Journal of Mathematical &
Computer Applications

Research Article

ISSN:2754-6705

\?‘.»SCIENTIFIC

Research and Community

v
Open @ Access

Strategy Design Pattern Applied on a Mobile App Building

Nilesh D Kulkarni'* and Saurav Bansal?
1St. Director — Enterprise Architecture, Fortune Brands Home & Security, USA

2Sr. Manager - Digital Applications, Fortune Brands Home & Security, USA

ABSTRACT

This paper provides the importance and application of design patterns in software engineering, particularly focusing on the Strategy Design Pattern. It
outlines how design patterns offer efficient, flexible, and reusable solutions to common problems in object-oriented software development. The paper
presents a case study of Strategy Design Pattern’s application in a mobile app builder, emphasizing its role in creating adaptable and maintainable software
architecture. Additionally incorporates commentary on the SOLID Open and Close principle, explaining how it allows software entities to be extendable
without modifying existing code, thus enhancing the scalability and robustness of the application. The OC principle integration with the Strategy Design
Pattern demonstrates its practicality in promoting flexible and stable software development.

*Corresponding author

Nilesh D Kulkarni, Sr. Director — Enterprise Architecture, Fortune Brands Home & Security, USA.
Received: March 01, 2022; Accepted: March 10, 2022, Published: March 18, 2022

Keywords: Design Patterns, Strategy, Object, .NET, Software
Maintainability

Introduction

The importance of design experience is widely recognized. How
often have you encountered a familiar problem during design,
sensing that you've tackled something similar in the past, yet
struggling to recall the specifics of where and how it was resolved?
If you were able to recall the nuances of that past challenge and
the strategy you employed to overcome it, you could leverage that
previous experience instead of having to re-explore the solution
from scratch.

A design pattern represents a universally recognized solution,
widely observed in various cases, that effectively addresses a
specific problem in a context that may not be predefined. It offers
a highly efficient approach to developing object-oriented software
that is not only flexible and elegant but also reusable. The utilization
of design patterns facilitates the reuse of successful designs and
architectural models. By translating proven technologies and
methodologies into design patterns, they become more easily
accessible to developers building new systems. Design patterns
guide developers in selecting design options that enhance the
reusability of a system, while steering clear of choices that could
hinder it. Moreover, design patterns can significantly enhance
the documentation and maintenance of existing systems by
providing a clear and explicit description of class and object
interactions, along with their fundamental purposes. In essence,
design patterns empower designers to achieve a more effective
design more swiftly.

Typically, a design method comprises a set of synthetic notations
usually graphical and a set of rules that govern how and when
we use each notation. It will also describe problems that occur in
a design, how to fix them, and how to evaluate the design. Each
pattern describes a problem which occurs over and over again
in the environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a
million times over without ever doing it the same way twice [1].

Design patterns describe problems that occur repeatedly, and
describe the core of the solution to that problem, in such a way
that the solution can be used many times in different contexts and
applications. A good design should always be independent of the
technology and the design should help both experience and the
novice designer to recognize situation in which these designs can
be used and reused.

Eric gamma at el in their book Design Patterns, discussed total 23
design patterns clarified by two criteria. The first criterion, called
purpose, reflects what a pattern does. Patterns can have either
creational, structural, or behavioral purpose. Creational patterns
concern the purpose of object creation. Structural pattern deals
with the composition of classes or objects. Behavioral pattern
characterizes the ways in which classes or objects interact and
distribute responsibility [2]. The second criteria called scope,
specifies whether the pattern applies primarily to the class or to
the object.

J Mathe & Comp Appli, 2022

Volume 1(1): 1-6

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Strategy Design Pattern Applied on a Mobile App Building. Journal of Mathematical & Computer Applications.

SRC/JMCA-144. DOI: doi.org/10.47363/JMCA/2022(1)121

Table 1
Scope Purpose
Creational Structural Behavioral
Class Factory Adapter Interpreter
Method Template
Method
Object Abstract Adapter Chain of
Factory Bridge Responsibility
Builder Composite Command
Prototype Decorator Iterator
Singleton Facade Mediator
Flyweight Memento
Proxy Observer
State
Strategy
Visitor
UML Basics

The first versions of UML were created by “Three Amigos” —
Grady Booch at el defines “The Unified Modeling Language
(UML), is a standardized visual language for specifying,
constructing, and documenting the artifacts of software systems.
It provides a set of diagrams and notations to represent various
aspects of software design and architecture, allowing software
engineers to communicate, visualize, and model complex systems
effectively.”

Three Types of Relations between the Classes

Association relationship: When classes are connected together
conceptually, that connection is called an association. As shown in
the figure 1., let’s examine the association between passenger and
airplane. A passenger can sit in an airplane or multiple passengers
can sit in an airplane.

T 1
Passenger X >

Airplane

Figure 1: Association Relationship

Aggregation relationship: This is a special type of relationship,
used to model situations where one class (the whole) contains
or is composed of other classes or objects (the parts), and the
parts have a lifecycle that is independent of the whole. As shown
in the figure 2., next examine the aggregation relationship, an
engine (whole) can have many Pistons (parts) similarly an airplane
(whole) can have multiple engines (parts) as well as an airplane
can have multiple wheels (parts).

Airplane

Wheels <>

Piston —» Engine ?

Figure 2: Aggregation Relationship

Composition relationship: a composition is a strong type of
aggregation where each component in the composite can belong
to just one whole. As shown in figure 3., a dog can have a tail,
four legs, two ears, and two eyes, but eyes, legs, tail, and ears
cannot exist on its own.

Leg Ear

N
Dog
@

Tail ’

Eye

Figure 3: Composition Relationship

Inheritance / Generalization

In this relationship one class (the child class or subclass) can
inherit attributes and operations from another (the parent class
or superclass). The generalization allows for polymorphism. In
generalization, a child is substitutable for parent. That is anywhere
the parent appears, the child may appear. The reverse isn’t true [3].
As shown in the Figure 4, signifies that "Bus," "Car," and "Truck"
inherit from "Vehicle." They are expected to share common
characteristics or behaviors that are defined in "Vehicle." For
instance, if "Vehicle" has attributes like 'number of wheels' and
'fuel type' and operations like 'start engine ()', then "Bus," "Car,"
and "Truck" would inherit these operations and attributes.

Vehicle

A\

Truck

Figure 4: Generization

Interface

An interface is a set of operation that specifies some aspect
of classes behavior, and it’s set of operation class presents to
other classes [3]. As shown in figure 5., the "Electric System"
is considered an interface between the light bulb and the light
switch. The "Electric System" serves as a contract between the
light bulb and the light switch, stipulating that when the switch is
turned on, the bulb should light up. Interfaces are used to decouple
the implementation and the abstract design, allowing for changes
in implementation without affecting the system that uses the
interface. Similarly, the light switch and bulb are decoupled from
each other, you could replace either the bulb or the switch without
needing to change the other, as long as they both adhere to the
same electrical system standards. Interface also allows different
classes to be treated through a single interface type, the electric
system could work with any device that conforms to its standards,
not just a light bulb. This could include a fan, a heater, or any
other electric device that can be turned on or off.

Bulb > Switch

£
o
[72]
>
) i
o
& n
Q gl
o

L w

v

Class: Bulb Interface: Switch

Figure 5: Interface representation

J Mathe & Comp Appli, 2022

Volume 1(1): 2-6

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Strategy Design Pattern Applied on a Mobile App Building. Journal of Mathematical & Computer Applications.

SRC/JMCA-144. DOI: doi.org/10.47363/JMCA/2022(1)121

Programming Technologies
We will using the basic programming tools to show the
implementation of the Strategy design pattern.

NET Framework

The .NET Framework, is a software development framework
designed and supported by Microsoft. It provides a controlled
environment for developing and running applications on Windows.
Few features listed below

* Windows-Specific: The .NET Framework is designed to
work on Windows operating systems.

* Base Class Library (BCL): It includes a large class library
known as the Framework Class Library (FCL), providing user
interface, data access, database connectivity, cryptography,
web application development, numeric algorithms, and
network communications.

e Common Language Runtime (CLR): Programs written
for the NET Framework execute in a software environment
named the Common Language Runtime, which provides
services such as security, memory management, and exception
handling.

* Languages: The NET Framework supports multiple
programming languages, such as C#, VB.NET, and F#.

e CLI: Console programming refers to the process of writing
software applications that interact with the user through a
text-based interface. These applications run in a console or
a command-line interface (CLI), where the user inputs text
commands and the program provide output in text form.

Visual Studio Code (VS Code) for .NET Development

Visual Studio Code is a lightweight, open-source, and cross-platform
code editor developed by Microsoft. It's not specific to any one
programming language or framework. With the help of extensions, it
can support a wide variety of languages and frameworks, including
those of the .NET ecosystem. Few features listed below

¢ Cross-Platform: VS Code runs on Windows, Linux, and
macOS.

* Extensions: The C# extension by Omni Sharp adds support
for .NET development, including features like IntelliSense,
debugging, project file navigation, and run tasks.

* Lightweight Editor: VS Code is designed to be a fast and
lightweight editor, with a smaller footprint than a full IDE
like Visual Studio.

e Integrated Terminal: Developers can use the integrated
terminal to execute NET CLI commands, enabling them to
create, build, run, and test .NET applications.

* Git Integration: VS Code has built-in Git support, which
is essential for modern software development workflows.

* Language Features: VS Code with the C# extension supports
advanced language features like code refactoring, unit testing,
and code snippets for .NET.

Behavioral Pattern

Behavioral design patterns are a set of design patterns in software
engineering that focus on the interaction and communication
between different objects and classes in a system. They help in
defining how objects collaborate and communicate with each other
to achieve a specific behavior or functionality. Behavioral design
patterns primarily deal with the delegation of responsibilities
among objects and how they interact to accomplish tasks.
Common behavioral design patterns -

* Strategy Pattern: The strategy pattern defines a family

of algorithms, encapsulates each one, and makes them
interchangeable. It allows to select an algorithm or behavior at
runtime without altering the client code that uses it. This pattern
is useful for providing multiple ways to accomplish a task.

e Observer Pattern: This pattern defines a one-to-many
relationship between objects so that when one object (the
subject) changes state, all its dependents (observers) are
notified and updated automatically. It's commonly used in
implementing distributed event handling systems.

* Command Pattern: The command pattern encapsulates a
request as an object, thereby allowing for parameterization
of clients with different requests, queuing of requests, and
logging of requests. It also provides support for undoable
operations.

e Chain of Responsibility Pattern: In this pattern, a request
is passed along a chain of handlers. Each handler decides
either to process the request or pass it to the next handler in
the chain. It's commonly used in implementing event-driven
systems like event handling in GUI-Graphical User Interface
applications.

e State Pattern: The state pattern allows an object to alter
its behavior when its internal state changes. It represents
various states of an object as separate classes and delegates
the state specific behavior to these classes. This pattern is
useful when there is an object that needs to change its behavior
dynamically based on its internal state.

Lift Map App - Use Case

A team of entrepreneurs came together to create a company called
"Lift." The journey of "Lift" began with the development of an
app called "Lift Map." This app provided driving directions to
end users of the app, helping them navigate to their destinations
efficiently.

Following its significant success, numerous current users expressed
their desire to utilize the app for pedestrian directions as well.
These requests were consistently made by users through their
comments, and due to the ongoing demand and to enhance the
adoption rate, the Lift team incorporated a new feature called
"Walk" in the subsequent version 2. Shortly after the release of
version 2, prompted by substantial user demand, Lift introduced
another option that allowed users to incorporate public transport
into their routes.

The latest demand emerged from cyclists, urging the addition of
cycling routes, particularly for dedicated bike tracks.

While the investors in "Lift" expressed satisfaction with these new
features, the app developers were less pleased. Each time a new
routing algorithm was added, the code of the navigator doubled in
size, resulting in a tangled and unwieldy codebase "Code Spaghetti".
This not only made it challenging to manage the code but also led
to a decline in performance, raising concerns among users.

code spaghetti

Navigator

+ buildRoute(A, B)

Figure 6: Code Spaghetti

J Mathe & Comp Appli, 2022

Volume 1(1): 3-6

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Strategy Design Pattern Applied on a Mobile App Building. Journal of Mathematical & Computer Applications.

SRC/JMCA-144. DOI: doi.org/10.47363/JMCA/2022(1)121

Behavioral Pattern-Strategy

The Strategy Design Pattern defines a family of algorithms which
encapsulates each of them, and makes them interchangeable.
It allows the client to choose the appropriate algorithm or
strategy to use at runtime without altering the client code. This
pattern promotes flexibility, extensibility, and maintainability by
separating the algorithms from the client code.

Here are the key components and participants in the Strategy

Pattern:

1. Context: This is the class that maintains a reference to the
selected strategy object and is responsible for executing the
algorithm. The context object doesn't implement the algorithm
itself but delegates the task to the strategy.

2. Strategy: This is an interface or an abstract class that defines
the common interface for all concrete strategies. It usually
consists of one or more methods that represent the algorithm's
contract.

3. Concrete Strategies: These are the actual algorithm
implementations that implement the Strategy interface. Each
concrete strategy provides a specific implementation of the
algorithm.

4. The Client creates a specific strategy object and passes it to
the context.

02,

- winterface»
- strategy s Strategy
+ setStrategy(strategy) + execute(data)
+ doSomething() A

ConcreteStrategies

+ execute(data)

Figure 7: Strategy Design Pattern

Design Pattern Application

The figure 8, illustrates an application of the Strategy Design
Pattern. The central component of the design is the "Navigator
class. This class contains a reference to the "RouteStrategy’
interface, which declares the “buildRoute(A, B)' method. This
method is intended to build a route between points A and B. The
"Navigator' class does not implement the route-building logic itself
but delegates that responsibility to the ‘RouteStrategy" interface.

The "RouteStrategy" interface is then implemented by several

concrete strategy classes:

1. "Road Strategy' - Provides an algorithm for route building
by roads, suitable for vehicular traffic.

2. "Walking Strategy’ - Has a logic that produces a pedestrian-
friendly route, prioritizing sidewalks and paths.

3. “Public Transport Strategy' - Contains an algorithm for
constructing a route based on available public transportation,
like buses and trains.

The Strategy Design Pattern as depicted in this diagram provides
a flexible and maintainable way to vary the algorithm used for
route building in a navigation application. Which promotes the
use of composition over inheritance and adheres to the "open/
closed principle," allowing for new strategies to be added without

modifying the client. Open Close Principle have two primary
attributes (1) They are open for extension — this means that the
behavior of the module can be extended as the requirements of the
application change, we can extend the module with new behaviors
that satisfy those changes. (2) they are closed for modification —
extending the behavior off module does not result in changes to
the source, or binary, code of the module [4].

Naigator «interface»
-routeStrategy ~ [{>———=>| RouteStrategy
+ buildRoute(A, B) + buildRoute(A, B)
route = routeStrategy.buildRoute(A, B) :' """"" E' """"" 1
! I
Road 1 | PublicTransport
Strategy i Strategy

Walking
Strategy

Figure 8: Applying Strategy Design Pattern

Strategy Construction

The figure 9 shows the ability to extend the RouteStrategy by
adding a new concrete strategy class “Cycling Strategy”, the
algorithm to build a route for a cyclist is within the buildRoute()
implemented by Cycling Strategy class. This pattern not only
enabled extension to the existing capabilities, but also did not
affect the client implimentation.

Navigator
Lift winmerface»
- routeStrategy K> ~>»| RouteStrategy
Map
+ buildRoute(A, B) + buildRoute(A, B)
e iR [rommmmme—-
Client : ; '
Cycling Road ! | PublicTransport
Strategy Strategy Strategy

Walking
Strategy

Figure 9: Strategy Implimentation

Code Construction
The representation of the code using C#, Visual Studio Code and
Net Framework shown below-
using System;
namespace StrategyPatternDemo
{
// The 'Strategy' abstract class
public interface IRouteStrategy
{
void MapMyRoute();
}

//'ConcreteStrategy' class
public class RoadMap : IRouteStrategy

{
public void MapMyRoute()

Console.WriteLine("Driving Direction - Drive 5 miles
straight to the North");
}
H

J Mathe & Comp Appli, 2022

Volume 1(1): 4-6

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Strategy Design Pattern Applied on a Mobile App Building. Journal of Mathematical & Computer Applications.

SRC/JMCA-144. DOI: doi.org/10.47363/JMCA/2022(1)121

// Another 'ConcreteStrategy’' class
public class WalkMap : IRouteStrategy

{
public void MapMyRoute()

Console.WriteLine("Walking Direction - Walk for next 2
min towards Mill Blvd.");
}
}

// Yet another 'ConcreteStrategy' class
// Assume similar implementation for PublicTransportMap
public class PublicTransportMap : IRouteStrategy

{
public void MapMyRoute()

// Implementation for public transport route mapping

}
H

// The 'Context' class
public class Navigator

{

private IRouteStrategy routeStrategy;

public Navigator(IRouteStrategy routeStrategy)
{

_routeStrategy = routeStrategy;

}

public void ContextInterface()

{
_routeStrategy.MapMyRoute();
}
H
H

public class Program

{

public static void Main(string[] args)

{

using StrategyPatternDemo;
StrategyPatternDemo.Navigator context;

Console.WriteLine("Please select your travel strategy:");
Console.WriteLine("A - RoadMap");
Console.WriteLine("B - WalkMap");
Console.WriteLine("C - PublicTransportMap");
ConsoleKeyInfo cki;

do {
cki = Console.ReadKey(true);
if (cki.Key == ConsoleKey.A)
{

context = new Navigator(new RoadMap());

}
else if (cki.Key == ConsoleKey.B)
{

context = new Navigator(new WalkMap());

H
else if (cki.Key == ConsoleKey.C)
{

context = new Navigator(new PublicTransportMap());

}

else

{

Console.WriteLine("Invalid Input, press esc to exit !");

H
} while (cki.Key != ConsoleKey.Escape); }
}

Design Pattern and Software Maintainability

The original study to evaluate the impact of design patterns
on software maintenance was applied by [5]. They conducted
an experiment call PatMain by comparing the maintainability
of two implementations of an application, one using a design
pattern and the other using a simple alternative. They used four
different subject systems in the same programming language.
They addressed five patterns - decorator, composite, abstract
factory, observer and visitor. The researchers measure the time
and correctness of the given maintenance task for professional
participants. They found that it was useful to use a design pattern
but in case where simple solution is preferred, it is good to follow
the software engineer common sense about whether to use a pattern
or not, and in case of uncertainty it is better to use a pattern as a
default approach.

Conclusion

A design pattern is a generalized reusable solution two commonly
occurring problem in a software design. It can be defined as
a description or template for how to solve a problem that can
be used in many different situations [6]. In this paper, we aim
to demonstrate the practical application of the strategy design
pattern in a specific use case. Design patterns serve as invaluable
communication tools and expedite the design process. They
empower solution providers to focus on solving the business
problem while promoting reusability in the design. Reusability
extends not only to individual components but also to the entire
design process, from problem-solving to the final solution. The
ability to apply patterns that offer repeatable solutions is well worth
the time invested in learning them. There are promising results
indicating that the utilization of design patterns enhances quality
and contributes to maintainability. The proportion of source code
lines involved in design patterns within a system shows a strong
correlation with maintainability. However, it's important to note
that these findings represent just a small step in the empirical
analysis of software quality concerning design patterns. Design
patterns should facilitate the reuse of software architecture across
different application domains and promote the reuse of flexible
components.

References

1. C Alexander, S Ishikawa, M Silverstein, M Jacobson, I
Fiksdahl-King, et al. (1977) A Pattern Language. Oxford
University Press https://global.oup.com/academic/product/a-
pattern-language-9780195019193?cc=us&lang=en&.

2. E Gamma, R Helm, R Johnson, J Vlissides (1995) Design
Patterns Elements of Reusable Object-Oriented Software.
Addison-Wesley https://www.javier8a.com/itc/bd1/articulo.
pdf.

3. J Schmuller (1999) Sams Teach Yourself Uml in 24 Hours.
SAMS https://nibmehub.com/opac-service/pdf/read/
Sams%20teach%20yourself%20UML%20in%2024%20
hours%20by%20Joseph%20Schmuller%20-A.pdf.

4. R C Martin (2006) Agile Principles, Patterns, and Practices
in C#. Prentice Hall https://ivanderevianko.com/wp-content/
uploads/2013/10/Agile-Principles-Patterns-and-Practices-
in-C.pdf.

J Mathe & Comp Appli, 2022

Volume 1(1): 5-6

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Strategy Design Pattern Applied on a Mobile App Building. Journal of Mathematical & Computer Applications.
SRC/JMCA-144. DOI: doi.org/10.47363/JMCA/2022(1)121

5. L Prechelt, B Unger, WF Tichy, P Brossler, LG Votta (2001) 6. C Zhang, D Budgen (2012) What Do We Know about
A controlled experiment in maintenance: comparing design the Effectiveness of Software Design Patterns?. IEEE
patterns to simpler solutions. IEEE Transactions on Software Transactions on Software Engineering 38: 1213-1231.
Engineering 27: 1134-1144.

Copyright: ©2022 Nilesh D Kulkarni. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

J Mathe & Comp Appli, 2022 Volume 1(1): 6-6

