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Introduction
A/B testing has become a standard practice for optimizing digital 
products and services. It involves comparing two or more versions 
of a product or service to determine which performs better in key 
metrics such as conversion rates, user engagement, or revenue. 
Traditional A/B testing relies on fixed traffic allocation, where 
each variant receives an equal amount of traffic throughout the 
experiment. However, this approach can be inefficient, especially 
when one variant significantly outperforms the others. Multi-
armed bandit algorithms offer a more adaptive approach to A/B 
testing. These algorithms dynamically allocate traffic to the best-
performing variant based on real-time feedback. By exploiting 
the knowledge gained from previous observations, multi-armed 
bandit algorithms aim to maximize rewards and minimize regret. 
They have been successfully applied in various domains, including 
online advertising, recommender systems, and clinical trials.
This paper aims to comprehensively compare the performance 
of various multi-armed bandit algorithms in the context of 
A/B testing. We evaluate the algorithms based on their ability 
to maximize rewards, minimize regret, and adapt to changing 
environments. We also discuss the trade-offs between exploration 
and exploitation, the impact of prior knowledge, and the scalability 
of multi-armed bandit algorithms in large-scale A/B testing.

Background
Multi-Armed Bandit Algorithms 
Multi-armed bandit algorithms are a class of online learning 

algorithms that address the exploration-exploitation dilemma. 
The name "multi-armed bandit" comes from the analogy of a 
gambler facing multiple slot machines (arms) with unknown 
reward distributions. The gambler's goal is to maximize the total 
rewards by repeatedly choosing the arm that offers the highest 
expected reward.

In the context of A/B testing, each variant of the product or service 
can be considered an arm, and the objective is to allocate traffic to 
the best-performing variant to maximize the overall performance. 
Multi-armed bandit algorithms balance the exploration of new 
variants with the exploitation of the current best-performing 
variant. There are several well-known multi-armed bandit 
algorithms, including:
	 a)	 Upper Confidence Bound (UCB): UCB algorithms 

maintain an upper confidence bound for each arm based on 
the observed rewards and the number of times the arm has 
been selected. The algorithm selects the arm with the highest 
upper confidence bound, encouraging exploration of less 
explored arms while favoring the best-performing arm.

	 b)	 Thompson Sampling: Thompson Sampling is a 
Bayesian approach that maintains a posterior distribution 
over the reward distribution of each arm. The algorithm 
samples from these posterior distributions to select the arm 
to play. As more data is collected, the posterior distributions 
are updated, allowing the algorithm to adapt its beliefs about 
the arms' performances [1].
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Figure 1: Thomson Sampling for Contexual Bandits [1]

	 c)	 Epsilon-Greedy: Epsilon-Greedy is a simple algorithm 
that balances exploration and exploitation by selecting the 
best-performing arm with probability 1-ε and a random arm 
with probability ε. The parameter ε controls the trade-off 
between exploration and exploitation.

A/B Testing and Multi-Armed Bandit Algorithms
A/B testing is a popular technique for evaluating the effectiveness 
of different versions of a product or service. In traditional A/B 
testing, traffic is equally split between the variants, and the 
performance of each variant is measured over a fixed period [2]. 
The variant with the best performance is then considered the 
winner and implemented. However, traditional A/B testing has 
several limitations:
	 a)	 Inefficient resource allocation: Equal traffic allocation 

can be wasteful if one variant significantly outperforms the 
others.

	 b)	 Delayed decision-making: The winner is determined 
only after the entire experiment duration, even if a variant 
shows clear superiority early on.

	 c)	 Lack of adaptability: Traditional A/B testing does not 
adapt to changing environments or user preferences during 
the experiment.

	 d)	 Multi-armed bandit algorithms address these limitations 
by dynamically allocating traffic based on the observed 
performance of each variant. They continuously update their 
allocation strategy as more data is collected, allowing for 
faster convergence to the best-performing variant. Multi-
armed bandit algorithms also adapt to changing environments 
by adjusting their allocation based on the most recent 
observations. Applying multi-armed bandit algorithms 
in A/B testing has gained significant attention in recent 
years. Researchers and practitioners have explored various 
algorithms and their extensions to improve the efficiency and 
effectiveness of A/B testing.

Methodology
To compare the performance of different multi-armed bandit 
algorithms in the context of A/B testing, we conduct a series of 
experiments using simulated data. The experiments are designed 
to evaluate the algorithms' ability to maximize rewards, minimize 
regret, and adapt to changing environments.

Experimental Setup
We consider a scenario where an A/B test is conducted with 
K variants (arms) over a fixed time horizon T. The reward 
distribution of each variant is assumed to be Bernoulli, with 
unknown success probabilities. The goal is to allocate traffic to 
the best-performing variant to maximize the total rewards. We 
compare the performance of three multi-armed bandit algorithms: 
UCB1, Thompson Sampling, and Epsilon-Greedy. Additionally, 
we include the traditional fixed traffic allocation (Equal Allocation) 
as a baseline for comparison. The experiments are conducted 

under different settings to assess the algorithms' performance in 
various scenarios:
1.	 Number of variants (K): We vary the number of variants from 

2 to 10 to evaluate the algorithms' scalability.
2.	 Time horizon (T): We consider both short (T=1000) and 

long (T=10000) time horizons to assess the algorithms' 
convergence speed and long-term performance.

3.	 Reward distributions: We generate reward distributions with 
different success probabilities to represent various levels of 
arm superiority.

4.	 Dynamic environments: We introduce changes in the reward 
distributions during the experiment to evaluate the algorithms' 
adaptability to evolving environments.

Performance Metrics
We evaluate the algorithms' performance using the following 
metrics:
a)	 Cumulative Rewards: The total rewards obtained by each 

algorithm over the entire time horizon. Higher cumulative 
rewards indicate better performance [3].

b)	 Regret: The difference between the cumulative rewards of 
the optimal arm (the arm with the highest success probability) 
and the cumulative rewards of the algorithm. Lower regret 
indicates better performance.

c)	 Time to Convergence: The number of iterations required 
for the algorithm to converge to the best-performing variant. 
Faster convergence is desirable in A/B testing.

d)	 Adaptability: The ability of the algorithm to adapt to changes 
in the reward distributions. We measure adaptability by 
introducing changes in the environment and evaluating the 
algorithms' performance after the change.

Statistical Analysis
We perform statistical tests to assess the significance of the 
differences in performance between the algorithms. We use the 
Wilcoxon signed-rank test, a non-parametric test, to compare the 
algorithms' performance across multiple runs. The significance 
level is set to 0.05.

Results 
Performance Comparison 
The experimental results show that multi-armed bandit algorithms 
consistently outperform the traditional fixed traffic allocation 
in terms of cumulative rewards and regret. Among the three 
multi-armed bandit algorithms, Thompson Sampling generally 
achieves the highest cumulative rewards and the lowest regret 
across different scenarios. UCB1 performs well in scenarios with 
a small number of variants and stationary reward distributions.

Figure 2: Cumulative Regret After 10,000 Trials for The Fractional 
Factorial (Solid) And Binomial (Dashed) Bandits [3]
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However, its performance deteriorates as the number of variants 
increases and in dynamic environments. Epsilon-Greedy, on the 
other hand, shows better adaptability to changing environments 
but suffers from higher regret due to its constant exploration. 
The Wilcoxon signed-rank test confirms that the differences in 
performance between the algorithms are statistically significant 
(p < 0.05) in most scenarios.

Convergence Speed
The time to convergence varies among the algorithms and 
depends on the specific scenario. Thompson Sampling generally 
converges faster than UCB1 and Epsilon-Greedy, especially in 
scenarios with a large number of variants. UCB1's convergence 
speed is slower compared to Thompson Sampling but faster than 
Epsilon-Greedy. The faster convergence of Thompson Sampling 
can be attributed to its Bayesian approach, which allows for 
more efficient exploration based on the posterior distributions. 
UCB1's convergence is slower due to its deterministic exploration 
strategy, while Epsilon-Greedy's constant exploration rate hinders 
its convergence speed [4].

Adaptability to Dynamic Environments
In dynamic environments where the reward distributions change 
during the experiment, Thompson Sampling and Epsilon-Greedy 
show better adaptability compared to UCB1. Thompson Sampling 
quickly adjusts its allocation based on the updated posterior 
distributions, while Epsilon-Greedy's constant exploration allows 
it to discover changes in the environment. UCB1's adaptability 
is limited by its deterministic exploration strategy, which relies 
on the cumulative rewards and the number of times each arm has 
been selected. It may take longer for UCB1 to adapt to changes 
in the environment, especially if the changes occur after a long 
period of exploitation.

Impact of Prior Knowledge
The performance of Thompson Sampling can be further improved 
by incorporating prior knowledge about the reward distributions. 
By setting informative priors based on domain expertise or 
historical data, Thompson Sampling can converge faster to the 
best-performing variant and achieve lower regret. In scenarios 
where prior knowledge is available, Thompson Sampling with 
informative priors outperforms other algorithms, including 
Thompson Sampling with uninformative priors. This highlights 
the importance of leveraging prior knowledge when available to 
enhance the efficiency of A/B testing [5].

Scalability
The scalability of multi-armed bandit algorithms is an important 
consideration in large-scale A/B testing. As the number of 
variants increases, the performance of UCB1 and Epsilon-Greedy 
deteriorates more significantly compared to Thompson Sampling. 
Thompson Sampling's Bayesian approach allows it to handle a 
large number of variants more efficiently. It maintains a separate 
posterior distribution for each variant, enabling parallel updates 
and reducing the computational overhead. UCB1 and Epsilon-
Greedy, on the other hand, require more exploration as the number 
of variants grows, leading to slower convergence and higher 
regret. This makes them less suitable for large-scale A/B testing 
scenarios [6-25].

Conclusion
This paper presents a comprehensive comparison of the 
performance of various multi-armed bandit algorithms in the 
context of A/B testing. The experimental results demonstrate 
the superiority of multi-armed bandit algorithms over traditional 

fixed traffic allocation in terms of cumulative rewards, regret, 
and adaptability.

Among the studied algorithms, Thompson Sampling consistently 
outperforms UCB1 and Epsilon-Greedy in most scenarios, 
exhibiting faster convergence, lower regret, and better scalability. 
The incorporation of prior knowledge further enhances the 
performance of Thompson Sampling, making it a promising 
approach for efficient A/B testing. The findings of this study 
have practical implications for organizations conducting A/B 
testing, guiding the selection and implementation of multi-armed 
bandit algorithms. The paper also identifies several future research 
directions, including contextual bandits, delayed feedback, 
combinatorial bandits, Bayesian optimization, and real-world case 
studies. As businesses increasingly rely on data-driven decision-
making and experimentation, the adoption of multi-armed bandit 
algorithms in A/B testing can significantly improve the efficiency 
and effectiveness of optimization efforts. By leveraging the power 
of adaptive learning and exploration-exploitation trade-offs, 
organizations can unlock the full potential of A/B testing and 
drive continuous improvement in their products and services.
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