
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2023 Volume 2(3): 1-4

Review Article

Enhancing Observability in Distributed Systems-A Comprehensive
Review

Site Reliability Engineer, Barclays, USA

Ankur Mahida

*Corresponding author
Ankur Mahida, Site Reliability Engineer, Barclays, USA.

Received: September 15, 2023; Accepted: September 21, 2023, Published: September 27, 2023

Keywords: Distributed Systems, Observability, Monitoring,
Tracing, Debugging

Introduction
Distributed systems, which provide processing power for most
of the modern online platforms, are composed in a way that
geographically distributed machines work together [1]. This allows
for the use of clusters. On the other hand, the distributed systems'
nature of autonomy and delays generate a lot of complexity.
Components of networks are non-linearly linked, and failures are
partial and uncertain. The race conditions that cause concurrency
problems are manifold. As a result of this complexity, the behavior
of the system becomes very difficult to comprehend and administer.
Observability, which is a critical element of distributed system
operation, is about digesting and correcting the output of a running
system. This helps us correlate the internal states of a system with
the generated output.

Nevertheless, the new monitoring solutions, which are based
on logging, represent a significant concern as logs are scattered
over hosts despite the fact that they need better observability.
There is very little correlation between events across components,
which is substantial. Improving observability encompasses the
entire ecosystem, including instrumenting the distributed system
for tracing, collating logs, and visualizing metrics. Integrative
thinking here helps in linking insights into a coherent whole. For
example, distributed tracing links events similar to ping-pong
by passing the request context between steps. Contemporaneous
logging brings all logs together in one backend. Metrics as a
visualization is a tool that helps to trace system patterns. Together,

they make a lot of progress as they develop a step-by-step method
of monitoring distributed systems' behavior. This way, debugging
unemployment, lack of capacity, or planning becomes easy as
it gives you an overview from a global perspective. Thorough
observability is thus of primordial importance for the management
of complex and modern distributed systems.

Problem Statement
A distributed system, by definition, is a decentralized system that
has no global state and there is no central controller [2]. This is
triggered by the fact that the elements are spread across network
components, which are located in different network and geographic
zones. Each element handles some fraction of the burden and
interacts through message passing. The platform is asynchronous
in design, so it allows the scaling and fault tolerance to happen.
While being remarkably dynamic and chaotic, the topology of the
runtime forms as a result of intersecting components. Components
continuously hook up or break away from each other very often
because, due to the growing, shrinking, and partial failure of
servers, workloads shift. The characteristics of the decentralized
network and the way its message passes make it impossible to
precisely sequence or put in order in time all events of components
with each other.

Solution
Trace tools are deployed in applications to inject unique request
IDs throughout all co-dependent components. Headers with
trace IDs define a group of logs and metrics that trail a particular
request flow. Thus, agility and fitting into the matrix of service
are essential while dealing with failure analysis or performance

ABSTRACT
Observability augmentation in distributed systems deals with making it more feasible to grasp and satisfy all the internal states and behaviors of complicated
software structures spanning many interconnected machines. Distributed systems communicate asynchronously, are appetitive to localized control,
and have a vast number of failure points. Unpredictable problems are an inherent feature of their complexity, which makes them intrinsically complex.
Observability stands for the provision of instrumentation for systems in order to log, monitor, and trace internal events so that operators can deduce the
system’s state without invasive probing. Extended visibility allows for quick identification, elaboration, and rectification of issues in large-scale software
systems before they cause much impact. Methods such as distributed tracing, unified monitoring, and metrics monitoring are the tools that allow engineers
to identify root causes of system-wide failure by correlating events across components. Both the new development processes and procedures are based
on the new overheads; they improve productivity and reliability, thus justifying more engineering efforts for critical distributed systems. However, when
this is correctly implemented, we are able to improve the operability, efficiency, and development speed of mission-critical and complex business software.

Citation: Ankur Mahida (2023) Enhancing Observability in Distributed Systems-A Comprehensive Review. Journal of Mathematical & Computer Applications.
SRC/JMCA-166. DOI: doi.org/10.47363/JMCA/2023(2)135

J Mathe & Comp Appli, 2023 Volume 2(3): 2-4

concerns due to the complex dynamic between the services [3].
Tracing is like a map that helps to join all event logs related to
the requests. Programmers can recreate the audit trails of the
requests that cross components while operators identify the
systemic faults that are frustrating the users. The most widely used
implementations are usually open standards such as OpenTracing
or closed specifications such as vendor solutions.

Unified logging frameworks collect and store distributed
application logs from across hosts into log repositories that are
indexed using log databases like Elastic search [4]. It refines
the difficult job of screening the abundance of intermixed log
files that were widespread and often made the tackling of user
issues unbearably tedious. Recently, there has been talk about the
advantages of decentralization. However, there are other ways in
which data management needs to be considered. Lastly, another
value comes from the intuitive matching of occasions by features
such as time-based searching.

Monitoring the metric instrumentation promotes application
visibility by extracting application health issues from the code
and inserting them into the time series database [5]. These are the
critical querying features that enable administrators to conduct
powerful queries over metrics aligning dimensions such as hosts,
services, and zones. Systematized monitoring helps identify
bottlenecks for resources before they become unavailability
problems. Historical data help in capacity planning, and the
heatmaps depict the hot spots. Instrumentation should strike a
balance between the collection overhead and information quality.

Sampling on demand is a selective mechanism that captures
production traffic for mimicking the true-life system's load [6].
Synthetic testing serves as an alternative to natural testing but
tends to overlook any underlying defects in field-returned devices.
Updates on reliability issues are achieved by carrying out replaying
processes in staging without disclosing the problems to customers.
It is vital to consider the sampling rate adjustment, request storage,
and extraction process because these are needed to have low
overhead (undesirable long processing time).

Visual analytics form a system of monitoring signals by intuitively
visualizing them through graphical formats that use the human
visual perception of complex datasets for pattern recognition [7].
This makes it easier to identify metrics and establish escalating
patterns of resource consumption across hosts. In addition, a
distributed tracing graph request journey is essential for fast error
location. The advantage comes from the way it combines numerous
visualization layers – situation awareness being one of the crucial
criteria in decision-making.

Uses
Simplified Root Cause Analysis
Finding the cause of the issues in distributed systems may take a lot
of work, as dropped requests could bounce back and forth between
a set of decoupled services scattered over a geographic area, and
identifying where the fault becomes virtually impossible. This is
directly mapped to user outages with their progress blocked, thereby
aggravating the situation. Distributed tracing gives you a detailed
storyline that crosses multiple system boundaries in the case of
the whole request workflow [8]. The developers, in human mode,
examine the interaction of each machine component to pinpoint
the origin of the failure rapidly. The proliferation tracers aid us in
seeing systemic faults growing from the interaction choreography
of trusted services. Sharing the production environment is where

the issues manifest, and reversible/repeatable problems can be
captured and replayed in the staging environment, enabling scale
and reproduction of testing.

Proactive Capacity Planning
Scaling of distributed systems up now and then will be necessary
to cope with peak loads. That big of a reactive intervention may
be problematic, though, as it may lead to the service unavailability
ballooning into major incidents [9]. The instrumentation metric
system provides detailed monitoring of resource consumption
through entire system layers. Capacity increment is to be done
in the event of growing utilization, thus being careful enough to
undertake it in advance. This is able to ensure a high availability
level and to guide budget planning through demand modeling
using predictive analytics.

Accelerated Security Auditing
Due to the sprawling nature of distributed systems, the attack
surface, which is an extension of the infrastructure that is malevolent
actors, indeed is extensive; thus, securing infrastructures is of
unquestionable importance [10]. The comprehensive audit logs,
which systematically capture all access activity and resource
usage across the network, offer inevitable clues for threat tracking.
Automated log analyzers quickly scan millions of records inside
the system by detecting unusual behaviors that could lead to
an attempt at exploitation. It helps to provide an early incident
response that is vital to limiting an organization's exposure
to breaches. Thorough auditing hence bolsters the security of
organizational postures.

Optimized System Architecture
Although load testing is used to understand system peaks,
analyzing the workloads in the production environment provides
the developers with a unique opportunity to see the typical working
conditions. Metric instrumentation is intuitive on how services
are used and their respective traffic volumes, while distributed
tracing reveals all critical paths of a single service call request
[11]. Developers capture this observability to optimize the code
by concentrating on the hotspots, which are executed more often
than other components. The typical optimizations involve caching,
parallelization, and heuristic improvements. By doing so, the
fulfillment of the request becomes faster.

Enhanced Change Management
The architectures, the dependencies, and the workloads frequently
change over time in the distributed system, and hence, gradual
behavior shifts take place. Nevertheless, when the vision of historic
struggles vanishes, the consequences of cumulative changes
between versions become obscure. Monitoring data used to be
archived to serve as an excellent reference for the comparison of a
case of diagnosis when any issue might come up as a result of the
updates. Graphs produced metrics to show the growth while the
maps mapped grew changed environment. This supports change
management practice, which is a critical factor in the operation
of complex systems.

Impact
Minimized Service Disruptions
By design, system-wide observability provides the capability to not
only detect abnormalities but also to escalate them into operational
alerts to subscribe to growing incidents. Distributed tracing
goes as far as the root failure origin following errors through
more boundaries of service. It isolates and solves challenging
problems way faster before they turn into significant outages that

Citation: Ankur Mahida (2023) Enhancing Observability in Distributed Systems-A Comprehensive Review. Journal of Mathematical & Computer Applications.
SRC/JMCA-166. DOI: doi.org/10.47363/JMCA/2023(2)135

J Mathe & Comp Appli, 2023 Volume 2(3): 3-4

are infuriating to users [12]. Baselines established from historical
metrics allow analysts to compare a slow deterioration. They work
as a team to achieve both the limitation of excess downtime and
credibility to trust.

Reduced Diagnostic Effort
Making a timeline of events out of suddenly appearing logs on
different hosts to pinpoint the root cause of the issues manually
needs substantial labor. It lowers this by automatically identifying
all those events that are related [13]. Operators, on the other
hand, save time by simultaneously browsing immense amounts
in an attempt to find an answer and spending more time on
remediation. Through visual analytics, information systems are
reduced and presented in an intuitive way that advances the speed
of thinking. These do it jointly with the lower effort and complexity
of diagnostics.

Validated Development Assumptions
Developers typically design applications following tradeoffs using
peak capacity metrics or sample workloads that reflect a customer's
load. Nonetheless, the traffic that is experienced on the ground may
be the opposite, resulting in the emergence of specific bottlenecks.
With the improved observability, production telemetry is at the
granular level that gives deployment decisions validation when
the architecture is being scrutinized by actually observing the
usage. Thus, there is the possibility of an effective optimization
implementation on the most used part of the codes that have the
highest degree of effect.

Simplified Optimization Identification
Surveying for optimization candidates in the past was almost
always a matter of big performance profiling load with decoding
the bottlenecks. The integrated metrics that track resources
spent and call chains that are constantly invoked are a big help
in this regard. By doing this, developers can see beforehand what
improvements are possible from visualizations and not just blind
testing, hence speeding up the optimization process in the sense
that it delivers analogous latency gains for users.

Holistic Systems Thinking
Logical conclusions about emerging system behaviors are possible
by combining knowledge describing different parts. Architects,
by definition, need the integrated perspective that prevents them
from being effective. Backward tracking users' journeys alongside
system-level metrics provokes a holistic view. The trend becomes
more predictable and can be easily explained, enabling us to do
proper analyses.

Accelerated Debugging
The reproduction of failures for debugging purposes can become a
sophisticated task in the absence of an adept environment context
from production. Failure upon both the tracing and sampling is
also performed where state snapshots are logged [14]. Problems
do not need to be recreated again. Therefore, developers save on
manual efforts wasted on issues reproduction locally. More so,
reproduction using test environments is a measurable tool of the
entity. Together, they provide us with the needed information to
be able to find out the cause quickly.

Scope
Implementing enhanced observability usually means going
through the space and the variety of commercial and open-source
technologies such as tracing, logging, and metrics for monitoring
purposes. Each part of a distributed system could be as different

as the integration agent it uses and Clientèle's incumbent tools.

At the same time, the analytics, storage, and visualizations are
provided as standalone products. Thus, it isn't easy, therefore, to
formulate an instrumentation and analytics strategy that positions
statistical objectives within the framework of specific objectives
of operations efficiently by making use of the synthesized data
without the accumulation of the overwhelming costs and the
expert architects lending their support in conducting the evaluation
process methodically.

Consistent with this, legacy codebases experience this added effort
in common and require extra work to retrofit instrumentation code
and different logging implementations. Because the latency cannot
adversely affect the performance of the production workloads,
canary testing is activated step-by-step. The gradual deployment
of instrumentation makes it possible to measure resource
consumption at the rack and network services to determine future
capacity planning. Typical traffic volumes and trends differ for
each year, so scalability is a factor in the deployment of ELK,
Graphite, or Zipkin clusters and databases as data grows over
the years. Retention policies for purging or consolidating stale
info require foresight of the future need for troubleshooting or
historical analysis.

In the quest to increase visibility, exact instrumentation accumulates
expenses on the basis of storage and infrastructure. However, it
also increases the burdens on network, transmission, processing,
and warehousing due to the fact that the volume exponents are
exponentially growing. Therefore, the middle ground can be found
by applying the sampling rate adjustment in order to capture the
traffic skewness or using Bloomberg's Black Box method. On the
contrary, latent errors result in the wrong diagnosis of incidents.
Solutions that include efficient compression, as well as multi-stage
tiering with built-in archival intelligence, are what help optimize
the mix between the quality of information, analysis speed, and
financial costs based on the budgets available.

Conclusion
Distributed systems observability becomes indispensable due to
the inevitable complexity, which is a result of the decentralized
nature, asynchronous communication, dynamic runtime, and non-
determinism. A multitude of interdependent services communicate
dynamically within a network, while component failure is frequent
but partial. Tracking, logging, and monitoring performance
metrics from this distributed, organizationally chaotic substrate
involves holistic instrumentation. The resource-intensive approach
includes distributed request tracking, centralized logging pipelines,
visualization, and automated enhancement that logically enhances
visibility. This combines features to produce macro signals that
are otherwise poor in features. The outcome is that it allows
the identification of emerging incidents quickly, harmonizes
the process of failure investigation, optimizes the efforts of
directing resources, and intelligently plans the capacity, which
brings excellent profit. Although the operating overhead is costly,
observability carried out systematically remarkably augments
productivity, reliability, and maintenance of complex modern
distributed systems – the investments recover within the average
system lifetime. Even so, engineering leadership needs to promote
a culture capable of leveraging telemetry while being mindful
of the tradeoffs caused by marginal costs. Adopted properly,
increased observability results in invaluable multiples of key
system quality metrics that cover the costs of implementation
many times over.

Citation: Ankur Mahida (2023) Enhancing Observability in Distributed Systems-A Comprehensive Review. Journal of Mathematical & Computer Applications.
SRC/JMCA-166. DOI: doi.org/10.47363/JMCA/2023(2)135

J Mathe & Comp Appli, 2023 Volume 2(3): 4-4

Copyright: ©2023 Ankur Mahida. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

References
1.	 Maarten Van Steen, Tanenbaum AS (2017) Distributed

systems. The Netherlands https://komputasi.files.wordpress.
com/2018/03/mvsteen-distributed-systems-3rd-preliminary-
version-3-01pre-2017-170215.pdf.

2.	 Abadi M, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, et al. (2016) TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems
https://arxiv.org/pdf/1603.04467.pdf.

3.	 Burns B (2018) Designing distributed systems: patterns and
paradigms for scalable, reliable services. Beijing; Boston;
Farnham; Sebastopol; Tokyo O’Reilly https://docs17.
chomikuj.pl/7387506686,PL,0,0,designing_distributed_
systems.pdf.

4.	 Farrukh A, Jahangir U, Rahim H, Ali K, Agha D S (2020)
Centralized Log Management Using Elasticsearch, Logstash
and Kibana https://ieeexplore.ieee.org/document/9080053.

5.	 Pina F, Correia J, Filipe R, Araujo F, Cardroom J (2018)
Nonintrusive Monitoring of Microservice-Based Systems.
IEEE 17th International Symposium on Network Computing
and Applications (NCA) https://ieeexplore.ieee.org/
document/8548311.

6.	 Walper SA, Guillermo Lasarte Aragonés, Kim E. Sapsford,
Carl W. Brown III, Clare E. Rowland, et al. (2018) Detecting
Biothreat Agents: From Current Diagnostics to Developing
Sensor Technologies. ACS Sensors 3: 1894-2024.

7.	 Hohman F, Kahng M, Pienta R, Chau DH (2019) Visual
Analytics in Deep Learning: An Interrogative Survey for

the Next Frontiers. IEEE Transactions on Visualization and
Computer Graphics 25: 2674-2693.

8.	 Mace J, Roelke R, Fonseca R (2018) Pivot Tracing. ACM
Transactions on Computer Systems 35: 1-28.

9.	 Jahir Y, Atiquzzaman M, Refai H, Paranjothi A, LoPresti PG
(2019) Routing protocols and architecture for disaster area
network: A survey. Ad Hoc Networks 82: 1-14.

10.	 Ratti C, Claudel M (2016) The city of tomorrow: sensors,
networks, hackers, and the future of urban life. New Haven;
London 192.

11.	 Kaldor J, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, et al. (2017) Canopy: An End-to-End Performance
Tracing and Analysis System 34-50.

12.	 Duke Okes (2019) Root cause analysis: the core of problem
solving and corrective action. Milwaukee, Wisconsin: Asq
Quality Press file:///C:/Users/User/Downloads/toaz.info-root-
cause-analysis-the-core-of-problem-solving-and-corrective-
action-okes-2-pr_693482733d7a945dfd740913c6f7819f.pdf.

13.	 Du M, Li F, Zheng G, Srikumar V (2017) Deep Log: Anomaly
Detection and Diagnosis from System Logs through Deep
Learning Proceedings of the 2017 ACM SIGSAC. Conference
on Computer and Communications Security 1285-1298.

14.	 Mueller J, Luca Massaron (2021) Machine learning. Hoboken,
New Jersey: John Wiley & Sons https://electrovolt.ir/wp-
content/uploads/2018/03/Machine-Learning-For-Dummies-
ElectroVolt.ir_.pdf.

