Journal of Mathematical &
Computer Applications

Review Article

ISSN:2754-6705

AN
&(@&SCIENTIFIC

RS Research and Community

v
Open @ Access

Leveraging AWS SNS/SQS for Real-Time Cache Synchronization

in Distributed Systems

Ananth Majumdar

USA

ABSTRACT

across distributed caches.

In distributed systems, maintaining consistency across multiple caches presents a significant challenge, often leading to data inconsistencies and degraded
application performance. This paper proposes and evaluates a novel approach to cache synchronization using Amazon Web Services (AWS) Simple
Notification Service (SNS) and Simple Queue Service (SQS). The proposed system leverages the pub-sub model of SNS combined with the reliable message
queuing of SQS to create a scalable and robust cache synchronization mechanism. We present the architecture, implementation details, and performance
analysis of this system, demonstrating significant reductions in database load and improvements in response times while ensuring eventual consistency

Comparative analysis with alternative solutions highlights the advantages of the SNS/SQS approach in terms of scalability, reliability, and ease of
implementation. This research contributes to the field of distributed systems by offering a practical, cloud-native solution to the cache synchronization
problem, applicable to a wide range of applications requiring consistent data across multiple instances or services.

*Corresponding author
Ananth Majumdar, USA.

Received: November 06, 2023; Accepted: November 13, 2023, Published: November 20, 2023

Keywords: Cache Synchronization, Distributed Systems, AWS
SNS, AWS SQS, Cloud Computing, Eventual Consistency,
Microservices, Scalability

Introduction

In the era of cloud computing and microservices, distributed systems
have become the backbone of modern software architecture. These
systems, while offering unprecedented scalability and resilience,
bring their own set of challenges. One of the most persistent issues
in distributed computing is maintaining data consistency across
multiple instances or services, particularly when it comes to caching.

Caching is a crucial optimization technique used to improve
application performance by storing frequently accessed data in
memory. However, in a distributed environment where multiple
instances of a service are running simultaneously, ensuring that
cached data remains consistent across all instances becomes a
complex task. When one instance updates its cache, how do we
ensure that all other instances are promptly informed and updated?
This challenge becomes even more pronounced in systems
deployed behind load balancers, where requests from the same
client may be routed to different instances over time.

This paper proposes a solution to this problem by leveraging two
powerful services provided by Amazon Web Services (AWS):
Simple Notification Service (SNS) and Simple Queue Service
(SQS). By combining these services, we can create a robust,
scalable, and efficient publish-subscribe (pub-sub) system that

keeps caches synchronized across multiple instances in near real-
time.

SNS is a fully managed pub-sub messaging service that enables
decoupled microservices, distributed systems, and serverless
applications to exchange messages. SQS, on the other hand, is
a fully managed message queuing service that allows for the
decoupling and scaling of microservices, distributed systems, and
serverless applications. When used together, these services provide
a powerful mechanism for distributing cache update notifications
across a distributed system.

In the following sections, we will delve deep into the intricacies
of this solution, exploring its architecture, implementation details,
performance considerations, and best practices. We will also
present a real-world case study and compare this approach with
alternative solutions. By the end of this paper, readers will have a
comprehensive understanding of how to implement a robust cache
synchronization system using AWS SNS and SQS, enabling them
to build more efficient and consistent distributed applications.

Background

Distributed Caching in Multi-Instance Environments
Distributed caching is a technique used to store frequently accessed
data in memory across multiple instances of an application. This
approach aims to reduce database load and improve response
times by serving data from fast, in-memory caches. In a multi-
instance environment, such as those commonly found in cloud

J Mathe & Comp Appli, 2023

Volume 2(4): 1-5

Citation: Ananth Majumdar (2023) Leveraging AWS SNS/SQS for Real-Time Cache Synchronization in Distributed Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E124. DOI: doi.org/10.47363/JMCA/2023(2)E124

deployments, each instance typically maintains its own local
cache.

Consistency Issues in Distributed Caches

The primary challenge in distributed caching arises when data
is updated. If an update occurs in one instance's cache, other
instances may continue to serve stale data from their local caches.
This leads to data inconsistency across the system, potentially
causing confusion for users or errors in application logic.

Consider an e-commerce platform where product inventory is
cached across multiple server instances. If a purchase reduces the
inventory count and this update is only reflected in the cache of
the instance processing the purchase, other instances may continue
to show incorrect inventory levels. This could lead to overselling
or lost sales opportunities.

Performance Implications of Outdated Caches

Inconsistent caches not only lead to data accuracy issues but can
also negate the performance benefits that caching is intended
to provide. If cached data cannot be trusted due to potential
inconsistencies, applications may resort to frequent database
queries to ensure data accuracy. This increased database load can
significantly impact system performance and scalability.

Scalability Challenges in Cache Synchronization

As the number of instances in a distributed system grows,
the complexity of keeping all caches synchronized increases
exponentially. Direct communication between all instances
becomes impractical and does not scale well. Furthermore, in
dynamic cloud environments where instances may be added or
removed based on load, a flexible and scalable synchronization
mechanism is crucial.

AWS SNS and SQS: An Overview

Amazon Simple Notification Service (SNS)

Amazon SNS is a fully managed pub-sub messaging service that
enables the decoupling of microservices, distributed systems, and
serverless applications [1].

Publish-Subscribe Messaging

SNS implements the pub-sub pattern, where publishers send
messages to topics, and subscribers receive messages from topics
they are interested in. This decoupling of publishers and subscribers
allows for flexible and scalable communication patterns.

Topics and Subscriptions

In SNS, a topic serves as a communication channel. Publishers
send messages to topics, and subscribers can subscribe to one
or more topics to receive messages. This model allows for one-
to-many communication, where a single message published to a
topic can be distributed to multiple subscribers.

Amazon Simple Queue Service (SQS)
Amazon SQS is a fully managed message queuing service that

enables the decoupling and scaling of microservices, distributed
systems, and serverless applications [2].

Distributed Queuing System

SQS provides a reliable, highly scalable, serverless queue for
storing messages as they travel between different parts of a
distributed system. It ensures that messages are stored durably
until they can be processed.

Types of Queues

SQS offers two types of queues:

- Standard queues: Provide maximum throughput, best-effort
ordering, and at-least-once delivery.

- FIFO queues: Provide strict message ordering and exactly-
once processing, but with lower throughput compared to
standard queues.

Integration between SNS and SQS

SNS and SQS can be seamlessly integrated, combining the pub-
sub model of SNS with the reliable message queuing of SQS.
This integration allows messages published to an SNS topic to be
delivered to multiple SQS queues, providing a powerful foundation
for building distributed systems.

In the context of cache synchronization, this integration enables
us to broadcast cache update events to multiple service instances
efficiently and reliably.

Designing the Cache Synchronization System

System Architecture

The proposed cache synchronization system leverages the strengths
of' both SNS and SQS to create a robust, scalable solution. Here's
an overview of the key components:

Publisher Services

These are the service instances that make updates to their local
caches. When an update occurs, the instance publishes a message
to an SNS topic.

SNS Topics

An SNS topic serves as the central point for distributing cache
update notifications. All instances that need to be informed about
cache updates subscribe to this topic.

SQS Queues

Each service instance has its own SQS queue subscribed to the
SNS topic. This queue acts as a buffer, storing update notifications
until the instance can process them [3].

Subscriber Services

These are the same service instances, but in their role as consumers
of update notifications. They poll their respective SQS queues
for messages and update their local caches based on the received
information.

J Mathe & Comp Appli, 2023

Volume 2(4): 2-5

Citation: Ananth Majumdar (2023) Leveraging AWS SNS/SQS for Real-Time Cache Synchronization in Distributed Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E124. DOI: doi.org/10.47363/JMCA/2023(2)E124

AWS Cloud

Periodic Sync Read/Write

- Periodic Sync Read/Write .

Service Instance 2 Service Instance 1

N

" Periodic Sync Read/Write

Figure 1: Architecture of cache synchronization system with SNS/SQS and the service instances

Message Flow
The process of synchronizing caches across instances follows these steps:
1. Cache update Event Publication

When a service instance updates its local cache, it publishes a message to the SNS topic. This message contains information

about the updated data, such as the cache key, new value, and a timestamp.

2. Message Distribution via SNS

The SNS topic receives the published message and immediately fans it out to all subscribed SQS queues. This ensures that the

update notification is sent to all service instances.

3. Message Queuing in SQS

Each instance's SQS queue receives and stores the message. If an instance is temporarily unavailable or busy, the message is

safely stored in the queue until it can be processed.

4. Message Consumption and Cache update

Instances periodically poll their SQS queues for new messages. When a cache update message is received, the instance updates

its local cache with the new data from the message.

This architecture ensures that all instances eventually receive all cache updates, providing eventual consistency across the distributed
system. The use of SQS queues adds resilience to the system, allowing instances to process updates at their own pace and ensuring

no updates are lost due to temporary instance failures or network issues.

Service Instance A Local Cache A SNS Topic QS Queue B

Update local cache

Database write

Service Instance B

Local Cache B Database

Publish cache update event

Fan out message

Poll for messages
<+

Service Instance A Local Cache A SNS Topic SQS Queue B

Return cache update message

Update local cache

Cache now synchronized

Periodic read for full sync

Service Instance B

>

Local Cache B Database

Figure 2: Sequence Diagram Showing the Message flow for Cache Synchronization

5. Performance Considerations
Message Delivery Guarantees

SNS provides "at-least-once" delivery, meaning that messages may occasionally be delivered more than once. Design your cache
update logic to be idempotent, ensuring that processing the same update multiple times does not cause issues.

J Mathe & Comp Appli, 2023

Volume 2(4): 3-5

Citation: Ananth Majumdar (2023) Leveraging AWS SNS/SQS for Real-Time Cache Synchronization in Distributed Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E124. DOI: doi.org/10.47363/JMCA/2023(2)E124

Scalability of the Solution

This SNS/SQS-based solution scales well as the number of

instances increases:

1. SNS can fan out messages to a large number of SQS queues

with low latency.

Each instance only needs to interact with its own SQS queue,

avoiding contention.

3. New instances can be easily added by creating a new SQS
queue and subscribing it to the SNS topic.

2.

Latency Analysis

While this system provides eventual consistency, it's important

to understand the potential latency involved:

1. SNSto SQS delivery is typically very fast (usually < 100ms).

2. The main source of latency is the polling interval of SQS
consumers.

3. Using long polling (with *WaitTimeSeconds" set) can help
reduce both latency and cost.

Best Practices and Optimizations

Message Batching

To reduce costs and improve efficiency, consider batching cache
updates:

1. On the publishing side, batch multiple updates into a single
SNS message when possible.

On the consuming side, use the "MaxNumberOfMessages'
parameter in ‘receive message’ calls to process multiple
updates at once.

2.

Dead-Letter Queues

Configure dead-letter queues for your SQS queues to capture
messages that fail to process

This allows you to investigate and handle problematic messages
without blocking the main processing flow.

Message Filtering
Use SNS message filtering to allow instances to receive only
relevant updates:

This can significantly reduce unnecessary message processing
and improve efficiency in large-scale systems.

Monitoring and Alerting

Implement comprehensive monitoring and alerting:

1. Use CloudWatch metrics to monitor SNS and SQS

performance.

Set up alarms for queue depth, failed deliveries, and message

age.

3. Implement application-level logging and tracing to track
cache update propagation.

2.

Security Considerations

Access Control with [AM

Use IAM roles and policies to control access to SNS and SQS

resources:

1. Ensure instances have minimal required permissions to
publish to SNS and read from SQS.

2. Use resource-based policies on SNS topics to control which
principals can publish messages.

Encryption in Transit and at Rest

Enable encryption to protect sensitive data

1. Use HTTPS endpoints for SNS and SQS API calls.

2. Enable server-side encryption for SQS queues to protect
messages at rest.

VPC Endpoints for SNS and SQS

If your instances run in a VPC, consider using VPC endpoints

for SNS and SQS:

1. This allows instances to communicate with SNS and SQS
without going over the public internet.

2. Enhances security and can reduce data transfer costs.

Comparison with Alternative Solutions

To provide context for the effectiveness of the SNS/SQS

solution, let's compare it with alternative approaches to cache

synchronization in distributed systems [4, 5].

Redis)

Solution Pros Cons
+ Always providss the most up-to-date data + High database load, especially for frequently accessed data
Direct Database Queries + Simple to implement = Increased latency for each request
+ Potential for database bottlenecks during high traffic periods
» Introduces a new component to maintain and scale
Distributed Caching Systems (e.g « Provides a centralized cache for all instances « Potential single point of failure if not properly configured for high
o

« Built-in support for complex data structures and operations

availability
= May require significant network bandwidth for large datasets

* Can be tailored to specific application needs
Custom Pub-Sub Implementations

« Potentially lower cost for small-scale applications

q significant devel and
» May struggle with scalability for large systems
» Lack of built-in features like message persistence and dead-letter
queues

effort

« Highly scalable and reliable

AWS SNS/SQS Solution queues
« Cost-effective for various scales of operation

= Easy integration with other AWS services

* Managed service, reducing operational overhead
+ Built-in features like message persistence and dead-letter

» Eventual consistency model (may not be suitable for all use cases)
» Requires familiarity with AWS services

« Potential for i d complexity in multi
» Vendor lock-in to AWS ecosystem

gion setups

Table 1: Comparison of SNS/SQS with Alternative Solutions

In comparison, the SNS/SQS solution offers a balance of scalability, reliability, and ease of implementation. It leverages managed
AWS services, reducing operational overhead, while providing the flexibility to handle complex distributed systems.

J Mathe & Comp Appli, 2023

Volume 2(4): 4-5

Citation: Ananth Majumdar (2023) Leveraging AWS SNS/SQS for Real-Time Cache Synchronization in Distributed Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E124. DOI: doi.org/10.47363/JMCA/2023(2)E124

Conclusion

The implementation of a cache synchronization system using AWS
SNS and SQS offers a robust, scalable, and efficient solution to
the challenge of maintaining consistent data across distributed
systems. By leveraging these managed services, organizations
can significantly improve the performance and reliability of their
applications while reducing the operational overhead associated
with custom synchronization mechanisms.

Key Takeaways from this Study Include

1. The SNS/SQS system provides eventual consistency with low
latency, suitable for a wide range of applications.

2. The solution scales effectively, making it appropriate for
both small applications and large-scale distributed systems.

3. Built-in features of SNS and SQS, such as message persistence
and dead-letter queues, enhance the system's reliability and
error handling capabilities.

4. The pay-per-use pricing model of these AWS services allows
for cost-effective implementation, with costs scaling linearly
with usage.

As distributed systems continue to grow in complexity and scale,
effective cache synchronization becomes increasingly critical. The
SNS/SQS approach presented in this paper offers a powerful tool
for developers and architects to address this challenge, enabling
the creation of more efficient, reliable, and scalable applications.

References

1. What is Amazon Simple Queue Service - Amazon Simple
Queue Service. (n.d.). https://docs.aws.amazon.com/
AWSSimpleQueueService/latest/SQSDeveloperGuide/
welcome.html

2. What is Amazon SNS? - Amazon Simple Notification Service.
(n.d.). https://docs.aws.amazon.com/sns/latest/dg/welcome.
html

3. Subscribing a queue to an Amazon SNS topic using the
Amazon SQS console - Amazon Simple Queue Service. (n.d.).
https://docs.aws.amazon.com/AWSSimpleQueueService/
latest/SQSDeveloperGuide/sqs-configure-subscribe-queue-
sns-topic.html

4. FitzpatrickBrad (2004) Distributed caching with memcached.
Linux Journal. https://doi.org/10.5555/1012889.1012894

5. Candan K S, Li W, Luo Q, Hsiung W, Agrawal D (2001)
Enabling dynamic content caching for database-driven web
sites. SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data. https://doi.
org/10.1145/375663.375736.

Copyright: ©2023 Ananth Majumdar. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Mathe & Comp Appli, 2023

Volume 2(4): 5-5

