embark on a 
comprehensive journey into the heart of vibration analysis, 
unraveling its principles and unveiling its myriad applications in 
the dynamic landscape of engineering and technology [86-93].

In this study, we delve into the realm of Operational 
Modal Analysis (OMA) with a keen focus on its practical 
implementation, emphasizing a minimalist sensor setup. Unlike 
traditional approaches that often require an array of sensors, our 
methodology leverages the efficiency of a single accelerometer 
for comprehensive data acquisition. Through the integration of 
sophisticated simulation techniques, we embark on a journey to 
unravel the eigenfrequencies, a pivotal parameter characterizing 
the natural oscillation frequencies of suspension bridges.

The innovative aspect of this research lies in its commitment 
to providing valuable insights into the dynamic response of 
suspension bridges when subjected to varying dynamic forces. 
We envision a more cost-effective and streamlined approach to 
structural health monitoring, where the complexity and expenses 
associated with deploying multiple sensors are minimized. By 
strategically addressing the challenges and limitations inherently 
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linked to the use of a single sensor, our study serves as a testament 
to the potential of OMA in scenarios dictated by resource 
constraints or practical considerations.

As we navigate through the intricacies of our methodology, this 
paper aims to contribute significantly to the broader field of 
structural dynamics and modal analysis. By offering a nuanced 
perspective on the dynamic characteristics of suspension bridges 
in real-world conditions, our findings not only advance the 
current understanding of bridge behavior but also pave the way 
for more efficient and accessible methodologies in structural 
health monitoring. Through this research, we aspire to bridge the 
gap between practical constraints and the imperative need for a 
thorough comprehension of structural dynamics, particularly in 
the context of suspension bridges.

•	 Eigenfrequency Estimation: Eigenfrequency estimation 
is a crucial step in modal analysis, allowing us to identify 
the natural frequencies at which a structure vibrates. In this 
study, the initial estimates of eigenfrequencies are obtained 
using the classical peak-picking method. Let’s break down 
this process in detail.

•	 Frequency Domain Representation: The first step involves 
transforming the time-domain data into the frequency domain. 
This is typically done using techniques such as the Fourier 
Transform. The result is a frequency spectrum showing 
different frequencies’ contribution to the overall signal.

•	 Identification of Peaks: The classical peak-picking method 
is employed to identify prominent peaks in the frequency 
spectrum. Peaks represent specific frequencies at which the 
structure vibrates. These frequencies are associated with the 
eigenmodes of the structure.

•	 Peak Detection Algorithm: Various algorithms can be 
used for peak detection, and the choice depends on the 
characteristics of the data. Common algorithms include 
threshold-based methods, derivative-based methods, or more 
advanced techniques like wavelet analysis.

•	 Threshold Setting: A threshold may be set to distinguish 
significant peaks from noise. Peaks above the threshold are 
considered valid eigenfrequencies, while smaller peaks are 
ignored.

•	 Eigenfrequency Extraction: Once the peaks are identified, 
the corresponding frequencies are extracted. These frequencies 
represent the initial estimates of the 

	 Eigenfrequencies of the structure.
•	 Significance of Eigenfrequencies: Eigenfrequencies are 

fundamental to the dynamic behavior of a structure. They 
indicate the rates at which the structure naturally vibrates 

•	 in different modes. The goal is to accurately identify these 
frequencies to gain insights into the structural response under 
various conditions.

•	 Iterative Refinement: It’s important to note that initial 
eigenfrequency estimates may undergo further refinement 
through iterative processes. Refinement techniques, such as 
curve fitting or advanced modal identification algorithms, 
may be applied to improve the accuracy of the estimates.

•	 Validation and Comparison: The final set of eigenfrequencies 
obtained through this process is then compared with the 
target eigenfrequencies or those obtained through other means 
(e.g., numerical simulations). This validation step ensures the 
reliability of the estimated eigenfrequencies.

•	 The Classical Peak: picking method provides a 
straightforward and effective way to obtain initial estimates 
of eigenfrequencies from experimental or simulated data. 

Subsequent steps in the modal analysis process, such as 
mode shape identification and damping ratio estimation, 
often build upon these initial eigenfrequency estimates to 
comprehensively characterize the dynamic behavior of the 
structure (see figure 1).

Figure 1: Eigenfrequency Estimation

Automated Peak-Picking Method
An automated peak-picking method refers to a computational 
approach or algorithm designed to identify and extract prominent 
peaks from a dataset, such as a signal or a spectrum. This method 
is commonly used in various fields, including signal processing, 
spectroscopy, chromatography, and data analysis. The goal is 
to automate the process of detecting significant peaks within a 
dataset, saving time and ensuring consistency in peak identification 
(see Figure 2).

Figure 2: The Adequacy of the Filtering and Fitting

Automated peak-picking methods play a crucial role in high-
throughput data analysis, where manual identification of peaks 
may be impractical. These methods are applied in a variety of 
scientific and industrial contexts, providing efficient and consistent 
peak identification in large datasets. The choice of a specific 
method may depend on the nature of the data, the characteristics 
of the peaks, and the user’s specific requirements.
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Damping Ratio Estimation
In the study of dynamic systems and structural vibrations, the 
estimation of damping ratios plays a crucial role in understanding 
how a system dissipates energy over time. This estimation becomes 
particularly relevant when analyzing the response of structures to 
external forces, such as those experienced by bridges, buildings, 
or mechanical components. One common method employed for 
damping ratio estimation involves fitting an exponential decay 
function to the Impulse Response Function (IRF) of the system.

Our focus is on the application of damping ratio estimation through 
the fitting of an exponential decay function to the IRF. The Impulse 
Response Function represents the system’s response to an impulse, 
providing valuable information about its dynamic behavior. By 
modeling the decay of the response with an exponential function, 
we can extract critical parameters, specifically the damping ratios 
associated with the identified eigenfrequencies.

The fitting process allows us to quantify how quickly the vibrations 
within the system decay after an external force is applied. A higher 
damping ratio indicates a faster decay, signifying a system that 
dissipates energy more rapidly. Conversely, a lower damping ratio 
suggests a slower decay, indicating a system with greater capacity 
to sustain oscillations.

Introduction to Manual Peak-Picking Method
In the realm of signal processing and data analysis, the manual 
peak-picking method stands as a traditional yet valuable approach 
for identifying significant peaks within datasets. Unlike automated 
algorithms, which employ computational techniques to identify 
peaks, the manual method involves human intervention to visually 
inspect and select peaks of interest. This hands-on approach allows 
analysts to carefully scrutinize the data, taking into account 
domain-specific knowledge and subjective judgment.

In this study, we delve into the nuances of the manual peak-picking 
method, recognizing its historical significance and enduring 
relevance in various scientific disciplines. By leveraging the 
expertise of human analysts, this method enables a qualitative 
and context-aware identification of peaks, which may be crucial 
in scenarios where the data’s complexity or uniqueness demands 
a more tailored and nuanced approach (see Figure 3).

Figure 3: Manual Peak-Picking Method

Throughout this exploration, we will discuss the intricacies of 
the manual peak-picking process, shedding light on the factors 
influencing peak selection, such as peak height, width, and overall 
shape. We will also examine the advantages and challenges 
associated with manual peak picking, considering its applications in 
fields such as spectroscopy, chromatography, and signal processing.

As we navigate the landscape of manual peak picking, we aim 
to provide a comprehensive understanding of its principles, 
methodologies, and potential implications for data analysis. 
By doing so, we contribute to the broader discourse on peak 
identification methods, recognizing that the manual approach, 
despite its inherently subjective nature, remains an invaluable 
tool in the hands of skilled analysts and researchers. Through this 
exploration, we hope to provide insights that inform the ongoing 
dialogue between traditional manual methods and emerging 
automated techniques in the ever-evolving landscape of data 
analysis and scientific inquiry.

Conclusion
The primary goal of the described methodology is to identify 
two important dynamic parameters of the suspension bridge: 
eigenfrequency and damping ratio. These parameters provide 
insights into how the bridge responds to dynamic loads, 
such as those experienced under ambient loading conditions. 
The described methodology provides a practical approach to 
eigenfrequency and damping ratio identification for a suspension 
bridge using only a single accelerometer. The simulation and 
analysis contribute valuable insights into the dynamic behavior 
of the bridge under ambient loading conditions. This approach, 
while having limitations, demonstrates the potential of OMA with 
a single sensor in certain scenario.
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