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ABSTRACT

Background: The seeming insurmountable effect of tobacco-smoking, coupled with intense laxity by society towards the avalanche consequential effects
of tobacco-smoking consumption and the yet-to-be-available mathematical model for comprehensive treatment of multiple effects of tobacco-smoking,
necessitated this present investigation. The present research arguably presented an insight into the global stability indices of not just the impact of smoking
transmission but explicitly demonstrated the methodological application of designated bilinear control functions in the presence of screening techniques
for the eradication of consequential effects of smoking and tobacco consumption.

Methods: The model explored deterministic 6-subpopulations, formulated using first-order differential equations. System interactions was investigated
using bilinear control functions with system well-posedness established. Furthermore, system smoking generation number for both off- and onset-
treatment scenarios was determined. Analytic predictions for both local and global indices explored second additive compound matrix in conjunction
with Lozinski measure . Numerical simulations evolved Runge-Kutta of order of precision 4 in a Mathcad surface.

Results: Accompanying simulations indicated protracted initial asymptomatic saddle period of smoking infection for f, < 140 days under the off-treatment
scenario. Inducement of bilinear control functions under screening method yielded drastic reduction to near zero within the first £ < 80 days as vindicated
by the exponential rejuvenation of potential smokers.

Conclusion: Investigation concludes that eradication of consequential effects of tobacco-smoking is achievable provided both smokers, tobacco companies
and the governments implement concurrently, the application of designated bilinear control functions the world over. Immensely, the study exhibits mutual
benefits to the society and scientists in the field of Bio-mathematics and epidemiologists.
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Introduction

Tobacco consumption versa-vice cigarette smoking is known to
constitute a preventable yet major health risk the world-over. About
1.3 billion of the world population is known to be consuming
tobacco substance, yet t the adverse effect of chronic tobacco
consumption often lead to premature mortality with an estimated
annual death rate of 5 million (an average of 9%) people [1,2].
Transmission of the effect of smoking and tobacco consumption
is socio-environmental with human-to-human transmissibility

and having the environment as it reservoir. Zoonotic science
has considered smoking as the causative agent of a number of
non-communicable diseases of the form: chronic lung diseases,
asthma, obstructive pulmonary disease, stroke, diabetes, premature
heart attack, cancer, cardiovascular [1,3-5]. Moreso, death rate
emanating from cancers of the mouth, ling, stomach cancers,
kidney, pancreas, cervix and liver cancer are as a result of chronic
smoking [5].

As a socio-environmental component of the society, behavioral
smoking pattern spread through both close and distance social
links with trend of cluster among socially isolated groups, [6,7].
Overlooking the adverse effect of smoking, most persons smoke
for the sake of either pleasure, to regulate body weight or for
suppression of hunger along with sense of taste and smell [8].
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Apart from health organizations that could run direct adverts and
campaigns on the effect of smoking, one pertinent approach in the
investigation of the dynamics for the spread of smoking effects and
control interventions have been through the use of mathematical
modeling. For instance, the first simplest mathematical model in
1997, considered a 3-Dimensional state-space (potential smokers
P, smokers S and quitters Q) [9]. The behavioral attitude and
consequential effect of smoking by mild and chain smokers was
later studied [10]. Using the Brownian motion for the perturbation
of derived model equations, the stochastic study for smoking
model was investigated and its sufficient conditions for their
mean square established [11]. Accounting for saturated incidence
rate for a smoking model, the study on mathematical analysis
and optimal control of giving up smoking was conducted [2].
Recently, the application of fractional theory have been very useful
in studying smoking dynamics models. Example, the mathematical
assessment of the dynamics of tobacco smoking was investigated
using fractional theory [12]. The study explore Caputo operator
accounting for tobacco in the form of snuffing.

Remarkably, the vast adverse effect of tobacco consumptions often
manifest in the deteriorating health of many contagious diseases.
For instance, patience with COVID-19, who are smokers do have
high risk factor with rapid health deterioration than non-smokers.
More specifically, the consequential effect of tobacco-smking
can adversely accelerate the deteriorating health of patience
with HIV/AIDS and tritrophic rate of COVID-19 infections [13-
15]. Therefore, the main goal of this present investigation is
that of seeking for the methodological application of a bilinear
control functions (nicotine replacement therapy and non-nicotine
medication) under coherent screening method, geared towards
optimal recovery and reunion with the susceptible population.

The organizational structure of this paper are as follows: section 2,
is devoted to the material and methods. This section account for the
problem statement of the study and the derivation of system basic
model. The mathematical analysis for derived model is contained in
section 3. In section 4, we discuss the stability analysis in relation
to its local and global conditions. In section5, we present numerical
illustrations of our derived analytical predictions. Comparative
analysis of established results are explicitly presented in section
6. Finally, section 7, account for study incisive conclusion and
study recommendations. The entire work is anticipated to unveil
the insight to the methodological treatment of smoking effect
as an epidemic.

Materials and Methods

The materials and methods for this present proposed study is
constituted by a set of varying subpopulations having access
to tobacco reservoir (host-vector, and environment). The
consequential effect of smoking is investigated using a bilinear
control functions (nicotine replacement therapy - NRT and non-
nicotine medications — NNM). The fact behind this investigation
is unveil by the problem statement of the study, followed by
derived set of mathematical equations for the proposed model.
Method of mathematical analysis explores the fundamental theory
of differential equations, while the derivation of system basic
reproduction number explores the next generation matrix with
the incorporation of linearization method. We shall investigate the
local asymptotic stability using LaSalle’s invariant principle with
Routh Hurwitz criterion and the global stability conditions via the
Lozinskii measure /B with the incorporation of second additive
compound matrix. The aspect of the numerical simulations shall
explore Runge-Kutta of order of precision 4 in a Mathcad surface.

Problem Statement for a Tobacco Model

It is obvious that following the adverse effect of smoking of
tobacco, government and non-governmental agencies the world
over, are increasingly running all forms of campaigns and adverts
aimed at reducing the rate of smoking. Often embedded in those
adverts, is the consequential impact upon smoking of tobacco. The
study on the dynamical effect of smoking and its social impact
as well as control measures have severally been conducted using
mathematical modeling among other known health methodologies.
In this present study, we bring to bear a mathematical analysis
of a smoking model with social factor, [8]. In that model, a set
of 5-dimensioanl mathematical subpopulations in the form of:
non-smoking population P, light smokers S, chain smokers S,
temporal quit smokers Q and permanent quitters 0, were explored
for model formulation. For more details on the model, we capture
here, the schematic diagram as deduced by Figure 1 below:
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Figure 1: Schematic Diagram for Model (1), [8].

The mathematical equations is as depicted by Equation (1) below:
dP

a =bN— (B, + p,)PS, — uP

ds,

7 (B + B,)PS, +60, —aS,S, —(u+p)S,

ds.
dt

dl
Lo g1-2)5.-50,- 0

d
75’1 =¢eS.—60, — nQ,
t

= aS,S, ¢S, ~(u+ )8, (1)

with initial conditions P(0) > 0,5,(0) 2 0,S,(0) 20,0,(0) 20,0, >0

A critical review of the above model indicated that the incidence
rates (8, + f3,) was not derived. Rather, initial values were assigned
to them. Furthermore, no screening method applied to the infection
dynamics through the i compartments and moreso, the model
was devoid of any control functions. Therefore, in attempt to
incorporate the aforementioned lapses of model (1), the present
study sought to formulate a socio-epidemiological 6-Dimensional
mathematical model to be investigated using a bilinear control
functions in the presence of screening technique.

Derivation of System Mathematical Equations

Here, we attempt to overcome the aforementioned lapses of
model (1) with the incorporation of enhance state components,
screening method and the introduction of bilinear control
functions. Suppose the population understudy is segregated into
6-Dimensional subpopulation measured in cellsmm™ , then the
system compartment is constituted by potential smokers P, mild
smokers S, , chronic smokers S, permanent quitters O , temporal
quitters O, and recovered population R . The interactions between
these subpopulations and tobacco reservoir is investigated using
a bilinear control functions (nicotine replacement therapy —

J Mathe & Comp Appli, 2023

Volume 2(4): 2-16



Citation: Bassey Echeng Bassey, Igwe O Ewona, Adagba Odey Henry, Delphine Rexson Bassey (2023) Global Stability Indices of the Transmission and Bilinear
Control Functions for Tobacco Smoking Epidemic. Journal of Mathematical & Computer Applications. SRC/JMCA-138. DOI: doi.org/10.47363/JMCA/2023(2)191

nasal spray/lozenges and non-nicotine medication — bupropion/
varenicline) in the presence of a screening method denoted by
¢. Furthermore, our proposed model is built on the following
assumptions:

Assumptmn 1

1. Only temporal and permanent quitters undergo screening,
ie. 0,0 >0.

ii. Control functions (u,, v,) are only introduced to O, 0, upon
screening for all (u, v ) > 0.

iii. Only temporal and permanent quitters die due to smoking,

ie.u>0.

iv. Temporal quitters may revert to mild smoking, i.e. O, — S
forallQ <S .

v.  Only screened permanent quitters apply nicotine therapy,
7>0.

vi. Recovered reunion with the potential smoking population,
R <P.
P s

Thus, using assumption 1, the socio-epidemiological model
equations for the present study is derive as:

=b,+nR, ,B(N)P MuP.

ﬂ(N)P +060, -aS, —(u+u)S,

=asS, —(1-u)geS, —(1-v)(A=)pS, — (1 + )8,
! 2)

d
tp =(-u)geS, — (7, + ,U)Qp

Lo (=)=, ~ (5, + 6+ 100,

dR,
i =7,0,+7,0, -nR, - uR,

with initial values (P,
(u,,v,) =0 where

S,:8..0,,0,R,)>0 forall t = ,=0,

B(N)=Y Be(N) BNY>0  i=1,..4 3)

and having N=P +5,+S,+0,+0,+R,:N=5,+5,+0,+0, ¥V N<N

If (u,,v,)>0, then Equation (3) becomes
ﬁ(N)=(1—u1)(1—v1)[2,b’,-c,(ﬁ,-)} BN)>0i=1..4 (4

The socio-epidemiological implication of system (2) is explain
thus: from the first equation, we observe that the differential
outcome for potential smokers is constituted by natural birth rate
and recovery rate from smoking (5, +7®,)with depleting proportion
from incidence rate and natural death rate given by —(8.(¥)P +uP)
The second equation depicts mild smokers, which is sustained
by the incidence rate of smoking and the proportion that reverted
back to smoking after quitting temporally denote by -(5.(¥)E +50,)
The clearance rate here include the proportion that transit to
chronic smoking and the death rate due to either natural and/or
due to smoking presented by -[a8, +(«+)s,1 The third equation has
its source rate from mild smokers that transit to chronic smokers
aS,. Accounting for varying treatment, if chronic smokers are
subjected to screening method at the rate ¢, then the proportion
of chronic smokers that desired to quit smoking permanently is
presented by —(1—u,)geS, where ¢ is the rate at which permanent

quitters receive treatment. That is, the proportion that desired
to temporally quit smoking is denoted by —(1— v )(1-£)¢S .The
clearance rate for this compartment is given by —(u+u.)S, , which
denote natural death and death due to infection.

From the fourth equation, we observe that quitting smoking
permanently is a function of nicotine replacement therapy (1-u,)
(1-p,) i.e. (1-u,) ¢S . The inducement of control function could
lead to recovery rate “and having spatial natural death rate of 40,
Similarly, from the fifth equation, the proportion qulttlng smoklng
temporally determine by non-nicotine medication is given by —(1—
v)(1-£)¢S_and having depletive ratio of (z, + 5+ )@ Finally, sixth
equation describe the proportion that recovered from smoking.
Here, the source rate is given by 7,0, +7,0,. Those that recover
actually reunion with potential smoker at R, and having natural
clearance rate of — HR . Thus, with Equatlons (3) and (4) derived,
system (2) completely represent the mathematical dynamics of
the effect of global tobacco epidemic model with bilinear control
functions under enhanced screening technique. Figure 2, below,
gives the graphic image of system (2), while Table 2, depicts the
detail description for both the state-space and parameter variables
of Figure 2.

Figure 2: Graphic Image of P-2S-2Q-R Smoking Model with
Control Functions

Table 1: Description of State-space and Parameter Variables
for Model (2)

Description of State-space and Parameter Variables
State-space Parameter Variables
Symbols Description Symbols Description
P, Potential , Natural birth rate
smokers
S, Mild smokers | u Natural death rate
S, Chronic Incidence rates
smokers B u
0, Permanent i, Clearance rate due
quitters to smoking
0, Temporal o Intensity rate of
quitters smoking
R, Recovered @ Screening rate
from smoking
e Rate at which
screen Qp receive
o
Cigi=1,.4) Varying rate of
interactions within
state-space
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Rate at which
screen O, receive

Vi

(1-¢)

7,7, Recovery rates
from Qp and Q,

respectively

Nicotine
replacement
therapy; non-
nicotine
medication

n Recovered
becoming potential
smokers

o Temporal quitters
reverting to
smoking again

Mathematical Analysis for Derived Model

Since system (2) represent a set of living organisms, it is paramount
that we verify and prove for the following:

the existence and uniqueness of system solution, the positivity of
solution and the boundedness of solution within certain invariant
region denoted by .

Existence of Solution
Let Q: R — RS such that

1 (P0).S,(0.5.(0.0,(1),0,(t). R, () and G: R'— R® such that
Q1) - GQ) = (P (1).5,,(0).5:(1).0; (1.0, (1). R; (1))
Then, Q() = G(Q(1),0)) = Q, .

Definition 1: (Cauchy-Lipschitz condition)

In particular, Lipschitz condition is defined as: a function
f:la,b] > N is said to satisfy the Lipschitz condition if there
is a constant such that[/(x)- f(=)| < M|x-x| v x,x"e[a,b] where M is
the Lipschitz constant.

Theorem 1: (Existence and uniqueness)

The system (2) is continuous and satisfies Cauchy-Lipschitz

condition.

Proof: We explore existence and uniqueness results, [13]. Then,

we show from system (2), taking the first equation, while the rest

follow similar procedures. Now, let
P(r,S):%:bP +7R, = B(N)P, - P, ®))

Then, using Equation (4), the partial derivative of Equation (5)

becomes

U =—(1—u1)<1—v.){Zﬁ,c,m,)}—y

i=

(6)

This shows that the function P(z,S) and its partial derivative
ap(:,s) are defined and continuous at all point (¢,S). Similarly, the
as

right hand functions of other equations and their respective partial
derivatives satisfy these conditions. This imply that by existence
and uniqueness theorem, there exists a unique solution for P (7),
S (1), S(1), Qp(t), Q(t)and R (2) in some open intervals centred 7.
We then have to show that the solution satisfies the Lipschitz
condition. Now, using Equation (5), we see at once that

4 A
bp +77Rp _(l_ul)(l_vl);ﬁici(Ni)Ps _/"R
|P(t.S, 1)~ P(t.S, )| = Y
b, +nR, ~(1=1,)1-%)Y" Be,(N)P, - uP,

i=1

= ‘(—){(l —u)(1- vl)(z B, <N[>j * y}(am ~Po)

P,(l) _Ps,<2)|

s
i=l1

< {(l—ul)(l—vl)[z‘,ﬂiq(&-)}w}

This implies that |P(1.S,, )~ P(t.S, o)) < M

Ps,m _P.s,(2)|

4
where M = ((l —u)(1-v) (Z yoxe (N,.)J + ﬂ] is a Lipschitz

i=1
constant. In a similar procedure, we show that the remaining
variables satisfy Lipschitz condition. Therefore, there exists a
unique solution P (#), S, (¢), S (1), Qp(t), o[, R, (¢) forall > 0.

m

Positivity and Boundedness of Solutions
The following theorems justifies the positivity and boundedness
of the solutions of the system (2).

Theorem 2: (Positivity of solutions)
Suppose system (2) is bounded by the initial conditions

{P.(0).5,(0),5.(0).0,(0).0,(0).R,(0)} 20 € R’ Then, the
unique solution of Theorem 1, forms a set of solutions

{PS(I), S, (0,5.(1),0,1),0,(1),R, (l)} and is non-negative for
allt>0.

Proof: Invoking existing result for positivity of solutions, [14].

Then, we prove for the first equation of system (2) and then deduce
for the rest of the equations for all t > 0. That is,

dP

d; 2_[(1_ul)(l_vl)(Zﬂici(Ni)j+ﬂ]PS - (D

4
Suppose y =(1—-u,)1-v)) (Z B, (N,.)j + u , then Equation (7)

i=1

becomes

@y p (8)
dt }

Taking the integrating factor, we have
In|P|> [~ydt+C

This imply that
P2
> P "
Hence,
= -u-y )[i/zL-,<N,>+qut
P2 P(0)e >

where P_(0) represent the potential smoking population at # = 0.
Thus, by recursive argument, we verify for the rest of the equation
of system (2). Therefore, we see that any solution of system (2)
is non-negative i.e. {g (®),8,,(1),8.(1),0,1),0,(t), R, (t)} eR® and
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prove is completed.

Theorem 3: (Boundedness of solution)
All solutions of system (2) is bounded and positively invariant
in the region I1, , where

b
[, ={(P.5,.5.,0,,0,,R, ) e RS :0< (R (0).S,, (1),5.(1),0,(.0,(1), R, () <4 . (9)
)7

Proof: Here, we investigate the prove using existing result, [15].
Now, taking on system (2), the sum of the differentiation gives

dN

—=b, —(u+u)N .
a b (u+ 1)

If the population is free from tobacco smoking and its effect, then
#,= 0 and we have

—=b —uN
da 7 "
or
dN
—+uN<b -
dt " ’

This is a first order homogeneous differential inequality. Applying
the integrating factor 7 = o/* = o , we have
w dN(t)

e 7+/1N(l‘)ew < bpew 5

or

Lluvwe"]<b,e”

Integrating, we have
1t b it
N(l‘)el S—pe# +C,
U
where C, is the constant of integration. Now, simplifying, we have

b —t
N@t)sL+Cp ™ -
. Ce

Solving for C and taking initial condition for /=0, and then by
substituting the resulting value, we have

b, ( bp] »
N@t) <L+ N(0)——L | -
7 7

Therefore, taking the limit as t — co we have
b

LimN(@) <2 (10).

t—>w /J

Equation (10) shows that system (2) is biologically feasible in
the region [],. Therefore, the solution of system (2) with initial
conditions is bounded in the invariant region of Equation (9) for
all 7 [0,%). Hence, system (2) is well posed.

Equilibrium Points Analysis

The analytic nature of system (2) is concerned with the study
steady-space and their local stability, which of course is challenging
due to the complex non-linearities of derived model (2). Yet, it is
pertinent that we investigate the system multiple local asymptotic
stability as well as their global stability conditions.

Existence of System Steady States
Since we denoted the vectorial capacity of system (2) by [],,, then
from Equation (9), we have

HD :(PS,S,,,:SC:QP’QNR;;)

That is, system (2) can be written in the form:

dll
dt(t):f(l‘,HD,Z) (11)

where (¢, [1,, z) is the right side of the ODE of system (2) and z,
is the vector parameters as depicted by Table 2, then, we compute
as following:

i) Tobacco Smoking Free-Equilibrium (T-SFE)
At T-SFE, there is no infection, which implies no spreading of
smoking effectie. S =S = Qp: R =0. Therefore, the T-SFE for

system (2) denoted by E° is derive as: E° = (PS”,O,O,O, 0,0)

where from Equation (10), P, =% | i.e.
7

E’= b—pOOOOO
=7 00000, (12)

That is, T-SFE at no smoking effect is only a function of recruitment
rate with respect to natural death rate.

ii) Tobacco Smoking Endemic Equilibrium (T-SEE)

With the spreading of smoking effect, endemic state is bound to
occur. Then from system (2), for any arbitrary endemic equilibrium
denoted by E*, we have

E*:(PS*,SM*,S;,Q,,:Q;’RP*): 1

Such that
N =P +8, +8 +0, +0 +R -

Then, solving equations of system (2) step-wisely by using
Equation (11), we have from the first equation,
0=b, - B(N)P — uP, .
or
* bp

A

Taking on the second equation, we have

0=pB"(N)P" +80, —(a+u+p)S,

or
g  BME B

" (atprp) (atpru)
This implies that

S*:b_p(_ﬂi* J,
Toq\ B tu

where, ¢ = a+ ut+ u. . Thus, by recursive argument, each of the
remaining equations are computed to give the required results
for E* as:
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P = b,

B +u

G b_p( A ]
" G\ B +u

oo )
. &\ B +u
0,5 = b,aq; { B ] ’ (14)
04, \ B, +u
. bpaq5£ B J
o = b/M
09 \ B, +u
R * _ bpaql()[ *ﬁ[* j
! 9,95 \ B +u
where
q=a+tut+py, QZ:(1_”1)¢5+(1_V1)(1_5)¢+(,u+/ui)
g, =(1—u,)ge q, =(7,+1)
gs =(1-v)(1-&)p g, =(7, +11) .(15)
g, =(7,+7,) qs =+ 1)

gy =(7,+0+ 1) 10 =49,(4; +4,)

Clearly, if Equation (14) is substituted into Equation (11) at 5" =0,
we return to Equation (12), which define the existence of T-SFE.
Therefore, the endemic state for system (2) at which f" #0, as
depicted by Equation (14) satisfies Equation (13). Obviously,
these two indices £° and E* are important components for the
computation of system basic reproduction number denoted by R .

System Basic Reproduction Number, R

The spread of tobacco effect is in itself, a social adverse factor
and thus, a virus by all ramifications. That is, permanent smokers
among other forms, constitute reservoir of tobacco smoking
effect. Therefore, the intensity to have a clear flow of smoking
transmission pattern and its biological effect is defined by the basic
reproduction number R . For simplicity, the reproduction number
for smoking effect is also known as smoking generating number
Sy )1 e.R =S, . [8]. Then, we shall investigate S using existing
approach known as next generation matrix method [16].

From system (2), to account for the infectious state variables,
we let

X=(,.S,.0,.0).

Mathematically, S is define as: [17].

£(0)

-1
N _ N Ky e A

Ry = Sy = PEV )_[ij(E )| gj(E ) (16)

where the notations /7, and ¥, represent the matrices of new spread

in compartment / and the transfer terms at T-SFE into the i*

compartment, while £° is the T-SFE. Then, accounting for the

actual transmutable state-space from system (2), we have

K [BS, + Bc,S. + ﬁscsgp + B, O 1P +60,

Fo|Be 0
[_}73_ 0
F, 5

At T-SFE, using Equation (12), the linearization of F, gives

b, b, b, b,
ﬁlc] - ﬂzcz - ﬂ3cz - ﬂ4c41 —+6
u u u u
F=| 0 0 0 0 (17)
0 0 0 0
0 0 0 0

Now, computing for V;, we have

(a + /’l + lui )Sm
_| (=u)de + (=)A= )P+ (1 + 4)S,
(5 + 10,
(z, +0+ w)0,
or
qISm
_ 4,S. ,
i=1,.4 6]4Qp
450,

where ¢, ¢, q, and g, is defined from Equation (15). The
linearization of V, gives

g 0 0 0

v - 0 g 0 0 (18)
0 0 ¢ 0
0 0 0 ¢

Thus, by Equation (16), the T-smoking generation number, which
correspond to the spectral radius F,¥,”is computed as: [18,19].

B, Ber  Bies | Pic
(]) p(FV )_ ( 11 22+ 33+ 44
H 49 q, q, ‘B
or
s-t(30) w
where G . represent the reproduction numbers for the infectious

=1,..4 . . .
state-spajce. Clearly, Equation (19), depicts the system reproduction

number at off-treatment scenario (i.e. (u,, v,) = 0) with computed
value Ong(l): 7.293>1

If (u,, v,) > 0 represent treatment functions, then at (1-u,) (1-v))
control functions, Equation (19) becomes

_ C, C. C C.
Sg(z) = p(EV, ):(p[ﬂl 1 ﬂz 2 /83 3 ﬂ4 4]
H A 4 q, q, ‘B
or

g(z) (ZG j

where ¢ = (1-u,) (1-v,). Equation (20) is known as the system
effective smoking generation number with value computed as
Sy =0.178 <1.

(20)

Analysis of Stability Indices for T-SFE and T-SEE

For simplicity, we shall consider the system stability analysis in
terms of its local asymptotes for both T-SFE and T-SEE, using the
critical role of S with the incorporation of the LaSalle’s invariant
principle. The gfobal asymptotes aspect shall be investigated
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using second additive compound matrix with incorporation of
Lozinskii measure /B.

Asymptotic Local Stability in Terms of Sg 0

Reproduction number S is an important tool that determine
the rate of transmission of) any infectious disease both at off and
onset-treatment scenarios. The following theorems investigates
the cases for local asymptotic T-SFE and local asymptotic T-SEE.

Tobacco — Smoking Free Equilibrium (T-SFE)

At disease free-state, then Sg 0= 1, Awhich implies that no
transmission of smoking effect 1.e. B¢,(N)=0

The following theorem holds.

Theorem 4
System (2) is locally asymptotically stable at T-SFE (£°) if S,0<L
otherwise, unstable if S > L

Proof: We linearize system (2) by using existing result for the
local stability analysis, [17].

LetJ denote the Jacobian matrix for system (2). Then, J at T-SFE
is derive as:

—H B B, =By =B n
0 —(q,+pc) 0 Bes Piey+6 0
ey om0 ey
95 e 0 0
0 0 4qs 0 —4q 0
0 0 0 7, 7, —qs

Here, the characteristic equation for Equation (21) is given by
det[J , —AI]=0 (22)

(E%)

Taking the eigenvalues of Equation (21) with respect to Equation
(22), gives: —u, ~(q,+f,¢,), ~4, —q,, —q,and —q,. This shows that all
the eigenvalues are all negative and having real parts. Therefore,
the localization of infection for system (2) at T-SFE is locally
asymptotically stable for all Seo) <1 and unstable otherwise.

Tobacco — Smoking Endemic Equilibrium (T-SEE)

Clearly, at fc, (N) # 0 implies that S, > 1, which will ignite
introduction of control functions i.e. (u,, v,) > 0, such that (1-u,) >
0 denotes that rate at which Qp(t) administer nicotine replacement
therapy and (1-v)) > O represent the intake of non-nicotine
medications by Qp(t) Then, at S , > 1, system (2) is bound to
exhibit disease endemicity. Thus the followmg theorem justify
the existence of T-SEE.

.\ . b A b . b
—u-BN)  —(BWN)+Be) BN+ Bie,) = ~(B(N)+Bie)
H H H
. . b A b
BN g+ (BN + L)) (BIN)-Bye)
J .= H H
o 0 a 4,
0 0 4
0 0 —qs
0 0 0

The auxiliary equation for Equation (26) takes the form:
A+ )A+0+)A+d+pu+p) A+, +7,+ wai+a, =0

where a, =[x,

. b
(B(N)= Bye;) =
H

Theorem 5
IfS e , then for system (2), there exists locally asymptotic
stablhty at T SEE (E"), otherwise unstable.

Proof We shall investigate the proof of this theorem in two folds:
Method 1 Invoking existing result for local asymptotic stability
of endemic equilibrium [20].

From system (2), the differential sum is derive as:

dN

;:bp _‘LlN_ﬂi(Sm +SL)

or

dN —

——=b,—uN-u(N)>

dt

where N = S, + S, and z,is the death rate due to tobacco smoking.
But ‘2—1;[ =0, then we have
0=b, —uN - 4 (N) (23)
or

b, ~ N = (N) =0,

where N is the endemic population. Solving for N*, we have
bp —H (]\7)
Y7

N = (24)

which corresponds to the fact that at equilibrium, v* = b if
u

p=0.1f '+ 0, then there exists endemic infection and Equation
(24) can be rewritten in terms of S 1-€

B 1+B Q=S ,)=0
or

*_ Sew 1
ﬂi - Q 5
where ¢ is disease constant derive from Equation (15). Equation
(25) holds provided Sg(0)> 1. Hence prove completed.

(25)

Method 2 By adopting the linearization method, we invoking
existing result by Routh Hurwitz, [21].

From system (2), the linearization at T-SEE (E"), yield the

following Jacobian matrix J,, a

N b
_(ﬁx (N) + ﬁ4c4)l n
Y7

N b
—[5+(ﬂi(N)+ﬁ4c4);p] 0

0 0 0

-4 0 0 (26)
0 7(q9 + qs) 0
7 7, —(u+m)

. . b
—Xp]=—~(u=B(N)=(=¢, +(ﬁ,-(N)+ﬁIC]);p) and
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N N b N b N
a, = {(xnxzz)_(xuxz])} = {(_/u+ﬂi(N))(_(q1 +(ﬂ, (N) +ﬂlc1)7p_(_ﬂi (N)+ﬂ1c|)7p(_ﬂi (N))}

Then, using the Routh Hurwitz criterion, the equilibrium state £” is asymptotically stable provided a,, a, >0. Hence, for Sg(0)> 1

system (2) is locally asymptotically stable.

Remark 1
i. Theorem 4, satisfies the existence of T-FEE (£°) at S0 <1

ii. Theorem 5, validates the existence of T-SEE (E") at Sg(0)> 1.

Asymptotic Global Stability Analysis

Here, we adopt the second additive compound matrix approach
with the incorporation of Lozinskii measure /B to investigate the
existence of system asymptotic global stability of our model. The
following lemma and theorem holds:

Lemma 1 1f % ={F(x)\F:D— %"} be an endemic equilibrium of
the form x and there is a compact absorbing set, then this system
is globally asymptotically stable around that equilibrium provided
there exists a function D(x) and a Lozinskii measure /, such that

Limsupsup —_[I(B)dt 0,

where [ is the Lozinskii measure, B , is the field (or integrand)
and D, the compact set.

Theorem 6
If Sg o> 1 then, the smoking model (2) is globally asymptotically
stabie at endemic equilibrium E”.

Proof
Let J be the Jacobian matrix and J" be the second additive
compound matrix contained in the first three equations of system
(2), since these equations are actual targets of endemic infection.
Then,

_ ) ) b ) .
—H=pB,(N) —(ﬁ'i(N)Jrﬁ]Cl)f _(ﬂi(N)_._ﬂlcz);p
N N b . b
=l B BB (B | @7)
0 a -4,
Now, if
a, tay, ay; —a;
‘]‘2‘ = 9 a, t+as; a, : (28)
—ds ay, Ay, +ay
Then, from Equation (28), Equation (27) becomes
R b, N b,
h1 (,Bi(N)+ﬂ1C1)_ (ﬂi(N)+ﬂ2C2)_
u u
A b
T =a hy ~(B(N)+ B, (29)
7
0 ~B,(N) h,

R N b
where h =—pu—B(N)—q, —(ﬁi(N)JrﬂlCl)f

o n b
hy=~u=B,(N)=4, and h, =—<q1+</z(zv)+ﬂlc,>;”)—qz.

Using Lemma 1, we let the function F(x), be defined by

P P P
F(x)=(P,S,S,) = diag{—,—,— >
=25, - - e

s S S
which, implies that F™'(x) = diag { =2 ,~2,—2 ¢ .
P ) “’g{a P P}

Taking the derivative with respect to time, we have

(30)

P PS P PS P PS
F'x:dia _m_Sm’m_.s' m’m_Sm .
) g{P sSSP SR s;}

s s

Now, the product of inverse and derivative of the function F(x),
gives

P P P
P :dmg{i_s_m,_m_s_m,i_&}

and

FUPF =P
Thus, we can take

B=FF"'+FJF". €10
In matrix form, LHS of Equation (31), is given by
B — [Bll BIZJ ,

BZI BZZ

Ijm Sm Y bp Y bp
s B = BN+ Bie) = (B (N)+ Brey) -
7] H

where B, =

K m

N b
hz i N 1%1 -
B, = (a.0) and B, = (B.( )+ﬂ0)ﬂ
~B.(V) 2
Let (x,, x,, x,) be a vector in R*and its norm ||| defined by

respect to the norms. Then, from existing results, we have, [22].
I(B) <sup{f,. fo} =sup {1(B,)) +(B)]-1(Bx) +[(B,)]}
where f, = I(B,)+[I(B;)

XX, = maX{Hxl BB x3H}. Let be the Lozinskii measure with

.V i=1,2,i# j. This implies that

S ={1B )+ B} £, ={1(By)+|I(B|} >

where I(B”)=%—§—’”—h, I(By)=0 ,I(By)=at ,

s m

P, PS,
I(Bzz):maX[F:_S _hzs;_i_h_?].

m s

This implies that

P S
I(Bzz):ﬁ_sm —hy—hy and H1(321)H =a

K m

Therefore, f; and f, becomes

P S
—s__m_} s =S _m_ph.
1T s T hEp g

K m s m
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If , :=[h,,h], then

P
fis o —h=2h

P (32)
fosg=2hh

s

which implies that /(B) < {% —2h, —minhl — ¢ — ﬂ,} .

s

Hence, I[(B)< PP, —2h

Now, integrating the Lozinskii measure /B with respect to ¢t €[0,¢]
and taking limit as  — oo, we obtain

t
Limsup sup%J‘l(B)dt <-2h<0. (33)
t—w
0
Equation (33) can be written in the form
(34)

t
§ = Limsup supl [uB)ds <0
t—o0 t v

Thus, the system containing the first three equations of system (2)
is globally asymptotically stable around the interior equilibrium

(P.5,.5.) -

Now, from the last three equations of system (2), we have

dO
y == (-u)geS, - (1, + )0,
t
do,
7=(1—v1)(1—6)¢Sc —(n,+6+ )0, - (35)
dR, R iR
7_71QP+T2Qt_77 p_:u P

Taking limits of Equation (35), we get

©Q, _ 1 S

7_( —u)peS, —(z, +,u)Qp

do, .

7 =(1-v)A-8)gS, —(r, +0 + 1)Q, . (36)
7 = T,Qp +7,0, —77Rp —,uRp

Solving Equation (36), and using the initial conditions Qp 0), 0,
(0), Rp (0) for large time 7 i.e. t >, 0, >0, 0, >0 andR >R,
which is sufficient to prove that the endemic equilibrium point £*
is globally asymptotically stable.

Numerical Computations

Here, we explore classical numerical simulation to verify system
derived analytical predictions of sections 2-4, noting that analytic
computations are invariably imperative due to complexity of
system non-linear equations. In the course of our investigation,
two indices have been paramount, which include: the system force
of infection f, () and the system smoking reproduction numbers
S (S ..,S ). Notably, smoking generation numbers (S .S )
20) = \g(1)” Vg2) - . L a1 )
are Tunctions of system mass action S, (§ ), intensity rate of
smoking o and screening rate ¢. Therefore, we this important
component to numerically illustrate its inclusion in present study.

Next, we shall simulate the system basic model (2) at off-treatment
scenario, which is anticipated to induce the contributive role of
S . Finally, with the introduction of bilinear control functions to
endemic smoking epidemic, we shall simulate derived model for
treatment on-set scenario at S, . The entire simulations explore
in-built rkfixed Runge-Kutta ott order of precision 4 in a Mathcad
surface in relation to established data as in Table 2.

Table 2: State-space and Parameter Variables with Initial Values for Model (2)

State-space Parameter variables
Symbols Initial values Units References Symbols Initial values Units References
P 0.5 cellsmm™ Estimated b, 0.25 [22,23]
S, 0.19 u 0.014 [2]
S, 0.18 ,6’1_(1,:]"”4] 0.004, [21]
0.0012,
0.0029,
0.005
0, 0.17 A, 0.00021 [8,16]
0, 0.16 o 0.45 [8,16]
RP 0.1 ¢ 0.5 Time ! UCTH
€ 0.628 Estimated
Ci(i=1,.4) 0.5,0.4,0.3,0.2 Estimated
(1-¢) 0.312 Estimated
1,1, [0,1] [16,20,24]
n [0,1] UCTH
0 0.025 [5]
u.v, (u,v,) €[0,1] UCTH
Note: UCTH — University of Calabar Teaching Hospital
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Simulations of System Generation Numbers, Sg(l) , Sg

. - . 2) . . .
In the analytical predictions of this study, we observed ti1at transmission rate and effect of control functions is further ascertained by

the numerical computation of the model smoking generation numbers S, S

- Figure 3(a-b) below, depict the observed simulations.

A 600, T T
— u =0,v,=0
b =035 a=045

0 1 1
0 100 200
t

a3

a) Smoking generation number for tobacco smoking
smoking under off-treatment with ;> 0, ;= 0.00021

g(1)” “e2
v 60 . .
(=]
!'! u =0,v,=0
W a0k b, =0.5,0=045 i
n;,:
201 -
0 L L
0 100 200 300
r-fﬂ:\’r
a) Smoking generation number for tobacco under
onset-treatment with £, > 0, 1,= 0.00021

Figure 3 (a-b): Graphical images of smoking generation numbers for off/onset — treatments of tobacco smoking, R, , Ry,

From Figure 3(a), it is observed that spread of tobacco-smoking
incidence rate is portray by smooth rapid incline linear curve
indicating geometric overture of adverse spread of smoking
infection under off-treatment scenario. That is, smoking generation
number is valid in the range 1.675 < Sg(l)g 502.527 for all 1, < 300
days. With introduction of bilinear control functions, Figure 3(a),
exhibit some smooth non-rapid linear curve portraying drastic
reduction in the spread of smoking effect with value range of
0.178 <S , <53.254

for all tfﬁ 300 days.

Numerical Simulations of System Model Under Off-Treatment,
(u, =0,v,=0)

Here, we explicitly implement the vital input of system basic
smoking generation number S, | as demonstrated by the simulation
of system basic model at offitreatment scenario i.c. (u,v,)=0,
B, >0. Using computed algorithm and corresponding results of
appendix 41 and 42, we present the smoking dynamics as depicted
by Figure 4(a-f), below:

E 50 . 1
2 40F

E
o 30r
1}
s hy 20F

(w.v) =05 =035,
a=045 4 =0.00021

10
0 1 1
0 100 200 300
liose

From Figure 4(a), we observe that potential smoking population
exhibit initial steady smooth incline population, which depicts
asymptotic infection stage under off-treatment scenario with
value of 0.5 < P () < 46.334 cellsmm™ for all ¢ < 210 days.
Furthermore, the curve exhibits convex-like declination, indicating
the consequential effect of smoking with decline value of 46.334>
P (£) > 23 cellsmm™ for all 210 < f, < 300 days.

a) Potential smokers under off-treatment, Sg(l) >1.675

% . |
4_ ":"[|=1".:|'=ﬂ:b: =-|:|_5:
j =043, 4, =000021
= 3r
[}
w2 -
I _
o= L
0 100 200 300
fd:.u

Figure 4(b), which depicts the subpopulation of mild smokers
exhibit initial asymptotic saddle point, indicating insignificant mild
spread of smoking infection at the early stage of smoking with
value range of 0.018 <S§ (#)<0.5 cellsmm for all t< 200days.
The curve thereafter exhibits incline symptomatic infection rate
with value range of 0.5 < S (£)< 4.193 cellsmm for all 200 <
1, < 300 days.

b) Mild smokers under off-treatment, Sg(l)z 1.675
£ 3 . .
4 (%) =0,b, =035,
= :
2"‘ 2 =043, u,=0.00021
=
[]
v’ 1+ ]
b= L |
0 100 200 300
s

Under off-treatment control functions, Figure 4(c) exhibit similar
undulating linear asymptotic saddle-point like curve as in Figure
4(b). Here, asymptotic initial infection rate lies in the interval
0.012 S (#) < 0.018 cellsmm for all 1,<200 days. A variation of
the infection flow shows symptomatic incline infection rate with
value at 0.018 <§ (¢) <2.687 cellsmm™3 for all 200 < 1< 300 days.

¢) Chronic smokers under off-treatment, Sg(1>> 1.675,
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E 40 T T
2 (w,v) =05 =035,
2 30r a=045, 4, = 0.00021
pa
n 20
.
1or
G' 1
0 100 200 300
e

In the absence of control functions, Figure 4(d) depicts the
proportion of permanent quitters of tobacco smoking. The
population exhibit similar asymptotic saddle point at 0.012< 0,
(1) £ 0.17 cellsmm™ for all < 120 days. Thereafter, the effect
of lack of control functions is vindicated by the concave-like
inclination of infection rate with value range of 0.17 < 0,0 =<
33.137 cellsmm™ for all 120<1,< 300 days.

d) Permanent quitters under off-treatment ,

F 30 . .
P (u,v) =0, =03,
3 20- o =0.45, 4, = 0.00021
=
ll‘
i 10
L
00 100

Figure 4(e) exhibit similar diminish charactisitcs of Figure 4(d),
which portrait early asymptotic saddle infection rate 0.012< Q, (1)
<0.142 cellsmm™ for all ¢, < 140 days. With zero control functions,
the subpopulation exhibits gradual convex-like spread of smoking
infection with value range of 0.142 < Q (1) < 21.512 cellsmm™
for all 140 < 1< 300 days.

> 1.675,

¢) Temporal quitters under off-treatment, S >

E ool : .

2 0.08 (.v,)=0,b, =05,
2 @ =0.45, 4, = 0.00021
S 0.06

" 0.04
0.02f
0

From Figure 4(f), which represent the recovery population, we
observe rapid decline, following the non-availbility of any control
functions. Here, the initial population of R (¢) < 0.1cellsmm,
decay with concave-like linear curve of 0. { <R (1) < 1.5x10" -
cellsmm™ for all ¢, <300 days.

f) Recovered smokers under onset-treatment, ngZ 1.675,

Figure 4(a-f): Graphical images for computed off-treatment of
tobacco-smoking dynamics S,y=1.675>1

Numerical Simulations of System Endemic Effect Under Bilinear
Controls (u>0, v >0)

In this subsection, we compute numerically, derive theoretical
endemic indices to further uncover derived globall stability
conditions following the application of designated bilinear control
functions (u,>0, v >0) , noting that at this poin smoking generation
index as computed is Sg 2= 0.176 <1 and &' = (1-¢), 7,= (r,+ 1,)
respectvely. Thus, using program algorithm and correspondlng
results of appendix B1 and B2, we present the smoking effect and
treatment dynamics as depicted by Fig. 5(a-f), below:

80

60.—

P =0.5cellz | nond

200 300
t

From Figure 5(a), we observe that with the introduction of bilinear
control functions in the presence of screening method, potential
smokers exhibit smooth accelerated incline linear curve with
rejuvenated value range of 0.5 < P (f) < 76.045 cellsmm for
all 1,< 300 days.

a) Potential smokers under onset-treatment, S

“E 02 T T

2,2 0.178,7=0.125

ﬁ 0.15F n
=
"“ooar N
u
0.05r n
0 k— | |
0 100 200 300
t.fm

With the introduction of both screening and bilinear control
functions, mild smokers depicted by Figure 5(b), exhibits sharp
spontaneous decline of smoking infection. Moreso, diligent
elimination of smoking effect by the mild subpopulation is seen
after £, < 90 days with diminish value range of 0.19 <§ (¢) >
1.774'x 10°° cellsmm™.

b) Mild smokers under onset-treatment, Sg(z)z 0.178, 0 =0.025

>
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Under induce bilinear control mechanism with screening method,
chronic smokers compartment represented by Figure 5(c), exhibit
enhance sharper decline of smoking infection. Near zero reduction
of smoking effect is seem with value range of 0.182 < S (£) >
2.128 x 1076 cellsmm™ for all . < 96 days. Thereafter, the curve
exhbits infection saddle point at 96 < 1,90 days.

¢) Chronic smokers under onset-treatment, Sg(z)z 0.178,

1, = 0.00021

E 03 . T
4 (%) >0,§=035
W
02 .
[=1
n
O ot -
0 L L
0 100 200 300
t

From Figure 5(e), we observe that subjecting temporal quitters of
tobacco smokers to both designated bilinear controls and screening
method lead to initialslight incline infection but exhibit rapid
decline thereafter due to onset-treatment. Here, tobacco infection
is reduce to near zero status with value range of 0.253 > Q (1) >
1.182 x 107 cellsmm™ for all 10 < 1,< 140 days. Compartment
curve attain saddle stability through 140 <7, < 300 days.

¢) Temporal quitters under onset-treatment, Sy=0.1 78,6'=0.312

(2)—
PE 0.15 T T

3 (@,v) >0, =0.5
= 0i1f 1
L}
&:h -

0.05 N

0 \ 1
0 100 200 300
I,

Recovered compartment depicted by Figure 5(f), clearly exhibit
initial inclination indicating massive recovery, which can be
attributed to observatory medication in the first z, < 10 days.
The decline thereafter indicates gradual discharge fo recovered
population to interface with potential smokers after 10 < S 140
days for all value of 0.119 > R (¢) > 5.735 x 107 cellsmm™ and
thereafter the curve exhibit saddfe point forall 140 <7 < 300 days.

f) Recovered smokers under onset-treatment, Sg(z)Z 0.178,
7.=0.085

Figure S5(a-f): Graphical Images for Computed Onset-
Treatment of Tobacco-Smoking Dynamics, S 0= 0178 <1
Discussion of Results

Ignited by the limitations of system motivating model, the present
investigation have been formulated as an extended 6-Dimisional
deterministic mathematical dynamic model [8]. Investigating
the interactions between designated subpopulations and the
vector (tobacco-smoking effect), the system explored bilinear
control functions (nicotine replacement therapy with non-nicotine
medications for permanent quitters and non-nicotine medications
with over-counter nicotine for temporal quitters) in the presence
of screening mechanism. The main objective of research was
the investigation of the methodological application of bilinear
control functions in the presence of screening method, geared
towards the eradication of adverse effect of tobacco smoking in
an epidemic scenario.

In the construction of the present model, a number of core
predominant assumptions were considered. Among which
include: only the screened are subjeceted to application of
control functions and that rate of death due to infection are
only appicablr to both temporal and permanent smokers and
may vary. Model formulation and investigation of system well-
posedness explored the concept of fundamental theory of ordinary
differential equations. Furthermore, analytic predictions of model
constituted by system local and global behavior, was extensively
conducted using classical theory of stability analysis inconjunction
with second additive compound matrix and Lozinski measure .
Remarkably, system analytic predictions were simplified to off-
treatment and onset treatment scenarios and not only were the
system basic and effective tobacco-smoking generation numbers
determined but correspondin numerical illustrations explicitly
computed.it is aloso nited tha due to the complexity of system
non-linear equations, model simulations explored highly in-built
Runge-Kutta of order of precision 4 in a Mathcad surface.

Following numerical computations, results showed that for
untreated smoking effect with mass action ,b’l_(}'\“-')z 7.743x1073,
the amount of concentrated smoking generation number required
to contaminate a proportion of potential smokers of range 0.5 <
P () <46.334 cellsmm™is in domain of S,1,= 1.675 > 1 for all
days. Under off-treatment scenario, 0, (1)< 33.137 cellmm™ of
the infected proportion are liable to die after 7. < 300 days due
to non-quitting of smoking with no access to medications. This
result is in confirmation with that of motivating model under off-
treatemnt, [8]. Recovery at this circumstance is near zero with
value at Rp <1.5x 107 forall 1< 300 days.

Impressively, with the introduction of designated bilinear controls
at specificated state-space, under screening techniques, it was
observed that not only did rate of infection g, (W)= 2.304x10%,
drastically reduced but smoking generation number equally
declined to alow value of S = 0.178 <1 . This is an insignificant
infection rate, which give way to rejuvenation of potential smokers
to some geometric inclined range of 0.5 < P (£) <76.045 cellsmm™
for all #, <300 days. This overwhelming result not only out-class
those of [8,12]., but most interestingly depicted a more indept
outcome when compared with that from, where optimal control
techniques was deeply applied [2].
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Furthermore, following the induced bilinear controls, other
compartments inclusive of S (¢),5 (¢), O (%), and Q(¢) exhibited
bear zero elimination of smoking infection with varying time
range of 90 < 1, <140 days. More explicitly, is the fact that
recovery compartment Rp(t) , which had been reduced to near
zero, clearly indicated rapid proliferation of recovered to the
potential subpopulation. Objectively, the inducement of bilinear
control functions under enhance screening method, have presented
a first kind analysis of smoking effect transmission and sequential
aaplication of bilinear treatment dynamics.

Conclusion

Triggered by the avalanche of consequential effect of tobacco-
smoking and the non-avaliability of mathematical predictions that
explicitly accounted for application of treatment functions, this
present investigation accidiously attempted to profer an insight
to the methodological application of bilinear control functions
geared towards the eradication of the effect of tobacco-smoking
the world-over. Essentially, the present investigation have been
systematically designed to account for global stability indices of
infection transmission and application of bilinear control fucntions
for the consequebntial effect of tobacco-smoking epidemic.

In using fundamental theory of ordinary differential equations
for model formulation, this research explored extensively, the
application of classical theory of stability analysis in conjunction
with second additive compound matrix induced by Lozinski
measure /B for the determination of both system local and
global indices of smoking transmission and treatment dynamics.
Furthermore, system analytic predictiions were illustrated
numerically at both off-treatment and onset-treatment scenarios.
Results of numerical computstions clearly indicated largely
asymptomatic spread of adverse effect of tobacco consumption
at off-treatment scenario with smoking geberation number S |
> 1.675. This outcome clearly definied why consequential effect
of smoking are not dictated early enough for all 7 < 140 days.
Moreso, the outcome in reality represent real-ife expectant of
asymptotmatic stage of smoking effect. A result that can be
attributed to human adaptive immune system. Collapse of immune
system was thereafter observed following consistent smoking
habit for all 140< ¢, <300 days of clinical investigation. A result
that conformed with that of for infectious population without
control programs [2].

Further simulations under bilinear controls with smoking generation
number S = 0-178, saw a linear exponential rejuvenation of
potential smokers w1th rising value range of 0.5< P (1) <76.045
cellsmm™ for all 1,< 300 days. Active infectious populatlon under
bilinear control investigations indicated near complete eradication
of smoking effect within time frame of 80<# < 140 days wth mild
smokers getting rid of infection much more earlier ¢, < 80 days.

Atz <100 days, recovered population exhibited proliferation to
potentlal compartment. This outcome was an improvement to those
of with only screening approach and with induced social controls

explored optimal control techniques [2,8]. Thus, to stem down the
increasing adverse effect of tobacco-smoking, this present control
techniques is highly recommended for immense implementation
by both tobacco (cigratte) companies and governments of various
countries the world-over [23-27].
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values as cited accordingly.
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Appendix A

Appendix Al:  Program algorithm for Fig. 4(a-f)

ul :=0.( vl :=0.(
H=(05 019 0.18 0.17 0.16 [Il_l)T

F(t,H) = |Bi « (1 —uD)-(1 —vl)-(ﬁl-c]-H2+ P2-c2H, + B3-c3H, + B4-c4-H5]
F) ¢ bp + nHy - (ﬁi-HlJ-p-Hl

F, « (ﬁi-Hl] + [5-1-[5] - (cx-]-[z] - (n+ W)H,

F, < (ocHz) {(1 7u1}-¢-s-H3—| {(1 —v1)-(1 - s)-H3'| —(u+ W) H,
Fy < (1-ul)-¢ee-Hy - (x1 + p)-H,

F, e((] —v1)-(1 — E)-H3—| — (2 + 8+ uyH,

Fé ‘—TI'H4+T2'H5—T1'H5 —p-Hs

F

J Mathe & Comp Appli, 2023

Volume 2(4): 13-16



Citation: Bassey Echeng Bassey, Igwe O Ewona, Adagba Odey Henry, Delphine Rexson Bassey (2023) Global Stability Indices of the Transmission and Bilinear
Control Functions for Tobacco Smoking Epidemic. Journal of Mathematical & Computer Applications. SRC/JMCA-138. DOI: doi.org/10.47363/JMCA/2023(2)191

Appendix A2: Results for program algorithm Al

1 2 3 4 5 ] 7
1 0 0.5 0.19 0.18 0.17 0.16 0.1
2 0.3 0.575 0.167 0.168 0.186 0.177 0.1
3 0.6 0.65 0.146 0.155 0.2 0.193 0.099
4 0.9 0.725 0.129 0.142 0.213 0.207 0.099
5 1.2 0.8 0.114 0.13 0.225 0.22 0.098
6 1.5 0.875 0.101 0.118 0.236 0.231 0.098
7 1.8 0.95 0.089 0.107 0.245 0.241 0.098
T = rkfixed (H.0.T.n.F) =| g 21 1.025 0.08 0.097 0.254 0.25 0.097
9 2.4 1.1 0.071 0.088 0.262 0.257 0.097
10 2.7 1.175 0.064 0.08 0.268 0.263 0.096
11 3 1.25 0.058 0.072 0.274 0.269 0.096
12 3.3 1.325 0.052 0.065 0.28 0.273 0.095
13 3.6 1.4 0.048 0.059 0.284 0.277 0.095
14 3.9 1.475 0.044 0.053 0.288 0.28 0.095
15 4.2 1.55 0.04 0.048 0.292 0.282 0.094
16 4.5 1.625 0.037 0.044 0.295 0.284

Appendix B
Appendix Bl:  Program algorithm for Fig. 5(a-f)

ul :=0.5: vl :=0.3¢

H =05 0.19 0.18 0.17 0.16 D.I)T

F(t,l) = |[B e (1 —ul)- (1—v1)-(Bl-cl-H, +p2-c2-H, +B3-c3-H, + P4 c4- H]|
F, <—bp+q-H6—[_5i.Hl_'].u.H1

Fy « (B - Hy) + (8- Hy) (0 Hy) - (u + ) - B

F, <—[:_u. Hz..] _[(1 -—ul)-¢ -¢ 'Hﬂ —[(1 -v1)-(1-¢g)- Hﬂ — (u + i) - Hy
Fpe(l-ul)-¢-2-Hy—(l +p)-H,

P5<—((1—’~'1)-(1—E)-H3—‘—(12 +8+p) - Hy

F (—II-H4+ﬂ-H5—n-H6—u-H6
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Appendix B2:  Results for program algorithm B2
1l 3 4 5
il 0 0.5 0.19 0.18 0.17
2 0.3 0.579 0.166 0.182 0.174
3 0.6 0.658 0.146 0.182 0.179
4 0.9 0.736 0.128 0.179 0.183
5 1.2 0.815 0.113 0.174 0.187
6 1.5 0.894 0.1 0.168 0.19
7 1.8 0.973 0.088 0.161 0.194
= rkfixed(H.0.T.n.F) =| g 2.1 1.052 0.078 0.154 0.196

9 2.4 1.131 0.07 0.146 0.199
10 2.7 1.209 0.062 0.138 0.201
11 3 1.288 0.056 0.13 0.202
12 3.3 1.367 0.05 0.122 0.204
13 3.6 1.446 0.046 0.115 0.204
14 3.9 1.526 0.041 0.108 0.205
15 4.2 1.605 0.038 0.101 0.205
16 4.5 1.684 0.035 0.094
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