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Introduction
Tobacco consumption versa-vice cigarette smoking is known to 
constitute a preventable yet major health risk the world-over. About 
1.3 billion of the world population is known to be consuming 
tobacco substance, yet t the adverse effect of chronic tobacco 
consumption often lead to premature mortality with an estimated 
annual death rate of 5 million (an average of 9%) people [1,2]. 
Transmission of the effect of smoking and tobacco consumption 
is socio-environmental with human-to-human transmissibility 

and having the environment as it reservoir. Zoonotic science 
has considered smoking as the causative agent of a number of 
non-communicable diseases of the form: chronic lung diseases, 
asthma, obstructive pulmonary disease, stroke, diabetes, premature 
heart attack, cancer, cardiovascular [1,3-5]. Moreso, death rate 
emanating from cancers of the mouth, ling, stomach cancers, 
kidney, pancreas, cervix and liver cancer are as a result of chronic 
smoking [5].  

As a socio-environmental component of the society, behavioral 
smoking pattern spread through both close and distance social 
links with trend of cluster among socially isolated groups, [6,7]. 
Overlooking the adverse effect of smoking, most persons smoke 
for the sake of either pleasure, to regulate body weight or for 
suppression of hunger along with sense of taste and smell [8].

ABSTRACT
Background: The seeming insurmountable effect of tobacco-smoking, coupled with intense laxity by society towards the avalanche consequential effects 
of tobacco-smoking consumption and the yet-to-be-available mathematical model for comprehensive treatment of multiple effects of tobacco-smoking, 
necessitated this present investigation. The present research arguably presented an insight into the global stability indices of not just the impact of smoking 
transmission but explicitly demonstrated the methodological application of designated bilinear control functions in the presence of screening techniques 
for the eradication of consequential effects of smoking and tobacco consumption.

Methods: The model explored deterministic 6-subpopulations, formulated using first-order differential equations. System interactions was investigated 
using bilinear control functions with system well-posedness established. Furthermore, system smoking generation number for both off- and onset-
treatment scenarios was determined. Analytic predictions for both local and global indices explored second additive compound matrix in conjunction 
with Lozinski measure . Numerical simulations evolved Runge-Kutta of order of precision 4 in a Mathcad surface.

Results: Accompanying simulations indicated protracted initial asymptomatic saddle period of smoking infection for tf  < 140 days under the off-treatment 
scenario. Inducement of bilinear control functions under screening method yielded  drastic reduction to near zero within the first tf  < 80  days as vindicated 
by the exponential rejuvenation of potential smokers.

Conclusion: Investigation concludes that eradication of consequential effects of tobacco-smoking is achievable provided both smokers, tobacco companies 
and the governments implement concurrently, the application of designated bilinear control functions the world over. Immensely, the study exhibits mutual 
benefits to the society and scientists in the field of Bio-mathematics and epidemiologists. 
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Apart from health organizations that could run direct adverts and 
campaigns on the effect of smoking, one pertinent approach in the 
investigation of the dynamics for the spread of smoking effects and 
control interventions have been through the use of mathematical 
modeling. For instance, the first simplest mathematical model in 
1997, considered a 3-Dimensional state-space (potential smokers 
P, smokers S and quitters Q) [9]. The behavioral attitude and 
consequential effect of smoking by mild and chain smokers was 
later studied [10].  Using the Brownian motion for the perturbation 
of derived model equations, the stochastic study for smoking 
model was investigated and its sufficient conditions for their 
mean square established [11].  Accounting for saturated incidence 
rate for a smoking model, the study on mathematical analysis 
and optimal control of giving up smoking was conducted [2].  
Recently, the application of fractional theory have been very useful 
in studying smoking dynamics models. Example, the mathematical 
assessment of the dynamics of tobacco smoking was investigated 
using fractional theory [12]. The study explore Caputo operator 
accounting for tobacco in the form of snuffing.

Remarkably, the vast adverse effect of tobacco consumptions often 
manifest in the deteriorating health of many contagious diseases. 
For instance, patience with COVID-19, who are smokers do have 
high risk factor with rapid health deterioration than non-smokers. 
More specifically, the consequential effect of tobacco-smking 
can adversely accelerate the deteriorating health of patience 
with HIV/AIDS and tritrophic rate of COVID-19 infections [13-
15]. Therefore, the main goal of this present investigation is 
that of seeking for the methodological application of a bilinear 
control functions (nicotine replacement therapy and non-nicotine 
medication) under coherent screening method, geared towards 
optimal recovery and reunion with the susceptible population.

The organizational structure of this paper are as follows: section 2, 
is devoted to the material and methods. This section account for the 
problem statement of the study and the derivation of system basic 
model. The mathematical analysis for derived model is contained in 
section 3. In section 4, we discuss the stability analysis in relation 
to its local and global conditions. In section5, we present numerical 
illustrations of our derived analytical predictions. Comparative 
analysis of established results are explicitly presented in section 
6. Finally, section 7, account for study incisive conclusion and 
study recommendations. The entire work is anticipated to unveil 
the insight   to the methodological treatment of smoking effect 
as an epidemic.

Materials and Methods
The materials and methods for this present proposed study is 
constituted by a set of varying subpopulations having access 
to tobacco reservoir (host-vector, and environment). The 
consequential effect of smoking is investigated using a bilinear 
control functions (nicotine replacement therapy - NRT and non-
nicotine medications – NNM). The fact behind this investigation 
is unveil by the problem statement of the study, followed by 
derived set of mathematical equations for the proposed model. 
Method of mathematical analysis explores the fundamental theory 
of differential equations, while the derivation of system basic 
reproduction number explores the next generation matrix with 
the incorporation of linearization method. We shall investigate the 
local asymptotic stability using LaSalle’s invariant principle with 
Routh Hurwitz criterion and the global stability conditions via the 
Lozinskii measure lB with the incorporation of second additive 
compound matrix. The aspect of the numerical simulations shall 
explore Runge-Kutta of order of precision 4 in a Mathcad surface.

Problem Statement for a Tobacco Model
It is obvious that following the adverse effect of smoking of 
tobacco, government and non-governmental agencies the world 
over, are increasingly running all forms of campaigns and adverts 
aimed at reducing the rate of smoking. Often embedded in those 
adverts, is the consequential impact upon smoking of tobacco. The 
study on the dynamical effect of smoking and its social impact 
as well as control measures have severally been conducted using 
mathematical modeling among other known health methodologies.  
In this present study, we bring to bear a mathematical analysis 
of a smoking model with social factor, [8]. In that model, a set 
of 5-dimensioanl mathematical subpopulations in the form of: 
non-smoking population P, light smokers Si, chain smokers Sc, 
temporal quit smokers Qt and permanent quitters Qp  were explored 
for model formulation. For more details on the model, we capture 
here, the schematic diagram as deduced by Figure 1 below:

Figure 1: Schematic Diagram for Model (1), [8].
The mathematical equations is as depicted by Equation (1) below:

                                                                                      (1)

with initial conditions

A critical review of the above model indicated that the incidence 
rates (β1+ β2) was not derived. Rather, initial values were assigned 
to them. Furthermore, no screening method applied to the infection 
dynamics through the ith compartments and moreso, the model 
was devoid of any control functions. Therefore, in attempt to 
incorporate the aforementioned lapses of model (1), the present 
study sought to formulate a socio-epidemiological 6-Dimensional 
mathematical model to be investigated using a bilinear control 
functions in the presence of screening technique.

Derivation of System Mathematical Equations
Here, we attempt to overcome the aforementioned lapses of 
model (1) with the incorporation of enhance state components, 
screening method and the introduction of bilinear control 
functions. Suppose the population understudy is segregated into 
6-Dimensional subpopulation measured in cellsmm-3 , then the 
system compartment is constituted by potential smokers Ps, mild 
smokers Sm, chronic smokers Sc, permanent quitters Qp, temporal 
quitters Qt and recovered population Rp. The interactions between 
these subpopulations and tobacco reservoir is investigated using 
a bilinear control functions (nicotine replacement therapy – 
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nasal spray/lozenges and non-nicotine medication – bupropion/
varenicline) in the presence of a screening method denoted by 
ϕ. Furthermore, our proposed model is built on the following 
assumptions:

Assumption 1
i.	 Only temporal and permanent quitters undergo screening, 

i.e. Qt , Qp > 0.
ii.	 Control functions (u1, v1) are only introduced to Qt , Qp upon 

screening for all (u1, v1) > 0.
iii.	 Only temporal and permanent quitters die due to smoking, 

i.e. ui > 0.
iv.	 Temporal quitters may revert to mild smoking, i.e. Qt → Sm 

for all Qt < Sm.
v.	 Only screened permanent quitters apply nicotine therapy, 

η>0.
vi.	 Recovered reunion with the potential smoking population, 

Rp < Ps.

Thus, using assumption 1, the socio-epidemiological model 
equations for the present study is derive as:

                                                                                           (2)

with initial values                                         for all t = t0 = 0, 
(u1, v1) = 0 where

                                                                                 (3)         

and having

If                 , then Equation (3) becomes

                                                                                  (4)

The socio-epidemiological implication of system (2) is explain 
thus: from the first equation, we observe that the differential 
outcome for potential smokers is constituted by natural birth rate 
and recovery rate from smoking              with depleting proportion 
from incidence rate and natural death rate given by
The second equation depicts mild smokers, which is sustained 
by the incidence rate of smoking and the proportion that reverted 
back to smoking after quitting temporally denote by
The clearance rate here include the proportion that transit to 
chronic smoking and the death rate due to either natural and/or 
due to smoking presented by                      .The third equation has 
its source rate from mild smokers that transit to chronic smokers
    . Accounting for varying treatment, if chronic smokers are 
subjected to screening method at the rate ϕ, then the proportion 
of chronic smokers that desired to quit smoking permanently is 
presented by                          where ε is the rate at which permanent 

quitters receive treatment. That is, the proportion that desired 
to temporally quit smoking is denoted by ‒(1‒ v1)(1-ε)ϕSc.The 
clearance rate for this compartment is given by ‒(μ+ μi)Sc , which 
denote natural death and death due to infection. 

From the fourth equation, we observe that quitting smoking 
permanently is a function of nicotine replacement therapy
(1-μ1) i.e. (1-μ1) ϕεSc. The inducement of control function could 
lead to recovery rate  and having spatial natural death rate of ‒μQp.
Similarly, from the fifth equation, the proportion quitting smoking 
temporally determine by non-nicotine medication is given by ‒(1‒ 
v1)(1-ε)ϕSc and having depletive ratio of                     . Finally, sixth 
equation describe the proportion that recovered from smoking. 
Here, the source rate is given by                  . Those that recover 
actually reunion with potential smoker at ‒ηRp  and having natural 
clearance rate of ‒ μRp. Thus, with Equations (3) and (4) derived, 
system (2) completely represent the mathematical dynamics of 
the effect of global tobacco epidemic model with bilinear control 
functions under enhanced screening technique. Figure 2, below, 
gives the graphic image of system (2), while Table 2, depicts the 
detail description for both the state-space and parameter variables 
of Figure 2.

Figure 2: Graphic Image of P-2S-2Q-R Smoking Model with 
Control Functions

Table 1: Description of State-space and Parameter Variables 
for Model (2)
Description of State-space and Parameter Variables
State-space Parameter Variables
Symbols Description Symbols Description
Ps Potential 
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bp Natural birth rate 

Sm Mild smokers μ Natural death rate
Sc Chronic 
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Incidence rates

Qp Permanent 
quitters

μi Clearance rate due 
to smoking

Qt Temporal 
quitters

α Intensity rate of 
smoking

Rp Recovered 
from smoking

ϕ Screening rate

ε Rate at which 
screen Qp  receive 
μ1

Varying rate of 
interactions within 
state-space
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Rate at which 
screen Qt  receive 
v1 
Recovery rates 
from Qp and Qt 
respectively

u1, v1 Nicotine 
replacement 
therapy;  non-
nicotine 
medication

η Recovered 
becoming potential 
smokers

δ Temporal quitters 
reverting to 
smoking again

Mathematical Analysis for Derived Model
Since system (2) represent a set of living organisms, it is paramount 
that we verify and prove for the following: 
the existence and uniqueness of system solution, the positivity of 
solution and the boundedness of solution within certain invariant 
region denoted by . 

Existence of Solution
Let                     such that

                                                              and G: Rn → R6 such that

Then,                                     . 

Definition 1: (Cauchy-Lipschitz condition)
In particular, Lipschitz condition is defined as: a function
                         is said to satisfy the Lipschitz condition if there 
is a constant such that                                                 where M is 
the Lipschitz constant.  

Theorem 1: (Existence and uniqueness)
The system (2) is continuous and satisfies Cauchy-Lipschitz 
condition.
Proof: We explore existence and uniqueness results, [13]. Then, 
we show from system (2), taking the first equation, while the rest 
follow similar procedures. Now, let

                                                                                          (5)

Then, using Equation (4), the partial derivative of Equation (5) 
becomes

                                                                                         (6)

This shows that the function P(t,S) and its partial derivative
            are defined and continuous at all point (t,S). Similarly, the 

right hand functions of other equations and their respective partial 
derivatives satisfy these conditions. This imply that by existence 
and uniqueness theorem, there exists a unique solution for Ps(t), 
Sm(t), Sc(t), Qp(t), Qt(t) and Rp (t) in some open intervals centred t0.
We then have to show that the solution satisfies the Lipschitz 
condition. Now, using Equation (5), we see at once that

This implies that

where                                                                 is a Lipschitz 

constant. In a similar procedure, we show that the remaining 
variables satisfy Lipschitz condition. Therefore, there exists a 
unique solution Ps(t), Sm(t), Sc(t), Qp(t), Qt(t), Rp (t) for all t > 0.

Positivity and Boundedness of Solutions
The following theorems justifies the positivity and boundedness 
of the solutions of the system (2).

Theorem 2: (Positivity of solutions)
Suppose system (2) is bounded by the initial conditions
                                                                                Then, the 

unique solution of Theorem 1, forms a set of solutions
  
                                                            and is non-negative for 

all t > 0. 

Proof: Invoking existing result for positivity of solutions, [14].  
Then, we prove for the first equation of system (2) and then deduce 
for the rest of the equations for all t > 0. That is,
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Suppose                                                          , then Equation (7) 
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prove is completed.

Theorem 3: (Boundedness of solution)
All solutions of system (2) is bounded and positively invariant 
in the region      , where

                                                                                                        . (9)

Proof: Here, we investigate the prove using existing result, [15]. 
Now, taking on system (2), the sum of the differentiation gives

                          .

If the population is free from tobacco smoking and its effect, then
μi = 0 and we have 

or
                  .
 
This is a first order homogeneous differential inequality. Applying 
the integrating factor                    , we have

                                      ,

or

                                .

Integrating, we have

                                ,

where C, is the constant of integration. Now, simplifying, we have 

                            . 

Solving for C and taking initial condition for t=0, and then by 
substituting the resulting value, we have

                                           . 

Therefore, taking the limit as t → ∞  we have

                                                                                    (10).

Equation (10) shows that system (2) is biologically feasible in 
the region ∏D. Therefore, the solution of system (2) with initial 
conditions is bounded in the invariant region of Equation (9) for 
all              . Hence, system (2) is well posed. 

Equilibrium Points Analysis
The analytic nature of system (2) is concerned with the study 
steady-space and their local stability, which of course is challenging 
due to the complex non-linearities of derived model (2). Yet, it is 
pertinent that we investigate the system multiple local asymptotic 
stability as well as their global stability conditions.

Existence of System Steady States
Since we denoted the vectorial capacity of system (2) by ∏D, then 
from Equation (9), we have

That is, system (2) can be written in the form:

                                                                                                (11)

where f (t, ∏D, z) is the right side of the ODE of system (2) and  z, 
is the vector parameters as depicted by Table 2,  then, we compute 
as following:

i) Tobacco Smoking Free-Equilibrium (T-SFE)
At T-SFE, there is no infection, which implies no spreading of 
smoking effect i.e. Sm = Sc = Qp = Rp = 0. Therefore, the T-SFE for 
system (2) denoted by E0 is derive as:
                                 
where from Equation (10),             , i.e. 

                               .                                                                (12)

That is, T-SFE at no smoking effect is only a function of recruitment 
rate with respect to natural death rate.

ii) Tobacco Smoking Endemic Equilibrium (T-SEE)
With the spreading of smoking effect, endemic state is bound to 
occur. Then from system (2), for any arbitrary endemic equilibrium 
denoted by E*, we have

                                                    ,                                           (13)

Such that
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Then, solving equations of system (2) step-wisely by using 
Equation (11), we have from the first equation,
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                                                                  ,                             (14)
                                       

where 

                                                                                                . (15) 

Clearly, if Equation (14) is substituted into Equation (11) at β*
i =0, 

we return to Equation (12), which define the existence of T-SFE. 
Therefore, the endemic state for system (2) at which  β*

i ≠ 0, as 
depicted by Equation (14) satisfies Equation (13).  Obviously, 
these two indices E0 and  E* are important components for the 
computation of system basic reproduction number denoted by R0 .

System Basic Reproduction Number, R0
The spread of tobacco effect is in itself, a social adverse factor 
and thus, a virus by all ramifications. That is, permanent smokers 
among other forms, constitute reservoir of tobacco smoking 
effect. Therefore, the intensity to have a clear flow of smoking 
transmission pattern and its biological effect is defined by the basic 
reproduction number R0. For simplicity, the reproduction number 
for smoking effect is also known as smoking generating number
Sg(0) i.e. R0 ≈ Sg(0) , [8]. Then, we shall investigate Sg(0) using existing 
approach known as next generation matrix method, [16].

From system (2), to account for the infectious state variables, 
we let
                                                                       .  

Mathematically, Sg(0) is define as: [17]. 

                                                                                                
(16)                                                                     ,  

where the notations Fi  and Vi represent the matrices of new spread 
in compartment i and the transfer terms at T-SFE into the ith 
compartment, while E0 is the T-SFE. Then, accounting for the 
actual transmutable state-space from system (2), we have

At T-SFE, using Equation (12), the linearization of Fi gives

                                                                  .                             (17)

Now, computing for Vi , we have

or

                      , 

where q1 q2 q4 and q9 is defined from Equation (15). The 
linearization of Vi, gives

                                   .                                                            (18)                 

Thus, by Equation (16), the T-smoking generation number, which 
correspond to the spectral radius        is computed as: [18,19].

or

                             ,                                                                  (19) 

where G j=1,..,4  represent the reproduction numbers for the infectious 
state-space. Clearly, Equation (19), depicts the system reproduction 
number at off-treatment scenario (i.e. (u1, v1) = 0) with computed 
value of Sg(1) = 7.293 > 1 

If (u1, v1) > 0 represent treatment functions, then at (1–u1) (1–v1) 
control functions, Equation (19) becomes

                                                                           , 

or

                               ,                                                                (20)

where φ = (1–u1) (1–v1). Equation (20) is known as the system 
effective smoking generation number with value computed as 
Sg(2) = 0.178 < 1.

Analysis of Stability Indices for T-SFE and T-SEE
For simplicity, we shall consider the system stability analysis in 
terms of its local asymptotes for both T-SFE and T-SEE, using the 
critical role of Sg(0) with the incorporation of the LaSalle’s invariant 
principle. The global asymptotes aspect shall be investigated 
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using second additive compound matrix with incorporation of 
Lozinskii measure lB.

Asymptotic Local Stability in Terms of  Sg(0)
Reproduction number Sg(0), is an important tool that determine 
the rate of transmission of any infectious disease both at off and 
onset-treatment scenarios. The following theorems investigates 
the cases for local asymptotic T-SFE and local asymptotic T-SEE.

Tobacco – Smoking Free Equilibrium (T-SFE)
At disease free-state, then Sg(0)< 1, which implies that no 
transmission of smoking effect i.e. 
The following theorem holds.

Theorem 4
System (2) is locally asymptotically stable at T-SFE (E0) if Sg(0)<1, 
otherwise, unstable if Sg(0)  > 1.

Proof: We linearize system (2) by using existing result for the 
local stability analysis, [17].  
Let J denote the Jacobian matrix for system (2). Then, J at T-SFE 
is derive as:

                                                                                           .    (21)

Here, the characteristic equation for Equation (21) is given by
                                                                                                 (22) 

Taking the eigenvalues of Equation (21) with respect to Equation 
(22), gives: –μ, –(q1+β1c1), –q2, –q4, –q9 and –q8. This shows that all 
the eigenvalues are all negative and having real parts. Therefore, 
the localization of infection for system (2) at T-SFE is locally 
asymptotically stable for all Sg(0)  < 1 and unstable otherwise.	

Tobacco – Smoking Endemic Equilibrium (T-SEE)
Clearly, at βici (  ) ≠ 0 implies that Sg(0)  > 1, which will ignite 
introduction of control functions i.e. (u1, v1) > 0, such that (1–u1) > 
0 denotes that rate at which Qp(t) administer nicotine replacement 
therapy and  (1–v1) > 0 represent the intake of non-nicotine 
medications by Qp(t). Then, at Sg(0)  > 1, system (2) is bound to 
exhibit disease endemicity. Thus, the following theorem justify 
the existence of T-SEE.

Theorem 5	
If Sg(0)  > 1 , then for system (2), there exists locally asymptotic 
stability at T-SEE (E*), otherwise unstable.

Proof We shall investigate the proof of this theorem in two folds:
Method 1 Invoking existing result for local asymptotic stability 
of endemic equilibrium [20].  
From system (2), the differential sum is derive as:

or

                                
,

where                         and μi is the death rate due to tobacco smoking.

But           , then we have   

                                                                                                (23)

or

                                ,   

where N* is the endemic population. Solving for N*, we have

                                                                                                (24)

which corresponds to the fact that at equilibrium,             if 

βi
*= 0. If βi

*≠ 0, then there exists endemic infection and Equation 
(24) can be rewritten in terms of Sg(0) i.e.

or

                     ,                                                                          (25)

where    is disease constant derive from Equation (15). Equation 
(25) holds provided Sg(0) > 1. Hence prove completed.

Method 2 By adopting the linearization method, we invoking 
existing result by Routh Hurwitz, [21].

From system (2), the linearization at T-SEE (E*), yield the 
following Jacobian matrix J(E*) as:
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The auxiliary equation for Equation (26) takes the form:

where                                                                                             and
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Then, using the Routh Hurwitz criterion, the equilibrium state E* is asymptotically stable provided a1, a2 >0. Hence, for Sg(0) > 1  
system (2) is locally asymptotically stable. 	

2 11 22 12 21 1 1 1 1 1
ˆ ˆ ˆ ˆ{( ) ( )} {( ( ))( ( ( ( ) ) ( ( ) ) ( ( ))}p p

i i i i

b b
a x x x x N q N c N c Nµ β β β β β β

µ µ
= − = − + − + + − − + −

Remark 1
i. Theorem 4, satisfies the existence of T-FEE (E0) at Sg(0) < 1.
ii. Theorem 5, validates the existence of T-SEE (E*)  at Sg(0) > 1.

Asymptotic Global Stability Analysis
Here, we adopt the second additive compound matrix approach 
with the incorporation of Lozinskii measure lB to investigate the 
existence of system asymptotic global stability of our model. The 
following lemma and theorem holds:

Lemma 1 If                                      be an endemic equilibrium of 
the form   and there is a compact absorbing set, then this system 
is globally asymptotically stable around that equilibrium provided 
there exists a function D(x)  and a Lozinskii measure l, such that

                                              ,                                              

where l is the Lozinskii measure, B , is the field (or integrand) 
and D, the compact set.

Theorem 6
If Sg(0) > 1 then, the smoking model (2) is globally asymptotically 
stable at endemic equilibrium E*.

Proof
Let  J be the Jacobian matrix and J∣2‌∣ be the second additive 
compound matrix contained in the first three equations of system 
(2), since these equations are actual targets of endemic infection. 
Then, 

                                                                                           .    (27) 

Now, if

                                                            .                                     (28)

Then, from Equation (28), Equation (27) becomes

                                                                           ,                    (29) 

where

                                    and                                                   . 

Using Lemma 1, we let the function F(x), be defined by

                                                          , 

which, implies that                                           .  

Taking the derivative with respect to time, we have

                                                                           .                    (30)

Now, the product of inverse and derivative of the function F(x), 
gives

and
                        .
Thus, we can take

                                  .                                                             (31)

In matrix form, LHS of Equation (31), is given by

                           , 

where                            ,  	

                            and 

Let (x1, x2, x3) be a vector in      and its norm    defined by  
                                              . Let  be the Lozinskii measure with 
respect to the norms. Then, from existing results, we have, [22].
                                                                                   ,

where                               ,                      . This implies that
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If                     , then

              
                                                                                                (32)

which implies that                                                         .  

Hence,

Now, integrating the Lozinskii measure lB  with respect to t ∈ [0,t] 
and taking limit as t → ∞, we obtain

                                                     .                                            (33)

Equation (33) can be written in the form

                                                 .                                                (34) 

Thus, the system containing the first three equations of system (2) 
is globally asymptotically stable around the interior equilibrium
                    .   

Now, from the last three equations of system (2), we have

                                                                      .                                (35)

Taking limits of Equation (35), we get

                                                                  
                                                                    .                                (36)

Solving Equation (36), and using the initial conditions Qp (0), Qt 
(0), Rp (0) for large time t i.e. t → ∞,            ,            and             ,
which is sufficient to prove that the endemic equilibrium point E* 
is globally asymptotically stable.		

Numerical Computations
Here, we explore classical numerical simulation to verify system 
derived analytical predictions of sections 2-4, noting that analytic 
computations are invariably imperative due to complexity of 
system non-linear equations. In the course of our investigation, 
two indices have been paramount, which include: the system force 
of infection βi (   ) and the system smoking reproduction numbers
Sg(0)  ≅ (Sg(1) , Sg(2) ). Notably, smoking generation numbers (Sg(1),Sg(2))
 are functions of system mass action βi (   ), intensity rate of 
smoking α and screening rate ϕ. Therefore, we this important 
component to numerically illustrate its inclusion in present study.

Next, we shall simulate the system basic model (2) at off-treatment 
scenario, which is anticipated to induce the contributive role of 
Sg(1). Finally, with the introduction of bilinear control functions to 
endemic smoking epidemic, we shall simulate derived model for 
treatment on-set scenario at Sg(1). The entire simulations explore 
in-built rkfixed Runge-Kutta of order of precision 4 in a Mathcad 
surface in relation to established data as in Table 2.
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Table 2: State-space and Parameter Variables with Initial Values for Model (2)
State-space Parameter variables

Symbols Initial values Units References Symbols Initial values Units References
Ps 0.5 cellsmm–3 Estimated bp 0.25 [22,23]
Sm 0.19 μ 0.014 [2]
Sc 0.18 0.004, [21]

0.0012, 

0.0029,

0.005

Qp 0.17 μi 0.00021 [8,16]
Qt 0.16 α 0.45 [8,16]
Rp 0.1 ϕ 0.5 Time –1 UCTH

ε 0.628 Estimated
0.5, 0.4, 0.3, 0.2 Estimated

(1–ε) 0.312 Estimated
τ1, τ2 [0,1] [16, 20,24]
η [0,1] UCTH
δ 0.025 [5]
u1

, v1 (u1
, v1) ∈[0,1] UCTH

Note: UCTH – University of Calabar Teaching Hospital

( 1,,,,4)i iβ =

( 1,..4)i ic =
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Simulations of System Generation Numbers, Sg(1) , Sg(2) 
In the analytical predictions of this study, we observed that transmission rate and effect of control functions is further ascertained by 
the numerical computation of the model smoking generation numbers Sg(1) , Sg(2) . Figure 3(a-b) below, depict the observed simulations. 

Figure 3 (a-b): Graphical images of smoking generation numbers for off/onset – treatments of tobacco smoking,       ,0(1)ℜ 0(2)ℜ

a) Smoking generation number for tobacco smoking 
smoking under off-treatment with βi > 0, μi = 0.00021

a) Smoking generation number for tobacco  under 
onset-treatment with βi > 0, μi = 0.00021

From Figure 3(a), it is observed that spread of tobacco-smoking 
incidence rate is portray by smooth rapid incline linear curve 
indicating geometric overture of adverse spread of smoking 
infection under off-treatment scenario. That is, smoking generation 
number is valid in the range 1.675 < Sg(1) < 502.527 for all tf   < 300 
days. With introduction of bilinear control functions, Figure 3(a), 
exhibit some smooth non-rapid linear curve portraying drastic 
reduction in the spread of smoking effect with value range of 
0.178 < Sg(2)  < 53.254
for all tf  < 300 days.

Numerical Simulations of System Model Under Off-Treatment, 
(u1 =0, v1 = 0)
Here, we explicitly implement the vital input of system basic 
smoking generation number Sg(1)  as demonstrated by the simulation 
of system basic model at off-treatment scenario i.e. (u1, v1) = 0, 
βi  >0. Using computed algorithm and corresponding results of 
appendix A1 and A2, we present the smoking dynamics as depicted 
by Figure 4(a-f), below:

From Figure 4(a), we observe that potential smoking population 
exhibit initial steady smooth incline population, which depicts 
asymptotic infection stage under off-treatment scenario with 
value of 0.5 <  Ps (t) < 46.334 cellsmm–3 for all tf  < 210 days. 
Furthermore, the curve exhibits convex-like declination, indicating 
the consequential effect of smoking with decline value of 46.334> 
Ps (t) > 23 cellsmm–3 for all 210 < tf  < 300 days.

a) Potential smokers under off-treatment, Sg(1)  > 1.675 

Figure 4(b), which depicts the subpopulation of mild smokers 
exhibit initial asymptotic saddle point, indicating insignificant mild 
spread of smoking infection at the early stage of smoking with 
value range of  0.018 < Sm (t) < 0.5 cellsmm–3 for all tf  <  200days. 
The curve thereafter exhibits incline symptomatic infection rate 
with value range of 0.5 < Sm (t)< 4.193 cellsmm–3 for all 200 < 
tf  <  300 days.

b) Mild smokers under off-treatment, Sg(1) > 1.675 

Under off-treatment control functions, Figure 4(c) exhibit similar 
undulating linear asymptotic saddle-point like curve as in Figure 
4(b). Here, asymptotic initial infection rate lies in the interval   
0.012 Sc (t) < 0.018 cellsmm–3 for all tf  < 200 days. A variation of 
the infection flow shows symptomatic incline infection rate  with 
value at 0.018 < Sc (t) < 2.687 cellsmm–3 for all 200 < tf  < 300 days. 
c) Chronic smokers under off-treatment,  Sg(1) > 1.675, 



Citation: Bassey Echeng Bassey, Igwe O Ewona, Adagba Odey Henry, Delphine Rexson Bassey (2023) Global Stability Indices of the Transmission and Bilinear 
Control Functions for Tobacco Smoking Epidemic. Journal of Mathematical & Computer Applications. SRC/JMCA-138. DOI: doi.org/10.47363/JMCA/2023(2)191

J Mathe & Comp Appli, 2023                   Volume 2(4): 11-16

In the absence of control functions, Figure 4(d) depicts the 
proportion of permanent quitters of tobacco smoking. The 
population exhibit similar asymptotic saddle point at  0.012< Qp 
(t) < 0.17 cellsmm–3 for all tf  < 120 days. Thereafter, the effect 
of lack of control functions is vindicated by the concave-like 
inclination of infection rate with value range of 0.17 < Qp (t) < 
33.137 cellsmm–3  for all 120 < tf  < 300 days.

d) Permanent quitters under off-treatment  , 

Figure 4(e) exhibit similar diminish charactisitcs of Figure 4(d), 
which portrait early asymptotic saddle infection rate 0.012< Qt (t) 
< 0.142 cellsmm–3 for all tf  < 140 days. With zero control functions,  
the subpopulation exhibits gradual convex-like spread of smoking 
infection with value range of  0.142 < Qt (t) < 21.512 cellsmm–3  
for all 140 < tf  < 300 days.

e) Temporal quitters under off-treatment, Sg(1) > 1.675,  

From Figure 4(f), which represent the recovery population, we 
observe rapid decline, following the non-availbility of any control 
functions. Here, the initial population of  Rp (t) < 0.1cellsmm–3, 
decay with concave-like linear curve of 0.1 < Rp (t) < 1.5x10–3 
cellsmm–3 for all tf  < 300 days.
f) Recovered smokers under onset-treatment, Sg(1) > 1.675, 

Figure 4(a-f): Graphical images for computed off-treatment of 
tobacco-smoking dynamics Sg(1) > 1.675 >1

Numerical Simulations of System Endemic Effect Under Bilinear 
Controls (u1>0, v1>0)   

In this subsection, we compute numerically, derive theoretical 
endemic indices to further uncover derived globall stability 
conditions following the application of designated bilinear control 
functions (u1>0, v1>0) , noting that at this poin, smoking generation 
index as computed is Sg(2) > 0.176 <1 and ε' = (1–ε), τi = (τ1+ τ2)  
respectvely. Thus, using program algorithm and corresponding 
results of appendix B1 and B2, we present the smoking effect and 
treatment dynamics as depicted by Fig. 5(a-f), below:

From Figure 5(a), we observe that with the introduction of bilinear 
control functions in the presence of screening method, potential 
smokers exhibit smooth accelerated incline linear curve with 
rejuvenated value range of  0.5 < Ps (t) < 76.045 cellsmm–3 for 
all tf  < 300 days.

a) Potential smokers under onset-treatment, Sg(2) > 0.178, η = 0.125

               

With the introduction of both screening and bilinear control 
functions, mild smokers depicted by Figure 5(b), exhibits sharp 
spontaneous decline of smoking infection. Moreso, diligent 
elimination of smoking effect by the mild subpopulation is seen 
after tf  < 90 days with diminish value range of  0.19 < Sm (t) > 
1.774 x 10–6 cellsmm–3.

b) Mild smokers under onset-treatment, Sg(2) > 0.178, δ = 0.025
  ,    
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Under induce bilinear control mechanism with screening method, 
chronic smokers compartment represented by Figure 5(c), exhibit 
enhance sharper decline of smoking infection. Near zero reduction 
of smoking effect is seem with value range of 0.182 < Sc (t) > 
2.128 x 10–6 cellsmm–3  for all tf  < 96 days. Thereafter, the curve 
exhbits infection saddle point at 96 < tf  < 90 days.

c) Chronic smokers under onset-treatment, Sg(2) > 0.178, 
μi = 0.00021

From Figure 5(e), we observe that subjecting temporal quitters of 
tobacco smokers to both designated bilinear controls and screening 
method lead to initialslight incline infection but exhibit rapid 
decline thereafter due to onset-treatment. Here, tobacco infection 
is reduce to near zero status with value range of 0.253 > Qt (t) > 
1.182 x 10–5 cellsmm–3  for all 10 < tf  <  140 days. Compartment 
curve attain saddle stability through 140 < tf  <  300 days.

e) Temporal quitters under onset-treatment, Sg(2) > 0.178,    =0.312 

Recovered compartment depicted by Figure 5(f), clearly exhibit 
initial inclination indicating massive recovery, which can be 
attributed to observatory medication in the first tf < 10 days. 
The decline thereafter indicates gradual discharge fo recovered 
population to interface with potential smokers after 10 < tf  <  140 
days for all value of 0.119 > Rp (t) > 5.735 x 10–6 cellsmm–3 and 
thereafter the curve exhibit saddle point  for all 140 < tf  <  300 days.

f) Recovered smokers under onset-treatment, Sg(2) > 0.178, 
τi = 0.085

Figure 5(a-f): Graphical Images for Computed Onset-
Treatment of Tobacco-Smoking Dynamics, Sg(2) > 0.178 < 1

Discussion of Results
Ignited by the limitations of system motivating model, the present 
investigation have been formulated as an extended 6-Dimisional 
deterministic mathematical dynamic model [8]. Investigating 
the interactions between designated subpopulations and the 
vector (tobacco-smoking effect), the system explored bilinear 
control functions (nicotine replacement therapy with non-nicotine 
medications for permanent quitters and non-nicotine medications 
with over-counter nicotine for temporal quitters) in the presence 
of screening mechanism. The main objective of research was 
the investigation of the methodological application of bilinear 
control functions in the presence of screening method, geared 
towards the eradication of adverse effect of tobacco smoking in 
an epidemic scenario. 

In the construction of the present model, a number of core 
predominant assumptions were considered. Among which 
include: only the screened are subjeceted to application of 
control functions and that rate of death due to infection are 
only appicablr to both temporal and permanent smokers and 
may vary. Model formulation and investigation of system well-
posedness explored the concept of fundamental theory of ordinary 
differential equations. Furthermore, analytic predictions of model 
constituted by system local and global behavior, was extensively 
conducted using classical theory of stability analysis inconjunction 
with second additive compound matrix and Lozinski measure . 
Remarkably, system analytic predictions were simplified to off-
treatment and onset treatment scenarios and not only were the 
system basic and effective tobacco-smoking generation numbers 
determined but correspondin numerical illustrations explicitly 
computed.it is aloso nited tha due to the complexity of system 
non-linear equations, model simulations explored highly in-built 
Runge-Kutta of order of precision 4 in a Mathcad surface.

Following numerical computations, results showed that for 
untreated smoking effect with mass action βi (   )≅ 7.743x10–3, 
the amount of concentrated smoking generation number required 
to contaminate a proportion of potential smokers of range 0.5 < 
Ps (t) < 46.334  cellsmm–3 is in domain of Sg(1) > 1.675 > 1 for all 
days. Under off-treatment scenario, Qp (t)< 33.137 cellmm–3 of 
the infected proportion are liable to die after tf  <  300 days due 
to non-quitting of smoking with no access to medications. This 
result is in confirmation with that of motivating model under off-
treatemnt, [8]. Recovery at this circumstance is near zero with 
value at Rp < 1.5 x 10–3 for all tf  <  300 days.

Impressively, with the introduction of designated bilinear controls 
at specificated state-space, under screening techniques, it was 
observed that not only did rate of infection βi (   )≅ 2.304x104, 
drastically reduced but smoking generation number equally 
declined to  a low value of Sg(2)≅ 0.178 < 1 . This is an insignificant 
infection rate, which give way to rejuvenation of potential smokers 
to some geometric inclined range of 0.5 < Ps (t) < 76.045 cellsmm–3  
for all tf  < 300 days. This overwhelming result not only out-class 
those of [8,12]., but most interestingly depicted a more indept 
outcome when compared with that from, where optimal control 
techniques was deeply applied [2].

(2) 0.178, 0.312gS ε ′≥ =
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Furthermore, following the induced bilinear controls, other 
compartments inclusive of Sm(t),Sc(t), Qt(t), and Qt(t) exhibited 
bear zero elimination of smoking infection with varying time 
range of 90 < tf  <140 days. More explicitly, is the fact that 
recovery compartment Rp(t) , which had been reduced to near 
zero, clearly indicated rapid proliferation of recovered to the 
potential subpopulation. Objectively, the inducement of bilinear 
control functions under enhance screening method, have presented 
a first kind analysis of smoking effect transmission and sequential 
aaplication of bilinear treatment dynamics.

Conclusion 
Triggered by the avalanche of consequential effect of tobacco-
smoking and the non-avaliability of  mathematical predictions that 
explicitly accounted for application of treatment functions, this 
present investigation accidiously attempted to profer an insight 
to the methodological application of bilinear control functions 
geared towards the eradication of the effect of tobacco-smoking 
the world-over. Essentially, the present investigation have been 
systematically designed to account for global stability indices of 
infection transmission and application of bilinear control fucntions 
for the consequebntial effect of tobacco-smoking epidemic.

In using fundamental theory of ordinary differential equations 
for model formulation, this research explored extensively, the 
application of classical theory of stability analysis in conjunction 
with second additive compound matrix induced by Lozinski 
measure lB for the determination of both system local and 
global indices of smoking transmission and treatment dynamics. 
Furthermore, system analytic predictiions were illustrated 
numerically at both off-treatment and onset-treatment scenarios. 
Results of numerical computstions clearly indicated largely 
asymptomatic spread of adverse effect of tobacco consumption 
at off-treatment scenario with smoking geberation number Sg(1) 
> 1.675. This outcome clearly definied why consequential effect 
of smoking are not dictated early enough for all tf  < 140 days. 
Moreso, the outcome in reality represent real-ife expectant of 
asymptotmatic stage of smoking effect. A result that can be 
attributed to human adaptive immune system. Collapse of immune 
system was thereafter observed following consistent smoking 
habit for all 140< tf  < 300 days of clinical investigation. A result 
that conformed with that of for infectious population without 
control programs [2]. 

Further simulations under bilinear controls with smoking generation 
number Sg(2) > 0.178, saw a linear exponential rejuvenation of 
potential smokers with rising value range of 0.5< Ps (t) < 76.045 
cellsmm–3 for all  tf  < 300 days. Active infectious population under 
bilinear control investigations indicated near complete eradication 
of smoking effect within time frame of 80< tf  < 140 days wth mild 
smokers getting rid of infection much more earlier tf  < 80 days. 
At tf  < 100 days, recovered population exhibited proliferation to 
potential compartment. This outcome was an improvement to those 
of with only screening approach and with induced social controls 

explored optimal control techniques [2,8]. Thus, to stem down the 
increasing adverse effect of tobacco-smoking, this present control 
techniques is highly recommended for immense implementation 
by both tobacco (cigratte) companies and governments of various 
countries the world-over [23-27].
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Appendix A1:	 Program algorithm for Fig. 4(a-f)
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Appendix A2:  Results for program algorithm A1

Appendix B
Appendix B1:	 Program algorithm for Fig. 5(a-f)
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Appendix B2:	 Results for program algorithm B2
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