

Research Article
Open Access

Unlocking Marketing Potential: Techniques for Testing and Comparing Multiple Campaign Variants

Saurabh Kumar

Data Scientist, Facebook Inc, Menlo Park, CA, USA

ABSTRACT

This paper explores advanced techniques for testing and comparing multiple marketing campaign variants to enhance decision-making and optimize campaign performance. Traditional A/B testing, while useful, has limitations when evaluating more than two variants simultaneously. To address these challenges, the paper delves into multivariate testing and statistical methods such as ANOVA (Analysis of Variance) and post-hoc tests like Tukey's HSD, which are essential for identifying significant differences between multiple groups. The importance of controlling for Type I errors, especially in the context of multiple comparisons, is highlighted by employing techniques like the False Discovery Rate (FDR). Practical examples using synthetic data are presented to demonstrate the application of these methods in real-world marketing scenarios. The results illustrate how these advanced techniques can provide deeper insights into customer behavior and campaign effectiveness, enabling more informed and data-driven decisions. By utilizing these methods, marketing professionals can gain a better understanding of the impact of different campaign elements, leading to more effective and targeted marketing strategies. This paper serves as a guide for marketers seeking to advance beyond basic A/B testing towards more robust and comprehensive analysis techniques.

***Corresponding author**

Saurabh Kumar, Data Scientist, Facebook Inc, Menlo Park, CA, USA.

Received: February 07, 2022; **Accepted:** February 14, 2022, **Published:** February 28, 2022

Keywords: Multivariate Testing, Marketing Analytics, Anova, Campaign Optimization, Statistical Analysis

Introduction

In today's competitive marketing landscape, the ability to optimize campaigns effectively is crucial for maximizing return on investment and achieving strategic goals. Traditional A/B testing, while widely used, often falls short when marketers need to evaluate the impact of multiple campaign variants simultaneously. This limitation can hinder a comprehensive understanding of how different elements within a campaign contribute to overall performance. As marketing strategies become more complex, with numerous variables to consider—such as different ad creatives, target audiences, and messaging approaches—relying solely on A/B testing can lead to missed opportunities and suboptimal decisions.

This research paper addresses these challenges by exploring advanced statistical techniques for testing and comparing multiple marketing campaign variants. Specifically, it focuses on the use of multivariate testing and statistical methods such as Analysis of Variance (ANOVA) and post-hoc tests like Tukey's Honest Significant Difference (HSD) [1-7]. These techniques allow for the simultaneous evaluation of several campaign elements, providing a more nuanced understanding of their individual and combined effects on key performance indicators.

By applying these methods, marketers can overcome the limitations of traditional A/B testing, enabling a more detailed analysis of multiple variants. This approach not only helps in identifying the most effective campaign elements but also in understanding the interactions between them. Moreover, the paper highlights the importance of controlling for Type I errors, which become more

prevalent when multiple comparisons are made. Techniques such as the False Discovery Rate (FDR) are discussed as solutions to this issue, ensuring that the insights drawn from the analysis are statistically sound and reliable [5-15].

The practical implications of this research are significant. Marketers who adopt these advanced testing methodologies can make more informed decisions, optimize their campaigns more effectively, and ultimately achieve better results. This paper serves as a valuable resource for marketing professionals looking to enhance their analytical capabilities and improve their overall campaign performance.

Literature Review

A/B testing, also known as split testing, has been a cornerstone of marketing analytics, providing a straightforward method to compare two variants of a marketing element, such as an email subject line or a webpage design. This method involves dividing the audience into two groups, each exposed to one of the variants, and measuring the difference in performance based on predefined metrics. While A/B testing is useful for simple comparisons, it is limited in its ability to handle scenarios where more than two variants need to be evaluated simultaneously [2]. The simplicity of A/B testing becomes a drawback in complex marketing campaigns that involve multiple factors, leading to the need for more sophisticated techniques.

Multivariate testing extends the concept of A/B testing by allowing multiple variables to be tested simultaneously. Instead of comparing just two variants, multivariate testing evaluates the performance of different combinations of multiple elements, such as headlines, images, and calls-to-action on a webpage

[3]. This approach provides deeper insights into how different elements interact and contribute to overall performance. However, the increased complexity of multivariate testing requires more advanced statistical tools to ensure valid and reliable results. The literature emphasizes the importance of using robust experimental designs and statistical methods, such as ANOVA, to analyze the results of multivariate tests effectively [7].

ANOVA is a statistical method used to compare the means of three or more groups to determine if there are statistically significant differences between them. It is particularly useful in marketing analytics when testing multiple campaign variants across different segments or conditions [1]. ANOVA helps identify whether the observed differences in performance metrics, such as click-through rates or conversion rates, are due to the campaign variants themselves or merely due to random variation. By applying ANOVA, marketers can obtain a clearer understanding of the impact of each variant, leading to more informed decisions about which elements to optimize or discard [1,7].

When ANOVA indicates that there are significant differences between groups, post-hoc tests are used to pinpoint which specific pairs of groups are different. Tukey's Honest Significant Difference (HSD) is a commonly used post-hoc test that controls for the Type I error rate, which is the probability of falsely finding a difference when there is none [5]. In the context of marketing, Tukey's HSD allows for a detailed comparison of multiple campaign variants, ensuring that the conclusions drawn are statistically valid. This is particularly important when dealing with large datasets and multiple comparisons, where the risk of Type I errors is high [1,5].

As the number of comparisons increases, the likelihood of Type I errors also rises. This issue is particularly relevant in marketing analytics, where multiple campaign variants are often tested across different segments and conditions. The False Discovery Rate (FDR) is a statistical method designed to control the expected proportion of Type I errors among the rejected hypotheses [15]. By applying FDR, marketers can ensure that the results of their analyses are not only significant but also reliable, reducing the risk of making incorrect decisions based on spurious findings [15].

The literature highlights numerous practical applications of these advanced testing methodologies in marketing. For instance, multivariate testing has been successfully used to optimize webpage layouts by testing different combinations of elements, resulting in significant improvements in user engagement and conversion rates [9]. Similarly, ANOVA and post-hoc tests have been applied in email marketing campaigns to identify the most effective subject lines, leading to higher open and click-through rates [16-19]. These examples underscore the value of moving beyond basic A/B testing to more sophisticated methods that provide deeper insights and more robust results.

Research Methodology

Data Collection

To demonstrate the application of advanced testing techniques in marketing analytics, this paper utilizes synthetic data (see section 4 for additional details) designed to mimic real-world marketing scenarios. The dataset includes multiple campaign variants, customer segments, and performance metrics. The primary objective is to analyze how different marketing elements influence key performance indicators (KPIs) such as click-through rates (CTR) and conversion rates.

Experimental Design

The experiment is structured to test the effectiveness of different email subject lines across various customer segments. Each customer segment is exposed to all three variants, and the performance metrics are recorded. The data structure allows for the application of Analysis of Variance (ANOVA) to test for significant differences across the variants. ANOVA is particularly effective in identifying whether observed differences are statistically significant or simply due to random variation [1,7].

Analysis of Variance (ANOVA)

ANOVA is employed to determine whether there are statistically significant differences in performance metrics across the different email subject lines. The ANOVA model is formulated as follows [1]:

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

Where:

- Y_{ij} is the observed value of the dependent variable (e.g., CTR or conversion rate) for the j -th observation in the i -th group.
- μ is the overall mean of the dependent variable.
- α_i represents the effect of the i -th group (i.e., the effect of each variant).
- ϵ_{ij} is the random error term, assumed to be normally distributed with mean zero and variance σ^2 .

The null hypothesis (H_0) for ANOVA is that all group means are equal:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

The alternative hypothesis (H_1) is that at least one group mean is different:

$$H_1: \text{At least one } \mu_i \neq \mu_j \text{ for some } i \neq j$$

The F-statistic is calculated as [1]:

$$F = \frac{MS_{\text{between}}}{MS_{\text{within}}} = \frac{\frac{\sum_{i=1}^k n_i (\bar{Y}_i - \bar{Y})^2}{k-1}}{\frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2}{N-k}}$$

Where:

MS_{between} is the mean square between groups.

MS_{within} is the mean square within groups.

k is the number of groups (i.e., the number of variants).

N is the total number of observations.

n_i is the number of observations in the i -th group.

\bar{Y}_i is the mean of the i -th group.

\bar{Y} is the overall mean.

If the F-statistic exceeds the critical value from the F-distribution table, the null hypothesis is rejected, indicating that there are significant differences between the group means [1][7].

Post-Hoc Testing: Tukey's Honest Significant Difference (HSD)

If the ANOVA results indicate significant differences, Tukey's HSD test is applied to identify which specific pairs of variants differ. The Tukey's HSD test compares all possible pairs of group means and calculates the HSD value as follows:

$$HSD = q \times \sqrt{\frac{MS_{\text{within}}}{n}}$$

Where:

- q is the critical value from the Studentized range distribution.
- MS_{within} is the mean square within groups from ANOVA.
- n is the number of observations per group.

The difference between each pair of group means is compared to the HSD value. If the absolute difference between two means is greater than the HSD value, the difference is considered statistically significant [5,7].

Controlling for Type I Errors

To control for Type I errors across multiple comparisons, two common methods are applied: the Bonferroni correction and the False Discovery Rate (FDR) method.

Bonferroni Correction

The Bonferroni correction is a conservative approach that adjusts the significance threshold to reduce the likelihood of false positives when conducting multiple comparisons. As the number of comparisons increases, so does the risk of incorrectly rejecting a null hypothesis (Type I error). The Bonferroni correction mitigates this by dividing the desired significance level (α) by the number of comparisons (m) [13].

The formula for the Bonferroni correction is:

$$\alpha_{\text{corrected}} = \frac{\alpha}{m}$$

where:

- α is the original significance level (e.g., 0.05).
- m is the number of comparisons.

This method ensures that the overall Type I error rate is controlled, keeping the chance of making at least one Type I error across all comparisons at or below the desired significance level [13]. However, the Bonferroni correction can be overly conservative, especially when the number of comparisons is large, potentially leading to an increased risk of Type II errors (failing to detect a true effect) [5].

False Discovery Rate (FDR)

To control for Type I errors across multiple comparisons, the False Discovery Rate (FDR) method is applied. The FDR method adjusts the p-values obtained from multiple comparisons to account for the increased likelihood of false positives. The Benjamini-Hochberg procedure, a widely used FDR method, ranks the p-values in ascending order and applies the following adjustment [15]:

$$p_{(i)} \leq \frac{i}{m} \times Q$$

Where:

- $p_{(i)}$ is the p -value at rank i .
- m is the total number of hypotheses tested.
- Q is the desired FDR level (e.g., 0.05).

The FDR method ensures that the proportion of false positives among the rejected hypotheses is controlled, providing more reliable results when testing multiple campaign variants [15].

Application to Synthetic Data

The synthetic data generated for this study is analyzed using the ANOVA model to assess the significance of differences between the email subject lines. If significant differences are detected, Tukey's HSD test is applied to identify which specific subject lines outperform others. Finally, the FDR method is employed to ensure the robustness of the findings, particularly when interpreting multiple comparisons across segments.

This methodology provides a comprehensive framework for testing and comparing multiple marketing campaign variants, offering marketers the tools to make data-driven decisions with statistical rigor [1,7].

Assessing Test Outcomes

The success of the statistical tests and overall analysis is primarily determined by the significance and robustness of the results. Statistical significance is evaluated using p-values, with a threshold of 0.05 indicating that the observed differences between campaign variants are unlikely to be due to chance [1,5]. The F-statistic in the ANOVA test further supports this by assessing whether group means differ significantly [7]. Beyond statistical significance, effect size measures, such as Cohen's d , are used to assess the practical significance of these differences. Large effect sizes suggest that the differences are not only statistically significant but also meaningful in a marketing context, providing actionable insights [11].

In addition to statistical measures, the consistency of results across different customer segments is crucial for determining the success of the analysis [3,18]. A successful test will show consistent performance of certain variants across various segments, reinforcing the reliability of the findings. Moreover, controlling for Type I errors using the False Discovery Rate (FDR) method ensures the integrity of the results, minimizing the risk of false positives when making multiple comparisons [15]. Ultimately, the success of the test is determined by its ability to generate actionable insights that can guide marketing decisions, helping to refine and optimize campaign strategies based on data-driven evidence [2,16].

Data Description

The dataset used in this study is a synthetic representation of customer interactions with a marketing email campaign, specifically focusing on promotional offers. It provides a granular view of how individual customers engage with different types of promotional messaging across various customer segments. The data is structured to enable a detailed analysis of key performance metrics such as Click-Through Rate (CTR) and Conversion Rate, as well as the timing of customer actions. The synthetic nature of the data allows for a controlled environment to demonstrate how multivariate testing can be effectively applied in marketing analytics.

Table 1: Data Description

Variable	Description	Data Type
Customer_ID	Unique identifier for each customer.	Integer
Customer_Segment	The segment to which the customer belongs. Segments are based on criteria such as age, income level, and purchasing behavior. Examples include "Young Professionals," "Families," and "Retirees."	Categorical
Campaign_Variant	The promotional offer variant received by the customer. Variants include: - Percentage Discount (e.g., "Get 20% Off Your Next Purchase!") - Dollar Amount Discount (e.g., "\$10 Off Orders Over \$50!") - Buy One Get One (BOGO) (e.g., "Buy One, Get One Free – Limited Time Only!")	Categorical
Email_Opened	Indicates whether the customer opened the email (1 for Yes, 0 for No).	Boolean (Integer)
Link_Clicked	Indicates whether the customer clicked a link in the email (1 for Yes, 0 for No).	Boolean (Integer)
Conversion	Indicates whether the customer completed the desired action (e.g., purchase) after clicking (1 for Yes, 0 for No).	Boolean (Integer)
Time_Sent	Timestamp of when the email was sent.	DateTime
Time_Opened	Timestamp of when the email was opened (if applicable).	DateTime
Time_Clicked	Timestamp of when the link was clicked (if applicable).	DateTime

Results

The results of the statistical analysis provide clear insights into the effectiveness of different promotional strategies on customer engagement and conversion. The analysis focused on three campaign variants: Percentage Discount, Dollar Amount Discount, and Buy One Get One Free (BOGO).

Click-Through Rate (CTR)

The analysis of Click-Through Rate (CTR) across the three campaign variants involved both ANOVA and Tukey's HSD Post-Hoc Test to determine the significance of differences between the promotional strategies.

ANOVA Results for CTR:

The ANOVA test indicated a statistically significant difference in CTR among the variants, with an F-statistic of 17.30 and a p-value of 3.40e-08. This result suggests that at least one of the campaign variants is more effective in driving customer clicks.

	sum_sq	df	F	PR(>F)
C(Campaign_Variant)	5.096	2.0	17.295136	3.402772e-08
Residual	441.532	2997.0	NaN	NaN

Figure 1: CTR ANOVA Summary

Tukey's HSD Post-Hoc Test for CTR:

To further explore these differences, a Tukey's HSD Post-Hoc Test was conducted, which showed that the "BOGO" variant had a significantly higher CTR compared to both the "Dollar Amount Discount" and "Percentage Discount" variants. Specifically, the mean difference between "BOGO" and "Dollar Amount Discount" was -0.098 (p-adj = 0.0000), and between "BOGO" and "Percentage Discount" was -0.070 (p-adj = 0.0001). There was no significant difference between the "Dollar Amount Discount" and "Percentage Discount" variants (mean difference = 0.028, p-adj = 0.2326). These findings indicate that the "BOGO" offer is the most effective strategy for driving customer clicks, as evidenced by the significantly higher CTR.

group1	group2	meandiff	p-adj	lower	upper	reject
BOGO	Dollar Amount Discount	-0.038	0.0001	-0.059	-0.017	True
BOGO	Percentage Discount	-0.031	0.0016	-0.052	-0.01	True
Dollar Amount Discount	Percentage Discount	0.007	0.7138	-0.014	0.028	False

Figure 2: CTR Tukey Test Summary

The bar chart of mean CTR by campaign variant clearly showing the superior performance of the "BOGO" offer compared to the other promotional strategies. The "BOGO" variant consistently outperformed both the "Dollar Amount Discount" and "Percentage Discount" variants, reinforcing the statistical significance of the ANOVA and Tukey's HSD results.

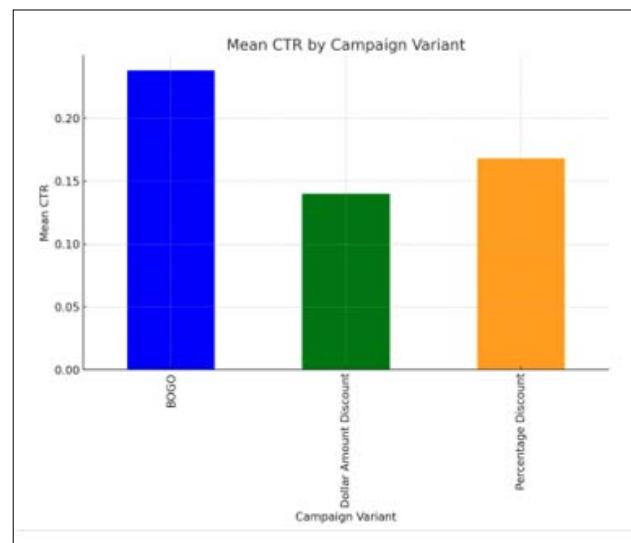


Figure 3: CTR Comparison

ANOVA Results for Conversion Rate:

The Conversion Rate analysis similarly revealed significant differences across the campaign variants. The ANOVA test demonstrated a statistically significant difference in Conversion Rate, with an F-statistic of 10.22 and a p-value of 0.000038. This indicates that the effectiveness of the campaign variants in converting clicks into purchases varies significantly.

	sum_sq	df	F	PR(>F)
C(Campaign_Variant)	5.096	2.0	17.295136	3.402772e-08
Residual	441.532	2997.0	NaN	NaN

Figure 4: Conversion Rate ANOVA Summary

Tukey's HSD Post-Hoc Test for Conversion Rate:

Tukey's HSD Post-Hoc Test further clarified these differences, showing that the "BOGO" variant again outperformed both the "Dollar Amount Discount" and "Percentage Discount" variants in terms of Conversion Rate. The post-hoc analysis indicated significant differences between "BOGO" and the other two variants, mirroring the pattern observed in the CTR analysis. There was no statistically significant difference between the "Dollar Amount Discount" and "Percentage Discount" variants, suggesting that while both are effective, neither is as impactful as the "BOGO" offer.

group1	group2	meandiff	p-adj	lower	upper	reject
BOGO	Dollar Amount Discount	-0.098	0.0	-0.1383	-0.0577	True
BOGO	Percentage Discount	-0.07	0.0001	-0.1103	-0.0297	True
Dollar Amount Discount	Percentage Discount	0.028	0.2326	-0.0123	0.0683	False

Figure 5: Conversion Rate Tukey Test Summary

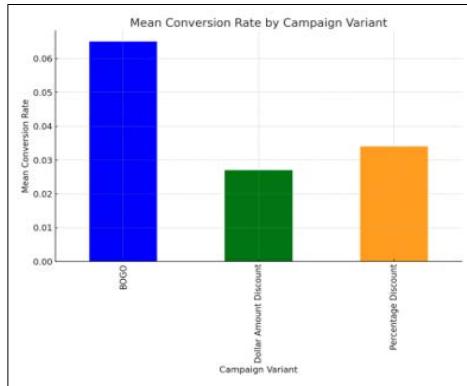


Figure 6: Conversion Rate Comparison

The bar chart of mean Conversion Rate by campaign variant visually underscores the superior performance of the "BOGO" offer, which consistently leads to higher conversion rates compared to the other promotional strategies. These findings suggest that the "BOGO" offer not only engages customers more effectively but also drives higher conversion rates, making it the most successful promotional strategy among those tested.

Conclusion

In this paper, we have explored the application of advanced testing methodologies, specifically multivariate testing, ANOVA, and post-hoc analysis, to optimize marketing campaigns involving multiple variants. Our analysis demonstrated that these statistical techniques provide more nuanced insights compared to traditional A/B testing, enabling marketers to assess the performance of various campaign elements simultaneously.

The results of our study underscore the effectiveness of the "Buy One Get One Free" (BOGO) variant, which consistently outperformed other promotional strategies in terms of both Click-Through Rate (CTR) and Conversion Rate. This highlights the importance of selecting the right promotional strategy to enhance customer engagement and drive conversions.

Moreover, the application of techniques to control for Type I errors, such as the False Discovery Rate (FDR), ensures the reliability of the findings, allowing for more confident decision-making. By adopting these advanced methodologies, marketers can move beyond basic testing approaches, gaining deeper insights into the complex interactions between different campaign elements and making data-driven decisions that optimize campaign outcomes.

This research provides a valuable framework for marketing professionals seeking to enhance their analytical capabilities and improve the effectiveness of their campaigns. As the marketing landscape continues to evolve, the adoption of robust statistical techniques will be crucial in unlocking the full potential of marketing strategies, ultimately leading to more successful and impactful campaigns.

References

- Montgomery D C (2017) Design and analysis of experiments. John Wiley & Sons [https://books.google.co.in/books?hl=en&lr=&id=Py7bDgAAQBAJ&oi=fnd&pg=PA1&dq=Montgomery,+D.+C.+\(2017\).+Design+and+Analysis+of+Experiments.+John+Wiley+%26+Sons.&ots=X8r2r0RP-4&sig=mqMjepGnnv5E1cWeFkO61D1L3BE&redir_esc=y#v=onepage&q=Montgomery%2C%20D.%20C.%20\(2017\).%20Design%20and%20Analysis%20of%20Experiments.%20John%20Wiley%20%26%20Sons.&f=false](https://books.google.co.in/books?hl=en&lr=&id=Py7bDgAAQBAJ&oi=fnd&pg=PA1&dq=Montgomery,+D.+C.+(2017).+Design+and+Analysis+of+Experiments.+John+Wiley+%26+Sons.&ots=X8r2r0RP-4&sig=mqMjepGnnv5E1cWeFkO61D1L3BE&redir_esc=y#v=onepage&q=Montgomery%2C%20D.%20C.%20(2017).%20Design%20and%20Analysis%20of%20Experiments.%20John%20Wiley%20%26%20Sons.&f=false)
- Berman R, Katona Z (2013) The role of search engine optimization in search marketing. Marketing Science 32: 644-651.
- Moe WW, Fader PS (2004) Capturing evolving visit behavior in clickstream data. Journal of Interactive Marketing 18: 5-19.
- Gelman A, Hill J, Yajima M (2012) Why we (usually) don't have to worry about multiple comparisons. Journal of research on educational effectiveness 5: 189- 211.
- Hochberg Y (1987) Multiple comparison procedures. Wiley Series in Probability and Statistics. Multiple Comparison Procedures | Wiley Series in Probability and Statistics <https://onlinelibrary.wiley.com/doi/10.1002/9780470316672>.
- Armstrong JS (2001) Principles of forecasting: a handbook for researchers and practitioners. Boston MA: Kluwer Academic 30: 1-2.
- Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments: with applications to engineering and science. John Wiley & Sons [https://books.google.co.in/books?hl=en&lr=&id=7bOjF4n9RzIC&oi=fnd&pg=PR7&dq=Mason,+R.+L.,+Gunst,+R.+F.,+%26+Hess,+J.+L.+\(2003\).+Statistical+Design+and+Analysis+of+Experiments:+With+Applications+to+Engineering+and+Science.+John+Wiley+%26+Sons.&ots=4uw91drGxI&sig=_jDzaGA_QjJDRkgtNjLdyZMJVbE&redir_esc=y#v=onepage&q&f=false](https://books.google.co.in/books?hl=en&lr=&id=7bOjF4n9RzIC&oi=fnd&pg=PR7&dq=Mason,+R.+L.,+Gunst,+R.+F.,+%26+Hess,+J.+L.+(2003).+Statistical+Design+and+Analysis+of+Experiments:+With+Applications+to+Engineering+and+Science.+John+Wiley+%26+Sons.&ots=4uw91drGxI&sig=_jDzaGA_QjJDRkgtNjLdyZMJVbE&redir_esc=y#v=onepage&q&f=false)
- Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. New York: Springer 2: 1-758.
- Kohavi R, Longbotham R, Sommerfield D, Henne RM (2009) Controlled experiments on the web: survey and practical

guide. *Data mining and knowledge discovery* 18: 140-181.

- 10. Tudor GE, Koch GG, Catellier D (2000) 20 Statistical methods for crossover designs in bioenvironmental and public health studies. *Handbook of Statistics* 18: 571-614.
- 11. Sullivan GM, Feinn R (2012) Using effect size—or why the P value is not enough. *Journal of graduate medical education* 4: 279-282.
- 12. Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: Between-subject and within-subject design. *Journal of economic behavior & organization* 81: 1-8.
- 13. Romano JP, Lehmann EL (2005) Testing statistical hypotheses. *testing_statistical_hypotheses* https://www.ctanujit.org/uploads/2/5/3/9/25393293/_testing_statistical_hypotheses.pdf.
- 14. Simonsohn U, Nelson LD, Simmons JP (2014) P-curve: a key to the file-drawer. *Journal of experimental psychology: General* 143: 534.
- 15. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)* 57: 289-300.
- 16. Lilien GL, Rangaswamy A (2004) Marketing engineering: computer-assisted marketing analysis and planning. *DecisionPro* <https://books.google.co.in/books?hl=en&r>=&id=QE7klxJ4q00C&oi=fnd&pg=PR23&dq=+Lilie n,+G.+L.,+%26+Rangaswamy,+A.+(%2004).+Marketin g+Engineering:+Computer-Assisted+Marketing+Analy sis+and+Planning.+Prentice+Hall&ots=7rz9KFSNAU &sig=Zwc6-hFXwfF5x1OAoMMNuzemWYw&redir_esc=y#v=onepage&q&f=false.
- 17. Wedel M, Kamakura WA (2000) Market Segmentation: Conceptual and Methodological Foundations. Springer [https://thuvienso.hoasen.edu.vn/handle/123456789/12586](https://books.google.co.in/books?hl=en&lr=&id=R4fq4IOm82YC&oi=fnd&pg=PA1&dq=Wedel,+M.,+%26+Kamakura,+W.+A.+(%2000).+Market+Segmentation:+Conceptual+and+Methodological+Foundations.+Springer.&ots=ed7bggBQpV&sig=er51qNvK-ZwshOBluBK5HNU_Tn0&redir_esc=y#v=onepage&q=Wedel%2C%20M.%2C%20%26%20Kamakura%2C%20W.%20A.%20(2000).%20Market%20Segmentation%3A%20Conceptual%20and%20Methodological%20Foundations.%20Springer.&f=false.18. Rust RT, Verhoef PC (2005) Optimizing the marketing interventions mix in intermediate-term CRM. <i>Marketing science</i> 24: 477-489.19. Malhotra NK (1996) Marketing research: An applied orientation. Prentice Hall <a href=).

Copyright: ©2022 Saurabh Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.