Journal of Mathematical &
Computer Applications

Review Article

ISSN:2754-6705

AN
&(@&SCIENTIFIC

RS Research and Community

v
Open @ Access

Fluent Logging In Java Using Flogger

Nilesh Jagnik
Mountain View, USA

ABSTRACT

Systems logs are very important for detecting problems in applications. Not only this, they are useful for auditing, monitoring and analysis too. Therefore,
it is important to have adequate logging in code. Often adding too many log statements can lead to problems like performance issues and log spam. This
means tweaking log behavior is necessary, which can add a lot of management overhead for developers. To solve this problem, logging APIs exist which
make this task easier. Logging APIs can improve the readability, performance and ease of logging. Several logging APIs are available for logging in Java.
The Flogger API has several advantages over other options. It is simple and fluent, thus, increasing readability. It has support for several quality-of-life
features which not only make it easy to add logs in code, but also ensure the performance overhead of logging is minimal. Log behavior is configurable
and can be tweaked at runtime. In this paper, we review the Flogger API, its usage, features and advantages over other options.

*Corresponding author
Nilesh Jagnik, Mountain View, USA.

Received: October 06, 2022; Accepted: October 14, 2022, Published: October 26, 2022

Keywords: Software Logging, Fluent APIs, Software Debugging,
Auditing Software

Introduction
Visibility into the behavior of real-world applications is quite
important, not only for debugging issues but also for understanding
the system behavior and asserting that certain assumptions related
to it are true. Visibility is especially important when new features
are launched.

Although there are several tools that can be used to gain different
types of insights about system behavior, one of the most basic ways
is to use logging. Logging refers to the use of print statements
to capture summaries of the state, input and functioning of the
system.

Logging provides developers a way to record and analyze the
behavior of systems. There are also other niche uses of logging,
which we will discuss in this paper. Although print statements are
a simple way to do logging, they can be quite restrictive and even
detrimental for production systems. Production systems require so
much logging that the use of a logging API along with a logging
framework is highly recommended. In addition, print statements
can often introduce slowness and bottlenecks in the system.

Google released Flogger, which is a fluent logging API for
Java applications. Flogger handles the complexities of logging
and provides many features which come in handy for various
debugging, troubleshooting and auditing scenarios.

Importance of Logging
There are many reasons to utilize logging in your applications.

Troubleshooting and Debugging

Logs can be used to identify bugs and incorrect behavior in
systems. Logs provide a detailed history of events leading up to
the failure, which can be used to identify root causes.

Performance Monitoring

Logging can be used to track performance. This includes latency,
errors and resource utilization. Note that logs don’t provide
aggregation for these metrics, only per event monitoring.

Auditing

Logs can be used to audit certain events occurring in the system.
Logs related to security-related events like login attempts and
access control violations can give insights about security breach
attempts. Logs can also help assert that compliance requirements
are not violated.

User Behavior
Logs can help understand user behavior and usage which can be
used for improving usability for applications.

Why Use APIs for Logging

Although logging using print statement might work fine for smaller
applications, the use of logging APIs is highly recommended for
applications serving real-world traffic for the following reasons:

Flexibility

The use of logging APIs provides features like control over the
level of detail, format of log messages, and also the destination
to which logs must be stored to.

Structure

With the use of logging APIs, log messages can be made to
conform to a structure. This makes it easier to query, filter and
analyze log data.

Logging Backends

Logging APIs are capable of interacting with logging services that
collect, process and store logs for access. These logging services
are able to provides centralized logs collected from different parts
of a system. Logging services may also provide interfaces for easy
reading, filtering and analysis of logs.

J Mathe & Comp Appli, 2022

Volume 1(4): 1-3



Citation: Nilesh Jagnik (2022) Fluent Logging In Java Using Flogger. Journal of Mathematical & Computer Applications. SRC/JMCA-E156.

DOI: doi.org/10.47363/JMCA/2022(1)E156

Performance

Logging APIs can often be more performant as compared to simple
print statements. Without these APIs, your application may spend
too much time formatting, preparing and persisting logs.

Flogger Usage

Flogger is an open-source logging API for Java developed by
Google. This is a fluent API and offers many useful features for
logging. Let us take a look at Flogger usage and features. The use
of Flogger involves a few simple steps.

Dependencies

First, add necessary build dependencies. We need to add two
dependencies here. The first one is for Flogger itself. We also need
an additional dependency for specifying which logging backend
service to use. Fig. 1 shows the maven dependencies which should
be added. In this example we use the default flogger-system-
backend backend. If your service is already logging to another
service, use that backend instead.

<dependency>
<groupld>comn. google . flogger< fgroopIds
artifactIdrflogger<fartifactld>
Crmrsion®l. 3. l</vearsion>

</ dependency >

<dependencys
<groupld>com.google. flogger</groupld>
<artifactld>flogger-system-backend</artifactIld>
fyer=ion»l. 3. l</ver=ion>

< fdependency>

Figure 1: Maven Dependencies for Flogger.

Code

Writing code using Flogger is simple and fluent. First, add an
import statement. Then instantiate a logger. The logger instance
should be a private, static and final member of the class it is
logging in.

After this setup is done, we can start using the logger instance
for logging. Log messages can be constructed using printf format
specifiers.

§f Bdd Flogger import
import com.google_ common. flogger FluantLogger:

public class MyLoggingCla=s {
f# Declare= a private static final logger instance.
private static final Fluentlogger logger =
FluantLogger. forEnclo=ingCla=={)

public woid doWoxrk{3tring tas=skId)} {
logger
-atInfoll
-log{"Work =tarted for taskId=3s."
try {
dofetualFWork () ;
t catch (ZomeException ex)} {
logger
.atWazning ()}
withCau=e {=x)
logl
"Found error while processing
taskId)

r taszkId);

[}
ot
1
(1]
H
[
1]
e
11

1

logger
atInfol}
-log{"Fork finished for taskId=%s.", taskId):

il

Figure 2: Using Flogger for Fluent Logging in Java.

Log Levels

Flogger supports various logging levels. These can be specified
by adding atFine(), atInfo(), atWarning(), atSevere(), etc., in the
fluent chain. This allows the program to decide logging behavior
at runtime, i.e., which levels to actually log and which to treat as
no-op. atFine() and below can be used for logging a high number
of events since these are disabled by default have to be specifically
enabled when finer logging is needed.

Exceptions

Exceptions can be logged with the withCause() method in the
fluent chain. It is also possible to specify the size of the stacktrace
using withStackTrace() method. This means that users don’t need
to manually convert exceptions into strings for logging. Figure 2
shows an example of logging exceptions.

Logging Frequency

To avoid log spam and logging backend overload, users can specify
the frequency of a log statement using the every() method in the
fluent chain.

logger.atInfo () .every(10) .log("Prints 1 in 10 times™);

Figure 3: Specifying frequency of Flogger log statements.

Lazy Arguments

According to best practice for logging, expensive work should
be avoided at log sites. This is because this work will be done
regardless of whether the log statement will be printed or skipped
(based on configuration and frequency). To help with this, Flogger
provides a LazyArgs class. Fig. 4 shows the usage of this class.
Note that this is only available in Java 8 and above.

logger . atInfol) . log(
" EummAary : .

lazy{() -» summarize(s}));

L

Figure 4: Lazy evalutation of a log argument

Benefits of Flogger
As seen in the previous section, Flogger offers a lot of features
that enable fluency and simplicity in logging.

Readability

The fluent style of Flogger improves readability of code since the
log statements are more expressive and easier to read. In addition,
the features offered by Flogger such as frequency control, log
levels, exception logging, etc., make it much simpler to log by
removing conditional logic and argument processing from code.

Performance

Due to the support for lazy arguments and configurable log levels,
no work is done for log levels which are disabled. This allows
adding finer logging at lower levels without worrying about log
pollution.

In addition, Flogger permits use of a variety of different logging
backends like Log4j2, SLF4j, etc., which further improves
application performance.

Extensibility

If you have special needs for extending the functionality of Flogger
by adding more methods to the fluent chain, it is easy to extend
the FluentLogger class to support this type of functionality [1-6].

J Mathe & Comp Appli, 2022

Volume 1(3): 2-3



Citation: Nilesh Jagnik (2022) Fluent Logging In Java Using Flogger. Journal of Mathematical & Computer Applications. SRC/JMCA-E156.

DOI: doi.org/10.47363/JMCA/2022(1)E156

Conclusion

Logging events in applications is quite important for debugging,
monitoring and auditing application behavior. The use of logging
APIs can make logging easy and hassle-free. For Java applications,
the Flogger library offers a fluent API for logging which not only
is expressive but also offers several features that improve the
readability and performance of logging code.

References

1. (2019) Flogger: A Fluent Logging API for Java https://google.
github.io/flogger.

2. Anil Kurmi (2019) Flogger Java Logger-A Fluent Logging
API for Java developer (May 2019) https://medium.com/@
anilkkurmi/flogger-java-logger-a-fluent-logging-api-for-java-
developer-6a03b131cd51.

3. Dustin Schultz, “Google Releases New Java Logging
Framework (Apr 2019),” https://www.infoq.com/
news/2019/04/java-logging-framework-flogger.

4. Lokesh Gupta (2022) Java Fluent Logging with Flogger
https://howtodoinjava.com/java/library/fluent-logging-with-
flogger.

5. (2021) Not another logger! (Mar 2021) https://dev.to/
dansiviter/not-another-logger-2lc4.

6. (2020) Class FluentLogger https://www.javadoc.io/doc/com.
google.flogger/flogger/0.5/com/google/common/flogger/
FluentLogger.html.

Copyright: ©2022 Nilesh Jagnik. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Mathe & Comp Appli, 2022

Volume 1(3): 3-3



