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ABSTRACT

A/B testing is a widely used technique for comparing the effectiveness of different versions of a product or service. Multi-armed bandit algorithms have
emerged as a promising approach to optimize A/B testing by dynamically allocating traffic to the best-performing variant. This paper provides an in-depth
comparison of the performance of various multi-armed bandit algorithms in the context of A/B testing. We evaluate the algorithms based on their ability
to maximize rewards, minimize regret, and adapt to changing environments. The findings highlight the strengths and limitations of each algorithm and
guide the selection of the most suitable algorithm for different A/B testing scenarios. We also discuss the trade-offs between exploration and exploitation,
the impact of prior knowledge, and the scalability of multi-armed bandit algorithms in large-scale A/B testing. The paper concludes with recommendations
for future research directions and practical implications for implementing multi-armed bandit algorithms in A/B testing.
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Introduction

A/B testing has become a standard practice for optimizing digital
products and services. It involves comparing two or more versions
of a product or service to determine which performs better in key
metrics such as conversion rates, user engagement, or revenue.
Traditional A/B testing relies on fixed traffic allocation, where
each variant receives an equal amount of traffic throughout the
experiment. However, this approach can be inefficient, especially
when one variant significantly outperforms the others. Multi-
armed bandit algorithms offer a more adaptive approach to A/B
testing. These algorithms dynamically allocate traffic to the best-
performing variant based on real-time feedback. By exploiting
the knowledge gained from previous observations, multi-armed
bandit algorithms aim to maximize rewards and minimize regret.
They have been successfully applied in various domains, including
online advertising, recommender systems, and clinical trials.
This paper aims to comprehensively compare the performance
of various multi-armed bandit algorithms in the context of
A/B testing. We evaluate the algorithms based on their ability
to maximize rewards, minimize regret, and adapt to changing
environments. We also discuss the trade-offs between exploration
and exploitation, the impact of prior knowledge, and the scalability
of multi-armed bandit algorithms in large-scale A/B testing.

Background
Multi-Armed Bandit Algorithms
Multi-armed bandit algorithms are a class of online learning

algorithms that address the exploration-exploitation dilemma.
The name "multi-armed bandit" comes from the analogy of a
gambler facing multiple slot machines (arms) with unknown
reward distributions. The gambler's goal is to maximize the total
rewards by repeatedly choosing the arm that offers the highest
expected reward.

In the context of A/B testing, each variant of the product or service
can be considered an arm, and the objective is to allocate traffic to
the best-performing variant to maximize the overall performance.
Multi-armed bandit algorithms balance the exploration of new
variants with the exploitation of the current best-performing
variant. There are several well-known multi-armed bandit
algorithms, including:
a) Upper Confidence Bound (UCB): UCB algorithms
maintain an upper confidence bound for each arm based on
the observed rewards and the number of times the arm has
been selected. The algorithm selects the arm with the highest
upper confidence bound, encouraging exploration of less
explored arms while favoring the best-performing arm.
b) Thompson Sampling: Thompson Sampling is a
Bayesian approach that maintains a posterior distribution
over the reward distribution of each arm. The algorithm
samples from these posterior distributions to select the arm
to play. As more data is collected, the posterior distributions
are updated, allowing the algorithm to adapt its beliefs about
the arms' performances [1].
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Set B = Iy, fi = 0, f = O,
forallt=1,2,...,do
Sample jz(t) from distribution N(j,v*B~1).
Play arm a(t) := arg max; b; (t)7 i(t), and observe

reward 7.
Update B = B + bu(tJ(t)b“(t)(t)T, f=1r+
ba(ey(t)re, o = B~ f.

end for

Figure 1: Thomson Sampling for Contexual Bandits [1]

c) Epsilon-Greedy: Epsilon-Greedy is a simple algorithm
that balances exploration and exploitation by selecting the
best-performing arm with probability 1-¢ and a random arm
with probability €. The parameter € controls the trade-off
between exploration and exploitation.

A/B Testing and Multi-Armed Bandit Algorithms
A/B testing is a popular technique for evaluating the effectiveness
of different versions of a product or service. In traditional A/B
testing, traffic is equally split between the variants, and the
performance of each variant is measured over a fixed period [2].
The variant with the best performance is then considered the
winner and implemented. However, traditional A/B testing has
several limitations:
a) Inefficient resource allocation: Equal traffic allocation
can be wasteful if one variant significantly outperforms the
others.
b) Delayed decision-making: The winner is determined
only after the entire experiment duration, even if a variant
shows clear superiority early on.
¢) Lack of adaptability: Traditional A/B testing does not
adapt to changing environments or user preferences during
the experiment.
d) Multi-armed bandit algorithms address these limitations
by dynamically allocating traffic based on the observed
performance of each variant. They continuously update their
allocation strategy as more data is collected, allowing for
faster convergence to the best-performing variant. Multi-
armed bandit algorithms also adapt to changing environments
by adjusting their allocation based on the most recent
observations. Applying multi-armed bandit algorithms
in A/B testing has gained significant attention in recent
years. Researchers and practitioners have explored various
algorithms and their extensions to improve the efficiency and
effectiveness of A/B testing.

Methodology

To compare the performance of different multi-armed bandit
algorithms in the context of A/B testing, we conduct a series of
experiments using simulated data. The experiments are designed
to evaluate the algorithms' ability to maximize rewards, minimize
regret, and adapt to changing environments.

Experimental Setup

We consider a scenario where an A/B test is conducted with
K variants (arms) over a fixed time horizon T. The reward
distribution of each variant is assumed to be Bernoulli, with
unknown success probabilities. The goal is to allocate traffic to
the best-performing variant to maximize the total rewards. We
compare the performance of three multi-armed bandit algorithms:
UCBI, Thompson Sampling, and Epsilon-Greedy. Additionally,
we include the traditional fixed traffic allocation (Equal Allocation)
as a baseline for comparison. The experiments are conducted

under different settings to assess the algorithms' performance in

various scenarios:

1. Number of variants (K): We vary the number of variants from
2 to 10 to evaluate the algorithms' scalability.

2. Time horizon (T): We consider both short (T=1000) and
long (T=10000) time horizons to assess the algorithms'
convergence speed and long-term performance.

3. Reward distributions: We generate reward distributions with
different success probabilities to represent various levels of
arm superiority.

4. Dynamic environments: We introduce changes in the reward
distributions during the experiment to evaluate the algorithms'
adaptability to evolving environments.

Performance Metrics

We evaluate the algorithms' performance using the following

metrics:

a) Cumulative Rewards: The total rewards obtained by each
algorithm over the entire time horizon. Higher cumulative
rewards indicate better performance [3].

b) Regret: The difference between the cumulative rewards of
the optimal arm (the arm with the highest success probability)
and the cumulative rewards of the algorithm. Lower regret
indicates better performance.

c) Time to Convergence: The number of iterations required
for the algorithm to converge to the best-performing variant.
Faster convergence is desirable in A/B testing.

d) Adaptability: The ability of the algorithm to adapt to changes
in the reward distributions. We measure adaptability by
introducing changes in the environment and evaluating the
algorithms' performance after the change.

Statistical Analysis

We perform statistical tests to assess the significance of the
differences in performance between the algorithms. We use the
Wilcoxon signed-rank test, a non-parametric test, to compare the
algorithms' performance across multiple runs. The significance
level is set to 0.05.

Results

Performance Comparison

The experimental results show that multi-armed bandit algorithms
consistently outperform the traditional fixed traffic allocation
in terms of cumulative rewards and regret. Among the three
multi-armed bandit algorithms, Thompson Sampling generally
achieves the highest cumulative rewards and the lowest regret
across different scenarios. UCB1 performs well in scenarios with
a small number of variants and stationary reward distributions.
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Figure 2: Cumulative Regret After 10,000 Trials for The Fractional
Factorial (Solid) And Binomial (Dashed) Bandits [3]
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However, its performance deteriorates as the number of variants
increases and in dynamic environments. Epsilon-Greedy, on the
other hand, shows better adaptability to changing environments
but suffers from higher regret due to its constant exploration.
The Wilcoxon signed-rank test confirms that the differences in
performance between the algorithms are statistically significant
(p <0.05) in most scenarios.

Convergence Speed

The time to convergence varies among the algorithms and
depends on the specific scenario. Thompson Sampling generally
converges faster than UCBI1 and Epsilon-Greedy, especially in
scenarios with a large number of variants. UCB1's convergence
speed is slower compared to Thompson Sampling but faster than
Epsilon-Greedy. The faster convergence of Thompson Sampling
can be attributed to its Bayesian approach, which allows for
more efficient exploration based on the posterior distributions.
UCBI's convergence is slower due to its deterministic exploration
strategy, while Epsilon-Greedy's constant exploration rate hinders
its convergence speed [4].

Adaptability to Dynamic Environments

In dynamic environments where the reward distributions change
during the experiment, Thompson Sampling and Epsilon-Greedy
show better adaptability compared to UCB1. Thompson Sampling
quickly adjusts its allocation based on the updated posterior
distributions, while Epsilon-Greedy's constant exploration allows
it to discover changes in the environment. UCB1's adaptability
is limited by its deterministic exploration strategy, which relies
on the cumulative rewards and the number of times each arm has
been selected. It may take longer for UCBI1 to adapt to changes
in the environment, especially if the changes occur after a long
period of exploitation.

Impact of Prior Knowledge

The performance of Thompson Sampling can be further improved
by incorporating prior knowledge about the reward distributions.
By setting informative priors based on domain expertise or
historical data, Thompson Sampling can converge faster to the
best-performing variant and achieve lower regret. In scenarios
where prior knowledge is available, Thompson Sampling with
informative priors outperforms other algorithms, including
Thompson Sampling with uninformative priors. This highlights
the importance of leveraging prior knowledge when available to
enhance the efficiency of A/B testing [5].

Scalability

The scalability of multi-armed bandit algorithms is an important
consideration in large-scale A/B testing. As the number of
variants increases, the performance of UCB1 and Epsilon-Greedy
deteriorates more significantly compared to Thompson Sampling.
Thompson Sampling's Bayesian approach allows it to handle a
large number of variants more efficiently. It maintains a separate
posterior distribution for each variant, enabling parallel updates
and reducing the computational overhead. UCBI1 and Epsilon-
Greedy, on the other hand, require more exploration as the number
of variants grows, leading to slower convergence and higher
regret. This makes them less suitable for large-scale A/B testing
scenarios [6-25].

Conclusion

This paper presents a comprehensive comparison of the
performance of various multi-armed bandit algorithms in the
context of A/B testing. The experimental results demonstrate
the superiority of multi-armed bandit algorithms over traditional

fixed traffic allocation in terms of cumulative rewards, regret,
and adaptability.

Among the studied algorithms, Thompson Sampling consistently
outperforms UCB1 and Epsilon-Greedy in most scenarios,
exhibiting faster convergence, lower regret, and better scalability.
The incorporation of prior knowledge further enhances the
performance of Thompson Sampling, making it a promising
approach for efficient A/B testing. The findings of this study
have practical implications for organizations conducting A/B
testing, guiding the selection and implementation of multi-armed
bandit algorithms. The paper also identifies several future research
directions, including contextual bandits, delayed feedback,
combinatorial bandits, Bayesian optimization, and real-world case
studies. As businesses increasingly rely on data-driven decision-
making and experimentation, the adoption of multi-armed bandit
algorithms in A/B testing can significantly improve the efficiency
and effectiveness of optimization efforts. By leveraging the power
of adaptive learning and exploration-exploitation trade-offs,
organizations can unlock the full potential of A/B testing and
drive continuous improvement in their products and services.
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