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Introduction
Any programming language stores its values in physical memory. 
Since physical memory is limited, it must be properly managed 
and recycled to prevent out-of-memory situations. If an allocated 
memory space is no longer needed, then that memory needs to 
be deallocated so that further allocation can be done on the same 
space. Garbage Collection is the term used to describe this memory 
reuse process. So, anything created in memory that is useless or no 
longer needed is referred to as garbage. Usually, it is the developer’s 
responsibility to clean up the data in memory once the action is 
performed. 

Automatic garbage collection is the term used for collecting garbage 
(unused or no longer needed data) that is carried out mechanically 
without the need for human participation. A system called the 
Garbage Collector was created explicitly to trace that memory 
and release dynamically generated memory. There is always a 
cost associated with automatic garbage collection that exceeds the 
program's efficiency. Go provides support for Automatic Garbage 
collection.

Problem Statement
Every Go application comes with a runtime library that has Garbage 
collector in it. The frequency at which the GC should be run can be 
configured using either the GOGC environment variable (which all 
Go programs recognize) or through the SetGCPercent API in the 
runtime/debug package.

Go Garbage collector uses two important system resources, like 
CPU time and memory. In this paper, we do some performance 
analysis and provide the factors that need to be considered for 
setting the GOGC frequency.

Variables Storage in go
Go stores its local variables and functions in a LIFO data structure 
called stack. A new stack frame containing all the function's local 
variables is allocated each time it is called. The stack frame of the 

function is deallocated when it has completed running, freeing up 
memory for further usage. The stack has a limited size and local 
scope, but it is quick and offers automatic memory management. In 
general, all the static data gets stored in stacks. In terms of the stack, 
Go employs a method known as split stacks, or stack segmenting. 
Go begins with tiny stacks that could dynamically grow and shrink, 
in contrast to certain languages where the stack size needs to be 
specified at thread creation. Every goroutine begins with a small 
stack of around 2 KB that expands, and contracts as needed.

For storing the dynamic variables, heap is used. heap is a section of 
memory that is not inherently ordered or structured like the stack. 
The memory blocks can be allocated and deallocated whenever 
needed. Slower access times and manual memory management 
are the price of this flexibility. Data that must survive the lifetime 
of the function is allocated on the heap.

If the size of the variable is dynamically determined or Go compiler 
cannot determine a variable's lifetime, then the variables escape to 
the heap. For example, consider the backing array of a slice whose 
initial size is not fixed but rather varies. Note that escape to the 
heap needs to be transitive as well. This means that if a Go value 
is referenced by another Go value that has previously been found 
to escape, the other value needs to escape as well. The context in 
which a Go value is used and the escape analysis process of the 
Go compiler determine whether it escapes to heap or not. Trying to 
pinpoint exactly when values escape would be risky and challenging 
because the mechanism is complex and varies with each release 
of Go.

Garbage Collection in go
Go uses a concurrent, tricolor, mark-and-sweep algorithm. Because 
of this design, Go's GC can ensure effective memory management 
without interfering with the application's performance. Let’s discuss 
this in detail.

ABSTRACT
Go is a concurrent, garbage-collected, statically typed programming language that was developed at Google in 2009. Because of its straightforward, 
effective, and low learning curve, it is a well-liked option for developing online applications, command-line tools, and scalable network services. Garbage 
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Concurrent
Go Garbage Collector runs in parallel with the application. The word 
"concurrent" refers to the fact that the garbage collection procedure 
does not halt the application's execution. To inspect and recover 
memory, traditional garbage collectors frequently include a "stop-
the-world" phase in which program execution stops completely. But 
this method can cause performance impacts to halt noticeably and 
have a negative impact on high-throughput or real-time systems.

In Contrast, Go's GC is made to function in tandem with the 
application. This implies that the Go scheduler manages both the 
application and garbage collector scheduling when a Go program 
executes. Go Scheduler works in a similar way as it would if it had a 
standard application with numerous goroutines. Most of the garbage 
collector's job is completed concurrently with the application's 
execution in the background.  This results in shorter stop-the-world 
pauses and enhances the latency profile of Go programs.

Tricolor
The “tricolor” used by Go’s GC marking algorithm considers objects 
(or blocks of memory) in three different states: white, grey, and 
black.

•	 White items are ones that haven't been processed by the 
garbage collector. These are the objects directly accessible by 
the program, such as global variables or the local variables of 
the function that is presently executing, which may or may not 
be reachable from the roots.

•	 The garbage collector has identified certain things as "grey" if 
they can be reached from the roots; however, the objects they 
relate to, which are their descendants, have not yet undergone 
processing. If the scan finds a specific object has one or more 
pointers to a white object, it puts that white object in the grey 
set.

•	 Black objects are ones that have been fully processed by the 
garbage collector; both the object and all its offspring have 
been located and determined to be reachable.

At first, every object is colored white. The garbage collector marks 
the roots as grey, starting at the roots. Next, it processes every grey 
item, looking for references to other objects within it. The garbage 
collector makes a referred object grey if it is white. An object is 
colored black by the garbage collector after it has been processed.

This tri-color technique helps the garbage collector locate and 
effectively recover unreachable memory by guaranteeing a clear 
separation of objects according to their reachability status. Since the 
GOGC runs in parallel with the application, how can we make sure 
that we are not entering a race condition where the garbage collector 
sweeps an object that is in use by the program? Write Barrier helps 
in preventing this race condition. This is a mechanism that makes 
sure the properties of the tri-color abstraction are maintained while 
the algorithm is in progress. When a pointer that references a white 
(not yet processed) object is written to a black (already processed) 
object, the garbage collector ensures the white object is marked as 
gray, preventing it from being prematurely collected.
 
Mark and Sweep
The Mark and Sweep terms specify the two-phase approach to 
reclaiming the unused or no longer needed memory by Go’s GC.
•	 Mark phase: The Garbage collector goes across the object 

graph in this phase, beginning at the roots. It finds every 

reachable object by applying the tri-color marking procedure, 
as previously mentioned. The mark phase runs alongside 
the program, dividing marking tasks into intervals between 
Goroutine executions.

•	 Sweep phase: The sweep phase starts when all things that 
are within reach are tagged (in black). The Garbage collector 
recovers the memory that white (unreachable) objects have 
taken up during this stage. This stage, which cleans up RAM bit 
by bit, also occurs in tandem with the execution of goroutines.

It's not possible to release memory to be allocated until all memory 
has been traced, because there may still be an unscanned pointer 
keeping an object alive. Hence, sweeping must be separated from 
the process of marking. During the marking phase, the garbage 
collector marks data actively used by the application as a live heap. 
Then, during the sweeping phase, the GC traverses all the memory 
not marked as live and reuses it.

Advantages of Concurrent Go GC

•	 The application is not totally stopped while Garbage collector 
is running. So, applications get very low pause times.

•	 Disadvantages of concurrent Go GC:
•	 GC throughput:
•	 The amount of time required to remove the garbage increases 

with increase in the size of heap. This isn't false unless your 
program doesn't use any parallelism and you can keep sending 
cores to the GC indefinitely.

•	 Compaction:
•	 Since there isn't any compaction, the program's heap may 

eventually fragment.
•	 Application throughput:
•	 The application itself gets slowed down since the GC must 

work hard on every cycle, using up the CPU time.
•	 Pause Distribution:
•	 Since GOGC runs in parallel with the application, sometimes 

application creates garbage faster than the GC routines that can 
clean up. The only option left for the runtime in this situation is 
to completely halt your program and wait for the GC cycle to 
finish.  Therefore, Go's assertion that GC pauses are extremely 
rare can only be verified if the GC has enough CPU time and 
headroom to outpace the main program.

GOGC
One of the oldest environment variables supported by the Go runtime 
is GOGC. The garbage collector's level of aggression is managed 
by GOGC. This number is assumed to be 100 by default, meaning 
that garbage collection won't start until the heap has expanded by 
100% since the last collection. The default setting of GOGC=100 
effectively instructs the garbage collector to start every time the 
live heap doubles.
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If the GOGC value is set to a higher value, let's say GOGC = 200, the 
garbage collection cycle won't begin until the live heap has expanded 
to 200% of its former size. Setting the value lower-for example, 
GOGC = 20—will result in more frequent garbage collector triggers. 
The key takeaway is that doubling GOGC will double heap memory 
overheads and roughly halve GC CPU costs. Garbage collection 
will be completely disabled if GOGC is turned off. The frequency 
of the garbage collector can be configured through the GOGC 
environment variable or through the SetGCPercent API of the 
runtime/debug package.

By including a runtime.GC statement in Go code, one can manually 
start garbage collection in Go. But note that runtime. GC may stop 
the caller and may even cause the application to crash, particularly 
if you are running a heavily loaded Go program. This mostly occurs 
because it is impossible to collect garbage when everything else 
is changing quickly. If you do, the garbage collector won't be able 
to distinguish between the members of the white, black, and gray 
sets. This garbage collection status is also called garbage collection 
safe point.

The applications whose non-GC work requires 10 seconds of CPU 
time to finish are shown in the graph below. Before reaching a stable 
state, it goes through a few setup stages (increasing its live heap) 
in the first second. The application runs within a container with a 
capacity of just over 60 MB. The application consumes 20 MB of 
live memory in steady state. It is assumed that the program utilizes 
no additional memory and that the live heap contains all pertinent 
GC operations that must be completed.

As the new heap approaches zero, each GC cycle comes to an end. 
The total time for cycle N's mark phase and cycle N+1's sweep phase 
is the amount of time it takes for the new heap to decline to zero. 
Please note that all the visualizations in this graph assume that the 
application is paused while the GC runs. As a result, the time it takes 
for new heap memory to drop to zero completely represents the GC 
CPU costs. The same understanding still holds true; this is just to 
make visualization easier. X-axis represents the CPU time. Observe 
that the total period is longer due to the GC using more CPU time. 
Below graphs represent application CPU time and live memory 
when GOGC is set to different values

GoGC = 50, GC CPU = 11.2%, Peak Memory = 30.0 MiB, Total 
CPU time = 11.26s

GoGC = 100, GC CPU = 6.4%, Peak Mem = 40.0 MiB, Total: 10.68s

GoGC = 200, GC CPU = 3.8%, Peak Mem = 60.0 MiB, Total: 10.39s

From the graph, we can see that CPU overhead falls as GOGC rises, 
while peak memory rises in direct proportion to the live heap size. 
Peak memory requirements drop as GOGC drops, but at the cost 
of increased CPU overhead.

Latency With GOGC
GOGC is not fully stop-the-world and does most of its work 
concurrently with the application. This is primarily to reduce 
application latencies. However, there are some pauses, which might 
affect the latency. Below are some of the scenarios.

•	 Short stop-the-world pauses occur when the GC switches 
between the mark and sweep phases

•	 Scheduling delays occur because the GC uses 25% of CPU 
resources during the mark phase

•	 Pointer writing necessitates extra work during the mark phase
•	 Running goroutines will be suspended when GC scans its roots.

Set the GOGC for a Golang Application while Running 
Thedieseler Container
For testing purposes, I am using an 8-GB Linux-based VM. I have 
written a Go program where I initialize a sample structure in a loop 
and print it on the console. The main purpose of this program is to 
consume huge heap. 

Also, to measure the memory allocation strategies and related 
performance issues, I am using Go Runtime Memory Stats. Go 
runtime package exposes runtime.  ReadMemStats(m *MemStats) 
that fills a MemStats object. There are a number of fields in that 
structure, but I am using the below fields.
•	 Alloc: the currently allocated number of bytes on the heap.
•	 TotalAlloc: cumulative maximum bytes allocated on the heap 

(will not decrease).
•	 Sys: total memory obtained from the OS,
•	 NumGC: number of completed GC cycles

Below is the main. go file
package main
import (
        "encoding/json"
        "fmt"
        "runtime"
        "strconv"
)
type Person struct {
        Name string `json:"name,omitempty"`
        Id   int    `json:"id"`
        Sal  int    `json:"sal"`
        Address string `json:"address"`
        AccNumber string `json:"accNumber"`
}
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type Persons struct {
        People []string
}
func main() {
        var ps Persons
        printMemUsage()
        for i := 1; i <= 4000; i++ {
                for j := 1; j <= 4000; j++ {
                        name := "kakha_" + strconv.Itoa(i) + strconv.Itoa(j)
                        s := Person{Name: name, Id: i, Sal: j*10, Address: 
"123 station Drive,california,12345", AccNumber:"ABC12345" }
                        js, error := json.Marshal(s)
                        if error == nil {
                                ps.People = append(ps.People, string(js))
                        }
                }
        }
        printMemUsage()
        fmt.Println(ps.People)
        printMemUsage()
}
func printMemUsage() {
        var mem runtime.MemStats
        runtime.ReadMemStats(&mem)
        fmt.Printf("Alloc = %v MiB", bToMb(mem.Alloc))
	 fmt.Printf("\tTotalAlloc = %v MiB", bToMb(mem.
TotalAlloc))
        fmt.Printf("\tSys = %v MiB", bToMb(mem.Sys))
        fmt.Printf("\tNumGC = %v\n", mem.NumGC)
}
func bToMb(b uint64) uint64 {
        return b / 1024 / 1024
}

To verify if the variables are using heap or stack, try compiling the 
go file using below command. From the output, we could see the 
variable is stored in Heap memory.
go build -gcflags="-m" main.go
Command Output:
	 # command-line-arguments
./main.go:35:13: inlining call to fmt.Println
./main.go:41:12: ... argument does not escape
./main.go:41:36: ~r0 escapes to heap
./main.go:42:43: ~r0 escapes to heap
./main.go:43:36: ~r0 escapes to heap
./main.go:44:32: m. NumGC escapes to heap
./main.go:25:39: "kakha_" + ~r0 + ~r0 escapes to heap
./main.go:28:26: s escapes to heap
./main.go:30:41: string(js) escapes to heap
./main.go:35:13: ... argument does not escape
./main.go:35:16: ps. People escape to heap
Once the build is successful, the application can be run using the 
command: ./main.exe
Caution: If you are running on a host machine with 8 GB of RAM, 
the system may hang, and you may lose control over your laptop 
for some time.

Run the Golang Application as a Docker Container

To deploy the Golang application as a Docker container, below is 
the Dockerfile used.
# syntax=docker/dockerfile:1
FROM golang:1.19
WORKDIR /src

COPY main.go .
RUN go build -o /test ./main.go
CMD ["/test"]

Command to Build Docker Image
	 docker build -t gogc_img .

After successful docker build, the gogc_img will be created. This 
can be used for launching docker containers.
Start the Container with Gogc Values
Let’s start the container with different GOGC values and see the 
behavior. I am using journald as the log-driver so that my logs are 
stored in journald.
Command to start the container with GOGC value as 50.
		  docker run -e "GOGC=50" --log-driver=journald  
-d gogc_img:latest
This would start a new container, which would run GOGC whenever 
the heap grows 50% of the previous. 
same test was executed with different GOGC values of 50, 100, 
150, and 200 three times. below chart provides more information 
for different GOGC values.

As we can see from the chart, with increase in GOGC values, the 
number of times GC runs is reduced, and the execution time is 
also reduced.

Conclusion
Considering GOGC, below are some of the recommendations on 
how to improve application throughput and latency.
1.	 Reducing GC frequency can lead to latency improvements. 

The default setting may not be suitable for all applications. 
For example, If the application host has more memory, then 
GOGC values can be set at a higher value. Try to experiment 
with different GOGC values on your application at different 
traffic levels, and then decide on the GOGC configuration that 
best suits your application.

2.	 Try to make the application use the smallest heap possible. 
Less heap corresponds to less GC work.

3.	 Try to avoid pointers, as they would involve a reference, 
thereby increasing the scanning times. (For example, instead 
of having strings as keys that contain pointers, make a hash 
out of the string and store it.

Even after following the above recommendations, if the application 
is still facing latency issues, below ideas can be applied to understand 
the reasons behind them.
1.	 Understand if any of the variables are escaping to heap. “go 

build -gcflags=-m=3” provides more information on why the 
variables are escaping to heap. More heap memory corresponds 
to more GC work.
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2.	 Use Memory profiling to find the hot spots in the heap 
allocation. 

3.	 Use CPU Profiling to understand where the CPU is spending 
time during GC phases. You can try using GC tracing or 
Execution tracing for it (1-9).

References
1.	 A Guide to the Go Garbage Collector https://tip.golang.org/

doc/gc-guide 
2.	 Understanding Go’s Garbage Collection https://bwoff.medium.

com/understanding-gos-garbage-collection-415a19cc485c 
3.	 The Go Garbage Collector (GC) https://www.mtsoukalos.eu/

Go-Garbage-Collector/
4.	 https://go.dev/talks/2015/go-gc.pdf
5.	 Modern garbage collection https://blog.plan99.net/modern-

garbage-collection-911ef4f8bd8e
6.	 https://www.komu.engineer/blogs/01/go-gc-maps
7.	 Go's garbage collector https://agrim123.github.io/posts/go-

garbage-collector.html
8.	 Gopher Academy Blog https://blog.gopheracademy.com/

advent-2018/avoid-gc-overhead-large-heaps/
9.	 A Guide to the Go Garbage Collector https://tip.golang.org/

doc/gc-guide#GOGC

Copyright: ©2022 Pallavi Priya Patharlagadda . This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.


