Journal of Mathematical &
Computer Applications

Review Article

ISSN:2754-6705

\?‘.»SCIENTIFIC

Research and Community

v
Open @ Access

Improve the Latency of Go Applications while using GOGC

Pallavi Priya Patharlagadda

United States of America

ABSTRACT

Go is a concurrent, garbage-collected, statically typed programming language that was developed at Google in 2009. Because of its straightforward,
effective, and low learning curve, it is a well-liked option for developing online applications, command-line tools, and scalable network services. Garbage
collection, which takes care of memory management automatically for you, is another key component of Go. As a result, there is no longer a requirement
for manual memory management, which lowers the possibility of memory leaks and other issues. But it does come with a cost, as the Garbage collector
takes CPU and Memory. In this paper, we will run some performance analysis with different GOGC options.

*Corresponding author
Pallavi Priya Patharlagadda, United States of America.

Received: November 15, 2022; Accepted: November 22, 2022, Published: November 29, 2022

Introduction

Any programming language stores its values in physical memory.
Since physical memory is limited, it must be properly managed
and recycled to prevent out-of-memory situations. If an allocated
memory space is no longer needed, then that memory needs to
be deallocated so that further allocation can be done on the same
space. Garbage Collection is the term used to describe this memory
reuse process. So, anything created in memory that is useless or no
longer needed is referred to as garbage. Usually, it is the developer’s
responsibility to clean up the data in memory once the action is
performed.

Automatic garbage collection is the term used for collecting garbage
(unused or no longer needed data) that is carried out mechanically
without the need for human participation. A system called the
Garbage Collector was created explicitly to trace that memory
and release dynamically generated memory. There is always a
cost associated with automatic garbage collection that exceeds the
program's efficiency. Go provides support for Automatic Garbage
collection.

Problem Statement

Every Go application comes with a runtime library that has Garbage
collector in it. The frequency at which the GC should be run can be
configured using either the GOGC environment variable (which all
Go programs recognize) or through the SetGCPercent API in the
runtime/debug package.

Go Garbage collector uses two important system resources, like
CPU time and memory. In this paper, we do some performance
analysis and provide the factors that need to be considered for
setting the GOGC frequency.

Variables Storage in go

Go stores its local variables and functions in a LIFO data structure
called stack. A new stack frame containing all the function's local
variables is allocated each time it is called. The stack frame of the

function is deallocated when it has completed running, freeing up
memory for further usage. The stack has a limited size and local
scope, but it is quick and offers automatic memory management. In
general, all the static data gets stored in stacks. In terms of the stack,
Go employs a method known as split stacks, or stack segmenting.
Go begins with tiny stacks that could dynamically grow and shrink,
in contrast to certain languages where the stack size needs to be
specified at thread creation. Every goroutine begins with a small
stack of around 2 KB that expands, and contracts as needed.

For storing the dynamic variables, heap is used. heap is a section of
memory that is not inherently ordered or structured like the stack.
The memory blocks can be allocated and deallocated whenever
needed. Slower access times and manual memory management
are the price of this flexibility. Data that must survive the lifetime
of the function is allocated on the heap.

If the size of the variable is dynamically determined or Go compiler
cannot determine a variable's lifetime, then the variables escape to
the heap. For example, consider the backing array of a slice whose
initial size is not fixed but rather varies. Note that escape to the
heap needs to be transitive as well. This means that if a Go value
is referenced by another Go value that has previously been found
to escape, the other value needs to escape as well. The context in
which a Go value is used and the escape analysis process of the
Go compiler determine whether it escapes to heap or not. Trying to
pinpoint exactly when values escape would be risky and challenging
because the mechanism is complex and varies with each release
of Go.

Garbage Collection in go

Go uses a concurrent, tricolor, mark-and-sweep algorithm. Because
of this design, Go's GC can ensure effective memory management
without interfering with the application's performance. Let’s discuss
this in detail.

J Mathe & Comp Appli, 2022

Volume 1(4): 1-5



Citation: Pallavi Priya Patharlagadda (2023) Improve the Latency of Go Applications while using GOGC. Journal of Mathematical & Computer Applications.

SRC/JMCA-E108. DOI: doi.org/10.47363/JMCA/2022(1)E108

Concurrent

Go Garbage Collector runs in parallel with the application. The word
"concurrent" refers to the fact that the garbage collection procedure
does not halt the application's execution. To inspect and recover
memory, traditional garbage collectors frequently include a "stop-
the-world" phase in which program execution stops completely. But
this method can cause performance impacts to halt noticeably and
have a negative impact on high-throughput or real-time systems.

In Contrast, Go's GC is made to function in tandem with the
application. This implies that the Go scheduler manages both the
application and garbage collector scheduling when a Go program
executes. Go Scheduler works in a similar way as it would if it had a
standard application with numerous goroutines. Most of the garbage
collector's job is completed concurrently with the application's
execution in the background. This results in shorter stop-the-world
pauses and enhances the latency profile of Go programs.

Tricolor

The “tricolor” used by Go’s GC marking algorithm considers objects
(or blocks of memory) in three different states: white, grey, and
black.

*  White items are ones that haven't been processed by the
garbage collector. These are the objects directly accessible by
the program, such as global variables or the local variables of
the function that is presently executing, which may or may not
be reachable from the roots.

»  The garbage collector has identified certain things as "grey" if
they can be reached from the roots; however, the objects they
relate to, which are their descendants, have not yet undergone
processing. If the scan finds a specific object has one or more
pointers to a white object, it puts that white object in the grey
set.

»  Black objects are ones that have been fully processed by the
garbage collector; both the object and all its offspring have
been located and determined to be reachable.

At first, every object is colored white. The garbage collector marks
the roots as grey, starting at the roots. Next, it processes every grey
item, looking for references to other objects within it. The garbage
collector makes a referred object grey if it is white. An object is
colored black by the garbage collector after it has been processed.

This tri-color technique helps the garbage collector locate and
effectively recover unreachable memory by guaranteeing a clear
separation of objects according to their reachability status. Since the
GOGC runs in parallel with the application, how can we make sure
that we are not entering a race condition where the garbage collector
sweeps an object that is in use by the program? Write Barrier helps
in preventing this race condition. This is a mechanism that makes
sure the properties of the tri-color abstraction are maintained while
the algorithm is in progress. When a pointer that references a white
(not yet processed) object is written to a black (already processed)
object, the garbage collector ensures the white object is marked as
gray, preventing it from being prematurely collected.

Mark and Sweep

The Mark and Sweep terms specify the two-phase approach to

reclaiming the unused or no longer needed memory by Go’s GC.

*  Mark phase: The Garbage collector goes across the object
graph in this phase, beginning at the roots. It finds every

reachable object by applying the tri-color marking procedure,
as previously mentioned. The mark phase runs alongside
the program, dividing marking tasks into intervals between
Goroutine executions.

*  Sweep phase: The sweep phase starts when all things that
are within reach are tagged (in black). The Garbage collector
recovers the memory that white (unreachable) objects have
taken up during this stage. This stage, which cleans up RAM bit
by bit, also occurs in tandem with the execution of goroutines.

It's not possible to release memory to be allocated until all memory
has been traced, because there may still be an unscanned pointer
keeping an object alive. Hence, sweeping must be separated from
the process of marking. During the marking phase, the garbage
collector marks data actively used by the application as a live heap.
Then, during the sweeping phase, the GC traverses all the memory
not marked as live and reuses it.

of GC disabled
Pointer writes are just memaory wites: "siot = pir
Callect pointers from globals and gorouting stacks
adid Stacks scanned atpreempion points
— G Mark objects and folow pointers unt pointer queue fs empy
g Write barrier tracks pointer chenges by mutaor
oy Restan globalsichanged stacks, finish marking, shrink stacks, ...
peS I é Literature conteing nan-STW algorims: keeping t simple for now
Reclaim unmarked cbjects as needed
Sweey Adjust GG pacing for nexd cycle
off Rinse and repeat

Advantages of Concurrent Go GC

*  The application is not totally stopped while Garbage collector
is running. So, applications get very low pause times.

* Disadvantages of concurrent Go GC:

*  GC throughput:

*  The amount of time required to remove the garbage increases
with increase in the size of heap. This isn't false unless your
program doesn't use any parallelism and you can keep sending
cores to the GC indefinitely.

e Compaction:

*  Since there isn't any compaction, the program's heap may
eventually fragment.

e Application throughput:

*  The application itself gets slowed down since the GC must
work hard on every cycle, using up the CPU time.

e Pause Distribution:

*  Since GOGC runs in parallel with the application, sometimes
application creates garbage faster than the GC routines that can
clean up. The only option left for the runtime in this situation is
to completely halt your program and wait for the GC cycle to
finish. Therefore, Go's assertion that GC pauses are extremely
rare can only be verified if the GC has enough CPU time and
headroom to outpace the main program.

GOGC

One of the oldest environment variables supported by the Go runtime
is GOGC. The garbage collector's level of aggression is managed
by GOGC. This number is assumed to be 100 by default, meaning
that garbage collection won't start until the heap has expanded by
100% since the last collection. The default setting of GOGC=100
effectively instructs the garbage collector to start every time the
live heap doubles.

J Mathe & Comp Appli, 2022

Volume 1(4): 2-5



Citation: Pallavi Priya Patharlagadda (2023) Improve the Latency of Go Applications while using GOGC. Journal of Mathematical & Computer Applications.

SRC/JMCA-E108. DOI: doi.org/10.47363/JMCA/2022(1)E108

Ifthe GOGC value is set to a higher value, let's say GOGC =200, the
garbage collection cycle won't begin until the live heap has expanded
to 200% of its former size. Setting the value lower-for example,
GOGC =20—will result in more frequent garbage collector triggers.
The key takeaway is that doubling GOGC will double heap memory
overheads and roughly halve GC CPU costs. Garbage collection
will be completely disabled if GOGC is turned off. The frequency
of the garbage collector can be configured through the GOGC
environment variable or through the SetGCPercent API of the
runtime/debug package.

By including a runtime.GC statement in Go code, one can manually
start garbage collection in Go. But note that runtime. GC may stop
the caller and may even cause the application to crash, particularly
if you are running a heavily loaded Go program. This mostly occurs
because it is impossible to collect garbage when everything else
is changing quickly. If you do, the garbage collector won't be able
to distinguish between the members of the white, black, and gray
sets. This garbage collection status is also called garbage collection
safe point.

The applications whose non-GC work requires 10 seconds of CPU
time to finish are shown in the graph below. Before reaching a stable
state, it goes through a few setup stages (increasing its live heap)
in the first second. The application runs within a container with a
capacity of just over 60 MB. The application consumes 20 MB of
live memory in steady state. It is assumed that the program utilizes
no additional memory and that the live heap contains all pertinent
GC operations that must be completed.

As the new heap approaches zero, each GC cycle comes to an end.
The total time for cycle N's mark phase and cycle N+1's sweep phase
is the amount of time it takes for the new heap to decline to zero.
Please note that all the visualizations in this graph assume that the
application is paused while the GC runs. As a result, the time it takes
for new heap memory to drop to zero completely represents the GC
CPU costs. The same understanding still holds true; this is just to
make visualization easier. X-axis represents the CPU time. Observe
that the total period is longer due to the GC using more CPU time.
Below graphs represent application CPU time and live memory
when GOGC is set to different values

Nkiks

5B
B
15HE Wlise eap
1048

3HE
W

New Heap

1 1
&0s  0s  d0s 703
GCCPU = 112%, Peak Mem = 30.0 MiB
Feacl e Mem= INEI

i —— 1

s s 20e

GoGC = 50, GC CPU = 11.2%, Peak Memory = 30.0 MiB, Total
CPU time = 11.26s

4 ',‘\E~|
Mew Heap

kil ] 4 4
A L'wa W Liez Heap
: Bhe ibe  4b P v, Tt 1068

S0y  60s  Ths  kDs 4Dy A0

GCCPU = 5.4% Poak Mem = 40.0 MiB

el M = 20 4B

500 m— 1

GoGC =100, GC CPU =6.4%, Peak Mem =40.0 MiB, Total: 10.68s

E0HE
s We
40 MR
W W Live Heap

nM8 :
&
L “. T T T T I Tetak 10305

0os 103 s 30s 40s Sis  60s T0s d0s 90 100s

GC CPU = 3.3%, Peak Mem = 50.0 MiB
{Peak Live Memn = 200 Mig)

Hew Heap

GG e— )

GoGC =200, GC CPU =3.8%, Peak Mem = 60.0 MiB, Total: 10.39s

From the graph, we can see that CPU overhead falls as GOGC rises,
while peak memory rises in direct proportion to the live heap size.
Peak memory requirements drop as GOGC drops, but at the cost
of increased CPU overhead.

Latency With GOGC

GOGC is not fully stop-the-world and does most of its work
concurrently with the application. This is primarily to reduce
application latencies. However, there are some pauses, which might
affect the latency. Below are some of the scenarios.

»  Short stop-the-world pauses occur when the GC switches
between the mark and sweep phases

*  Scheduling delays occur because the GC uses 25% of CPU
resources during the mark phase

*  Pointer writing necessitates extra work during the mark phase

*  Running goroutines will be suspended when GC scans its roots.

Set the GOGC for a Golang Application while Running
Thedieseler Container

For testing purposes, I am using an 8-GB Linux-based VM. I have
written a Go program where I initialize a sample structure in a loop
and print it on the console. The main purpose of this program is to
consume huge heap.

Also, to measure the memory allocation strategies and related

performance issues, I am using Go Runtime Memory Stats. Go

runtime package exposes runtime. ReadMemStats(m *MemStats)

that fills a MemStats object. There are a number of fields in that

structure, but I am using the below fields.

e Alloc: the currently allocated number of bytes on the heap.

¢ TotalAlloc: cumulative maximum bytes allocated on the heap
(will not decrease).

e Sys: total memory obtained from the OS,

e NumGC: number of completed GC cycles

Below is the main. go file
package main

import (
"encoding/json"
Hfmt"
"runtime"
"strconv"

)

type Person struct {
Name string “json:"name,omitempty"
Id int ‘json:"id™
Sal int “json:"sal™
Address string ‘json:"address""
AccNumber string “json:"accNumber™

J Mathe & Comp Appli, 2022

Volume 1(4): 3-5



Citation: Pallavi Priya Patharlagadda (2023) Improve the Latency of Go Applications while using GOGC. Journal of Mathematical & Computer Applications.

SRC/JMCA-E108. DOI: doi.org/10.47363/JMCA/2022(1)E108

type Persons struct {
People []string
i

func main() {
var ps Persons
printMemUsage()
fori:=1;1<=4000; i++ {
forj := 1;j <=4000; j++ {
name ;= "kakha " + strconv.Itoa(i) + strconv.Itoa(j)
s := Person{Name: name, Id: i, Sal: j*10, Address:
"123 station Drive,california,12345", AccNumber:"ABC12345" }
Js, error := json.Marshal(s)
if error == nil {
ps.People = append(ps.People, string(js))
H

}

H
printMemUsage()
fmt.Println(ps.People)
printMemUsage()
}
func printMemUsage() {
var mem runtime.MemStats
runtime.ReadMemStats(&mem)
fmt.Printf(" Alloc = %v MiB", bToMb(mem.Alloc))
fmt.Printf("\tTotalAlloc = %v MiB", bToMb(mem.
TotalAlloc))
fmt.Printf("\tSys = %v MiB", bToMb(mem.Sys))
fmt.Printf("\tNumGC = %v\n", mem.NumGC)

i

func bToMb(b uint64) uint64 {
return b/ 1024 /1024

H

To verify if the variables are using heap or stack, try compiling the
go file using below command. From the output, we could see the
variable is stored in Heap memory.
go build -gcflags="-m" main.go
Command Output:
# command-line-arguments
./main.go:35:13: inlining call to fmt.Println
J/main.go:41:12: ... argument does not escape
J/main.go:41:36: ~r0 escapes to heap
./main.go:42:43: ~r( escapes to heap
./main.go:43:36: ~r0 escapes to heap
/main.go:44:32: m. NumGC escapes to heap
./main.go:25:39: "kakha " + ~r0 + ~r0 escapes to heap
/main.go:28:26: s escapes to heap
J/main.go:30:41: string(js) escapes to heap
./main.go:35:13: ... argument does not escape
./main.go:35:16: ps. People escape to heap
Once the build is successful, the application can be run using the
command: ./main.exe
Caution: If you are running on a host machine with 8 GB of RAM,
the system may hang, and you may lose control over your laptop
for some time.

Run the Golang Application as a Docker Container

To deploy the Golang application as a Docker container, below is
the Dockerfile used.

# syntax=docker/dockerfile:1

FROM golang:1.19

WORKDIR /src

COPY main.go .
RUN go build -o /test ./main.go
CMD ["/test"]

Command to Build Docker Image
docker build -t gogc_img .

After successful docker build, the gogc _img will be created. This
can be used for launching docker containers.
Start the Container with Gogc Values
Let’s start the container with different GOGC values and see the
behavior. I am using journald as the log-driver so that my logs are
stored in journald.
Command to start the container with GOGC value as 50.

docker run -e "GOGC=50" --log-driver=journald
-d gogc_img:latest
This would start a new container, which would run GOGC whenever
the heap grows 50% of the previous.
same test was executed with different GOGC values of 50, 100,
150, and 200 three times. below chart provides more information
for different GOGC values.

Noof

times GC

| Alloc Total Alloc SysMem |  CPUtime ran
GOGC=50 6053 173% 10670 1min 14.856s 55
6053 | 173% 10894 | 1min9.430s 56
6053 . 173% 9742 | 1min 33.079s 56
GOGC=100 | 7468 1739 10333 49.700s 2
7468 173% 10105 47.476s 29
7468 . 173% 0849 48.154s 28
GOGC=150 | 8599 1739 11573 43.433¢ 19
8599 173% 11549 45.098s 20
8599 1739% 11187 44.808s 20
GOGC=200 | 7468 173% 11387 39.8655 15
7468 | 173% 11141 38.651s 15
7468 | 173% 12346 37.352s 14

As we can see from the chart, with increase in GOGC values, the
number of times GC runs is reduced, and the execution time is
also reduced.

Conclusion

Considering GOGC, below are some of the recommendations on

how to improve application throughput and latency.

1. Reducing GC frequency can lead to latency improvements.
The default setting may not be suitable for all applications.
For example, If the application host has more memory, then
GOGC values can be set at a higher value. Try to experiment
with different GOGC values on your application at different
traffic levels, and then decide on the GOGC configuration that
best suits your application.

2. Try to make the application use the smallest heap possible.
Less heap corresponds to less GC work.

3. Try to avoid pointers, as they would involve a reference,
thereby increasing the scanning times. (For example, instead
of having strings as keys that contain pointers, make a hash
out of the string and store it.

Even after following the above recommendations, if the application
is still facing latency issues, below ideas can be applied to understand
the reasons behind them.

1. Understand if any of the variables are escaping to heap. “go
build -gcflags=-m=3" provides more information on why the
variables are escaping to heap. More heap memory corresponds
to more GC work.

J Mathe & Comp Appli, 2022

Volume 1(4): 4-5



Citation: Pallavi Priya Patharlagadda (2023) Improve the Latency of Go Applications while using GOGC. Journal of Mathematical & Computer Applications.

SRC/JMCA-E108. DOI: doi.org/10.47363/JMCA/2022(1)E108

2. Use Memory profiling to find the hot spots in the heap
allocation.

3. Use CPU Profiling to understand where the CPU is spending
time during GC phases. You can try using GC tracing or
Execution tracing for it (1-9).

References

1. A Guide to the Go Garbage Collector https:/tip.golang.org/
doc/gc-guide

2. Understanding Go’s Garbage Collection https://bwoff.medium.
com/understanding-gos-garbage-collection-415a19cc485¢

3. The Go Garbage Collector (GC) https://www.mtsoukalos.eu/

Go-Garbage-Collector/

https://go.dev/talks/2015/go-gc.pdf

Modern garbage collection https://blog.plan99.net/modern-
garbage-collection-911ef4f8bd8e
https://www.komu.engineer/blogs/01/go-gc-maps

Go's garbage collector https://agrim123.github.io/posts/go-
garbage-collector.html

Gopher Academy Blog https://blog.gopheracademy.com/
advent-2018/avoid-gc-overhead-large-heaps/

A Guide to the Go Garbage Collector https://tip.golang.org/
doc/gc-guide#GOGC

Copyright: ©2022 Pallavi Priya Patharlagadda . This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

J Mathe & Comp Appli, 2022

Volume 1(4): 5-5



