ISSN:2754-6705

Journal of Mathematical &

73.,»
Computer Applications (= SCIENTIFIC

Research and Community

v

Review Article Open @ Access

Structured Concurrency in Java

Nilesh Jagnik
Los Angeles, USA

ABSTRACT

Concurrency is vital for high performance software applications. The Java language has support for concurrency but it requires developers to handle
execution of concurrent tasks. This adds a learning curve and makes concurrent code harder to read, write and debug. To solve this issue, Java 21
introduces a preview feature called structured concurrency. In this paper, we review the idea behind structured concurrency and discuss how the new

language feature works in Java.

*Corresponding author
Nilesh Jagnik, Los Angeles, USA.

Received: November 01, 2023; Accepted: November 13, 2023, Published: November 17, 2023

Keywords: Concurrency, Asynchronous Programming, Structured
Concurrency, Multi-Threading

Introduction

In a typical program, code executes sequentially. If the program
reaches a statement that blocks while waiting on 1/O, then no
progress is made while this happens. However, if a program has
other parts that can be executed in parallel, then it would be faster
to break the program into subtasks that be executed concurrently.
This is referred to as concurrent programming. In concurrent
programming, tasks are broken down into subtasks and executed
concurrently. Their results are then collected by the parent task and
composed into a final result. Concurent programming is an essential
tool for improving the performance of software applications by
utilizing compute and memory resources efficiently. Almost all
languages offer ways to achieve concurrent execution of subtasks.
In Java, this support is offered by the java.util.concurrent package
constructs such as ExecutorService and Future.

The downside of concurrent programming is the loss of structure
in code. Complexity is introduced due to breaking tasks into
multiple subtasks. The relationship between the overall task and
the subtasks is managed by the developer. This complexity can
lead to programming errors. Developers need to account for a lot of
corner cases. Failing to do so may introduce errors and unexpected
behavior.

To address this issue, Java released a preview feature in JDK 21
that introduces support for structured concurrency. Structured
concurrency allows writing concurrent code in a manner similar
to single-threaded code. This removes the responsibility of subtask
relationship management from the developer and is handled by
the language instead. Structured concurrency also allows writing
programs that are much simpler to read resulting in easier debugging
and troubleshooting of issues.

Besult compute() throws ExecutionException,
Interruptedixception {
FuturecInteger> Lirspfut = sESCRERE.ABhmdR(---)-
FuturecInteger> zecondfnf = SESRRBRE.ZURBAE(---):
int fir=z = Sazasbab.asill:

int =second = i):
return new Result(first + second) :

Figure 1: A Typical Concurrent Program

Problems with Unstructed Concurrency

There are several reasons behind the necessity for structured
concurrency. Let us review the shortcomings of traditional
(unstructured) concurrency. The example in Figure 1 demonstrates
a simple unstructured concurrent program. In this example the
computation is distributed into two subtasks. The results of
computation of these two subtasks are stored in firstFut and
secondFut respectively. The compute() method awaits the
completion of firstFut and secondFut before producing the final
result by combining the values obtained from the two subtasks.

Thread Leaks

Consider the case where firstFut results in an error (the computation
of firstFut throws an exception). In this case, firstFut.get() raises
an exception causing the compute() method to terminate with the
exception. However, secondFut might still be computing. Since
the program terminated, there is no way to collect the result
of secondFut. The program also does not try to terminate the
computation of secondFut. This is known as thread leak.

If the compute() method itself is interrupted, the cancellation
would not be propagated to firstFut and secondFut. firstFut and
secondFut would continue execution even though the parent task
was terminated. This is another example of thread leaks.

Thread leaks can cause many issues. Threads are an expensive
resource and holding it unnecessarily wastes resources. The
computation inside secondFut might be heavy and contribute further
to wasted resources (since the result is never used). Worst case,

J Mathe & Comp Appli, 2023

Volume 2(4): 1-3



Citation: Nilesh Jagnik (2023) Structured Concurrency in Java. Journal of Mathematical & Computer Applications. SRC/JMCA-127.

DOI: doi.org/10.47363/JMCA/2023(2)E127

the computation inside secondFut might produce side effects which
leave the system in an unexpected state. Debugging these types of
issues can be difficult.

Waste of Time and Resources

Let us consider the case where secondFut results in an error but firstFut
is still processing. In this case, because we wait for the result of firstFut
before secondFut, firstFut continues to execute even though secondFut
fails. The program doesn’t check the result of secondFut until firstFut
terminates. Ideally however, the compute() method should throw an
exception right away. This wastes a lot of time and resources since
we could have cancelled firstFut after secondFut results in an error.
Inefficient use of resources could affect system performance when
compounded over many processes.

Lack of Structure

In all the cases discussed above, the core issue lies in the fact that
the language does not have core understanding of tasks and subtasks
spawned by them. This relationship is tracked explicitly by the
developer of code. This lack of semantic understanding of task-
subtask relationships causes handling of exceptional cases to be
non-trivial and prone to error. The example in Figure

1 is a simple one, yet it still has several corner cases to explicitly
handle. As the program complexity increases, handling corner cases
becomes even tougher.

Poor Debugging Support

Thread dump and other observability tools do not show the relationship
between tasks and subtasks. firstFut and secondFut show up on the
call stacks of unrelated threads. This makes it very difficult to find
out the state of system at the time the dump was captured.

Structure Concurrency

Now that we know of the issues with unstructured concurrency in
Java, let us discuss Java support for structured concurrency and it
solves these issues.

Structured Concurrency Principles

The main idea behind structured concurrency is that when subtasks
are spawned from a task, they should all return to the same place after
completion. Indirectly, this puts responsibility of managing subtask
execution and result collection on the language runtime rather than
the programmer. For this to be possible, the runtime should know
about and keep track of task-subtask dependencies. The runtime
can also manage the life cycle of subtasks and terminate them when
appropriate.

StructuredTaskScope

The main class added for supporting structured concurrency
is StructuredTaskScope. This is part of the java.util.concurrent
package. Instead of executing subtasks in an ExecutorService,
subtasks can be forked from the main task inside a scope defined by
StructuredTaskScope class. The StructuredTaskScope API is ideally
used with the try-with-resources statement.

try (var scope = new Stxuchursdlaskizops
SERRRARMDERERLLEES O) 4
Subtask<Integer> first = ggppe fork(taskl);
Subtask<Integer> second = ggope, forkiltaska);

ff Join waitz for all tasks to finish.
ff We can throw error if any task fails.
A5RES.1840 () - shrowlfEailed ) s
ff Rfter jeining, we can get results of subtasks.
return new Result (fizst.gs:xf) + sszapnd.gsni))

}

Figure 2: Structured Concurrency with StructuredTaskScope

Creating Subtasks

The fork() method can be used for forking subtasks. The input to
this method is a Callable. The fork() method can only be called
while the scope has not been shut down.

Task Completion

For collecting results, the join() method can be used. This
method waits for all subtasks to finish execution, unless the task
was interrupted or shutdown() method was called. There is also
joinUntil() variant that times out after a specified duration.

Error Handling

The join() method throws exceptions for abnormal termination
(normal termination is specified by shutdown policy). This simplifies
error handling since developers only need to handle abnormal
termination at one place.

Scope Shutdown

At the end of the try-with-resources statement, the scope is
automatically shut down. There is also a shutdown() API that
allows shutting down a scope without closing it. Shutting down
a task scope prevents new subtasks (threads) from being started,
cancels all unfinished subtasks, and invokes the join() method (for
finishing execution).

Options for Shutdown Behavior

There are a couple of options for tweaking the behavior of shutting
down a scope. ShutdownOnFailure and ShutdownOnSuccess are
subclasses of the StructuredTaskScope class and offer custom
shutdown policies. In addition, it also possible to implement your
own shutdown policy. These options provide a lot of flexibility in
the usage of structured concurrency.

Shutdown Policy: ShutdownOnFailure

This shutdown policy captures the exception that is raised by the
first subtask that fails. After this, it shuts down the task scope so
that all other subtasks are cancelled. This policy should be used in
cases where it is critical for all subtasks to succeed.

Shutdown Policy: ShutdownOnSuccess

Conversely, the ShutdownOnSuccess policy waits for any subtask
to complete and captures its result. One captured, it shuts down the
task scope. This policy is useful when the result from one subtask
is sufficient to proceed and other subtasks must be terminated when
one succeeds.

Custom Shutdown Policies

Apart from the two default showdown policies discussed above,
there is also an option for developers to specify custom shutdown
policies. This is done by extending the StructuredTaskScope class
and overriding the handleComplete() method.

Benefits of Structured Concurrency

Simpler Error Handling

The runtime handles subtask relationship and termination of
subtasks. Developers are required to handle errors originating
from the join() method. This is in contrast to error handling in
unstructured concurrency where errors need to be handled by every
subtask listener.

Cancellation Propagation

If the parent task is interrupted or a shutdown condition is met, all
other subtasks are automatically cancelled. This prevents thread
leaks and removes the need for manual cancellation handling.

J Mathe & Comp Appli, 2023

Volume 2(4): 2-3



Citation: Nilesh Jagnik (2023) Structured Concurrency in Java. Journal of Mathematical & Computer Applications. SRC/JMCA-127.

DOI: doi.org/10.47363/JMCA/2023(2)E127

Clarity

Code in structured concurrency looks very similar to single threaded
(non-concurrent) code. This improves readability and makes it easier
to understand code structure.

Observability

As opposed to unstructured concurrency, the thread dump shows
relationships of tasks and subtasks. This makes it much easier to
debug and troubleshoot issues.

Virtual Threads

The fork() method spawns new threads. For this reason, structured
concurrency pairs very well with virtual threads, which introduce
lightweight threads to the Java runtime. In fact, the default behavior
of fork() is to use virtual threads.

Caveat of Preview Features

Structured concurrency is a preview feature introduced in Java
21. This means it is not available by default and is not suitable for
production usage since it is experimental.

Conclusion
Unstructured concurrency has several drawbacks which can make
code harder to read, write and debug. This not only adds a learning

curve for developers but makes code more prone to errors. Most
of these issues are solved by structured concurrency. In structured
concurrency, code written is very similar to single threaded code,
which makes it much simpler to read and write. Complexities of
cancellation propagation are handled by the runtime and error
handling is simplified. Structured concurrency is still a preview
feature, so it is good to experiment with but not for deploying in
production. Hopefully, this preview feature will get a full launch
in the future [1-4].

References

1. Ron Pressler, Alan Bateman (2023) JEP 453: Structured
Concurrency (Preview). OpenJDK https://openjdk.org/
jeps/453.

2. (2023) Structured Concurrency. Core Libraries https://docs.
oracle.com/en/java/javase/21/core/structured-concurrency.
html.

3. Yuri Luiz de Oliveira (2023) Structured concurrency with Java 21
in 4 steps. Medium https://medium.com/wearewaes/structured-
concurrency-with-java-21-in-4-steps-37¢72997ed2a.

4. Nathaniel J Smith (2018) Notes on structured concurrency,
or: Go statement considered harmful. njs blog https://vorpus.
org/blog/notes-on-structured-concurrency-or-go-statement-
considered-harmful/.

Copyright: ©2023 Nilesh Jagnik. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Mathe & Comp Appli, 2023

Volume 2(4): 3-3



