
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024 Volume 3(1): 1-4

Review Article

Streamlining Development: Best Practices for Salesforce DevOps
and Continuous Integration

Information Technology Abingdon, Harford

Alpesh Kanubhai Patel

*Corresponding author
Alpesh Kanubhai Patel, Information Technology Abingdon, Harford.

Received: January 04, 2024; Accepted: January 11, 2024, Published: January 18, 2024

Keywords: Salesforce DevOps, CI/CD, Metadata Management,
Version Control, Automated Testing, Deployment Automation,
Salesforce CLI, Salesforce DX, Release Management,
Environment Management, Modular Development, Package
Dependencies, Static Code Analysis, Application Performance
Monitoring (APM), Continuous Learning

Introduction
Salesforce has evolved significantly, growing from a simple CRM
platform to a comprehensive cloud ecosystem that supports a wide
range of business functions. This growth has made it essential
for organizations to adopt rigorous development and deployment
practices, particularly DevOps and CI/CD, to keep pace with the
demands of modern software delivery.

DevOps in the context of Salesforce refers to practices that
integrate development and operations, aiming to streamline the
software delivery process. The primary goal is to minimize the
time between code changes and their deployment to production,
all while maintaining high standards of quality. CI/CD, as a subset
of DevOps, involves the automatic integration of code changes
into a shared repository and the automation of the release process
to production. Given Salesforce’s metadata-driven environment,
implementing these practices requires specialized tools and
strategies tailored to Salesforce's unique architecture.

Key Components of Salesforce DevOps
Version Control
Version control is the backbone of any CI/CD pipeline, especially
within Salesforce, where it involves managing changes to metadata
and code. This ensures that there is a single source of truth for all
development activities.
•	 VCS Selection: Git is widely recognized as the preferred

version control system for Salesforce DevOps due to its
distributed nature and powerful branching and merging
capabilities. It supports parallel feature development and
efficient change management, which are critical for Salesforce
projects.

•	 Metadata Management: Salesforce metadata includes
components like Apex classes, Visualforce pages, Lightning
components, and various configuration settings. Managing
these XML-based components in a version control system
can be challenging. Tools like GitLab, Bitbucket, or GitHub,
when used in conjunction with Salesforce-specific plugins and
the Salesforce CLI, facilitate effective metadata versioning.

•	 Branching Strategy: Employing a well-defined branching
strategy, such as GitFlow, is essential for managing feature
development, bug fixes, and releases. This strategy enables
parallel workstreams, ensuring that the main codebase
remains stable while new features are developed in isolation.

•	 Commit Practices: Frequent and small commits help
ensure that changes are easy to track and revert if necessary.
Developers should aim to commit code often, with meaningful
commit messages that explain the purpose of the changes.
This practice aids in troubleshooting and makes code reviews
more efficient.

•	 Merge Requests (Pull Requests): Before merging code
into the main branch, it is best to use merge requests (or pull
requests) to ensure that all changes are reviewed by other
developers. This helps maintain code quality and consistency
across the project.

Continuous Integration (CI)
Continuous Integration focuses on the automatic integration of
code changes into a shared repository, accompanied by automated
testing to validate these changes. In the Salesforce ecosystem, CI

ABSTRACT
The evolution of Salesforce from a basic Customer Relationship Management (CRM) system to an expansive cloud ecosystem has necessitated the
implementation of robust development and deployment practices. This transformation underscores the importance of adopting DevOps and Continuous
Integration/Continuous Deployment (CI/CD) within Salesforce environments. These methodologies address challenges such as metadata management,
version control, automated testing, and deployment processes, which are vital for maintaining efficiency and reliability in development pipelines. This article
explores the best practices for Salesforce DevOps and CI/CD, offering in-depth technical insights to assist developers and administrators in optimizing
their workflows and ensuring successful deployments.

Citation: Alpesh Kanubhai Patel (2024) Streamlining Development: Best Practices for Salesforce DevOps and Continuous Integration. Journal of Mathematical &
Computer Applications. SRC/JMCA-E110. DOI: doi.org/10.47363/JMCA/2024(3)E110

J Mathe & Comp Appli, 2024 Volume 3(1): 2-4

must be adept at handling metadata and ensuring that code changes
do not negatively impact existing functionality.

Automated Testing: Automated testing is the cornerstone of CI
processes. In Salesforce, this includes unit tests written in Apex,
as well as integration and end-to-end tests. Tools like Selenium,
Provar, and various Test Automation Frameworks are utilized for
functional and regression testing.
•	 Unit Tests: Apex provides the ability to write unit tests to

ensure that individual components work as expected. These
tests should cover all possible scenarios, including edge cases,
to prevent bugs from being introduced into the production
environment.

•	 Integration Tests: Integration tests validate that different
components and systems within the Salesforce environment
work together as intended. These tests are crucial in complex
environments where multiple systems interact.

•	 End-to-End Tests: End-to-end testing involves simulating
real-world scenarios to ensure that the entire application
functions correctly from start to finish. This is particularly
important for validating user flows and ensuring that critical
business processes are not disrupted by code changes.

Static Code Analysis: Tools such as PMD and Checkmarx play
a critical role in identifying code quality issues and security
vulnerabilities within Apex and Lightning components. Integrating
these tools into the CI pipeline ensures that code adheres to best
practices and security standards.
•	 PMD: PMD is an open-source static code analysis tool that

scans Apex code for potential issues such as code duplication,
complex logic, and security vulnerabilities. Integrating PMD
into the CI pipeline helps maintain high code quality.

•	 Checkmarx: Checkmarx is a comprehensive security
analysis tool that identifies vulnerabilities in code. It provides
actionable insights to developers, helping them to fix security
issues before they reach production.

Build Automation: Automation tools like Jenkins, CircleCI, and
GitLab CI/CD are instrumental in automating builds, running tests,
and deploying code across different Salesforce environments. The
Salesforce CLI and SFDX commands are vital for automating
these tasks, providing a robust foundation for build automation.

•	 Jenkins: Jenkins is a widely used automation server that
integrates with Salesforce to automate the CI/CD pipeline.
It can be configured to trigger builds automatically when
changes are pushed to the repository, run tests, and deploy
code to various environments.

•	 CircleCI and GitLab CI/CD: These CI/CD tools offer
similar capabilities to Jenkins, with the added benefit of being
cloud-based. They can be easily integrated with Salesforce
projects to automate the entire build and deployment process.

Continuous Deployment (CD)
Continuous Deployment extends the CI process by automating
the deployment of validated changes to production or other
environments. This practice reduces the time to market and
supports more frequent, reliable updates.

Release Management: Effective release management involves
meticulously planning, scheduling, and controlling the movement
of releases across testing and production environments. Tools like
Copado, Gearset, and Autorabit offer Salesforce-specific features
for release management, such as change monitoring, automated

deployments, and rollback capabilities.

•	 Copado: Copado is a Salesforce-native DevOps solution
that integrates with the Salesforce platform to provide
comprehensive release management features. It offers tools
for planning releases, tracking changes, and automating
deployments.

•	 Gearset: Gearset is another popular Salesforce DevOps
tool that provides a user-friendly interface for managing
deployments. It includes features like automated backups,
change tracking, and the ability to compare environments
to ensure that all necessary components are included in
deployments.

•	 Autorabit: Autorabit is a Salesforce DevOps platform that
offers advanced release management features, including
automated testing, continuous monitoring, and deployment
rollback capabilities.

Deployment Automation: Various tools and frameworks facilitate
Salesforce deployments, with the Salesforce Metadata API and
Tooling API being commonly used for deploying metadata
components. For finer control, the Salesforce CLI and SFDX
enable scripting deployments, allowing tasks such as metadata
retrieval, deployment package creation, and validation in sandbox
environments before production deployment.
•	 Salesforce Metadata API: The Metadata API allows

developers to retrieve, deploy, create, update, or delete
customization information for Salesforce organizations. It
is essential for automating the deployment of components
between environments.

•	 Tooling API: The Tooling API provides additional capabilities
for managing and deploying Salesforce metadata. It can be
used to automate tasks like creating custom objects, fields,
and Visualforce pages.

Environment Management: Managing different Salesforce
environments, including development, QA, staging, and
production, is crucial for a successful CD process. Techniques
like sandbox seeding and data masking are employed to create
test environments that closely replicate production, safeguarding
sensitive data while ensuring accurate testing.
•	 Sandbox Seeding: Sandbox seeding involves populating a

Salesforce sandbox environment with a subset of production
data. This practice ensures that developers have access to
realistic data without exposing sensitive information.

•	 Data Masking: Data masking is used to anonymize
sensitive data in sandbox environments. This helps prevent
data breaches and ensures compliance with data protection
regulations while allowing developers to work with realistic
datasets.

Best Practices For Implementing Salesforce DevOps And
CI/CD
Modular Development and Packaging
Unlocked Packages: Salesforce DX encourages the modularization
of metadata and applications through unlocked packages, which
enhance reusability, simplify dependency management, and enable
versioning.
•	 Benefits of Unlocked Packages: By breaking down a large

Salesforce application into smaller, modular packages,
organizations can manage dependencies more effectively,
reduce deployment times, and simplify the process of updating
and maintaining the application.

•	 Creating Unlocked Packages: Developers can create

Citation: Alpesh Kanubhai Patel (2024) Streamlining Development: Best Practices for Salesforce DevOps and Continuous Integration. Journal of Mathematical &
Computer Applications. SRC/JMCA-E110. DOI: doi.org/10.47363/JMCA/2024(3)E110

J Mathe & Comp Appli, 2024 Volume 3(1): 3-4

unlocked packages using Salesforce CLI commands like sfdx
force:package:create. These packages can then be installed in
different environments using the sfdx force:package:install
command, allowing for easy distribution and version control.

Package Dependencies: Clearly defining dependencies between
packages ensures smooth deployment and upgrades. Salesforce
CLI commands such as sfdx force:package:install and sfdx
force:package:version:create are essential for managing package
versions and dependencies.
•	 Managing Dependencies: Dependencies between packages

should be explicitly defined to ensure that all necessary
components are installed before a package is deployed. This
prevents issues such as missing components or incompatible
versions from causing deployment failures.

Automated Testing and Quality Assurance
Test Coverage: Salesforce mandates a minimum of 75% test
coverage for Apex code in production deployments. However,
targeting higher coverage and thoroughly testing all critical
business logic ensures superior quality and reliability.
•	 Achieving High Test Coverage: Developers should aim for

test coverage well above the minimum requirement, ideally
targeting 90% or higher. This involves writing comprehensive
unit tests that cover all possible scenarios, including edge
cases and error handling.

Continuous Testing: Integrating continuous testing into the CI/CD
pipeline helps identify issues early. Automated unit, integration,
and end-to-end tests should be executed with each commit using
appropriate testing frameworks and CI/CD tools.
•	 Running Tests with Every Commit: By running tests

automatically with every commit, developers can catch
issues early in the development process. This reduces the
risk of introducing bugs into production and ensures that the
codebase remains stable.

Security and Compliance
Static Code Analysis: Incorporating static code analysis tools
into the CI pipeline is vital for detecting security vulnerabilities,
code smells, and ensuring compliance with coding standards.
Tools like SonarQube and Checkmarx offer detailed reports and
actionable insights.

•	 SonarQube: SonarQube is a popular static code analysis
tool that integrates with Salesforce projects to provide real-
time feedback on code quality. It supports a wide range of
programming languages, including Apex, and offers detailed
reports on code smells, bugs, and security vulnerabilities.

Environment Security: Secure management of sensitive data,
including API keys and credentials, across different environments
is critical. Using environment variables and encrypted storage
for handling sensitive information ensures that security is not
compromised during deployments.
•	 Environment Variables: Environment variables allow

developers to store sensitive information such as API keys
and credentials securely, without hardcoding them into the
codebase. This practice helps prevent accidental exposure
of sensitive data.

•	 Encrypted Storage: Sensitive data should be stored
in encrypted formats, both at rest and in transit. This
includes using encryption protocols such as SSL/TLS for
communication between Salesforce and external systems.

Monitoring and Feedback
Application Performance Monitoring (APM): Implementing APM
tools like New Relic, Datadog, or Salesforce’s Health Check allows
for real-time monitoring of Salesforce application performance
and health, helping to identify bottlenecks and optimize system
performance.
•	 New Relic: New Relic is a powerful APM tool that provides

real-time insights into application performance, including
response times, error rates, and system resource usage.
Integrating New Relic with Salesforce allows organizations
to monitor the performance of their Salesforce applications
and identify potential issues before they impact users.

•	 Feedback Loops: Establishing feedback loops from
production monitoring and user feedback to the development
team is crucial. This process helps prioritize bug fixes,
enhancements, and new features based on actual user
experience and system performance.

•	 User Feedback: Collecting feedback from end users is
essential for understanding how the application is being used
and identifying areas for improvement. Feedback loops should
be integrated into the development process to ensure that user
needs are addressed promptly.

•	 Continuous Improvement: Feedback from monitoring
and user feedback should be used to continuously improve
the application. This includes refining features, optimizing
performance, and addressing any issues that arise.

Continuous Learning and Improvement
Training and Certification: Investing in ongoing training and
certification for developers and administrators is essential to stay
updated with the latest Salesforce features, best practices, and
DevOps tools. Platforms like Trailhead provide valuable resources
for continuous learning and skill development.
•	 Salesforce Certifications: Salesforce offers a range of

certifications for developers, administrators, and architects,
covering various aspects of the platform. Pursuing these
certifications helps professionals stay up-to-date with the
latest developments and best practices.

•	 Trailhead: Trailhead is Salesforce’s official learning
platform, offering a wide range of courses and modules on
various topics, including DevOps, CI/CD, and Salesforce
development. Developers and administrators should regularly
engage with Trailhead to enhance their skills and knowledge.

Community Engagement: Engaging with the Salesforce
community through events, forums, and groups offers opportunities
to learn from peers, share experiences, and stay informed about
the latest industry trends.
•	 Salesforce Community Events: Attending Salesforce

community events such as Dreamforce, World Tour, and local
user groups provides valuable networking opportunities and
allows professionals to learn from industry experts.

•	 Online Forums: Participating in online forums such as the
Salesforce Developer Community, Stack Exchange, and
Reddit allows developers to ask questions, share knowledge,
and collaborate with others in the Salesforce ecosystem.

Conclusion
Implementing DevOps and CI/CD within Salesforce environments
demands careful planning, the right tools, and adherence to best
practices. By embracing a modular development approach,
automating testing and deployments, prioritizing security
and compliance, and continuously monitoring and improving
processes, organizations can achieve faster, more reliable, and

Citation: Alpesh Kanubhai Patel (2024) Streamlining Development: Best Practices for Salesforce DevOps and Continuous Integration. Journal of Mathematical &
Computer Applications. SRC/JMCA-E110. DOI: doi.org/10.47363/JMCA/2024(3)E110

J Mathe & Comp Appli, 2024 Volume 3(1): 4-4

Copyright: ©2022 Alpesh Kanubhai Patel. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

efficient software delivery. As Salesforce continues to evolve,
staying informed and adapting to new tools and practices will be
crucial to maintaining a robust and effective DevOps pipeline.

References
1.	 Salesforce (n.d) Salesforce DX Developer Guide. Salesforce

Developer Documentation https://developer.salesforce.com/
docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_develop.
htm/.

2.	 Salesforce (n.d) Apex Developer Guide. Salesforce Developer
Documentation https://developer.salesforce.com/docs/atlas.
en-us.apexcode.meta/apexcode/apex_dev_guide.htm.

3.	 Gitau M (2020) Mastering Salesforce DevOps: A Practical
Guide to Building Trust While Delivering Innovation. Apress.

4.	 Bonasera R (2021) Salesforce Lightning Platform: Advanced
Features. O'Reilly Media.

5.	 Santoro J (2019) Salesforce Lightning Platform Enterprise
Architecture. Packt Publishing.

6.	 Continuous Integration and Continuous Delivery Best
Practices. (n.d.). Atlassian. Retrieved from https://www.
atlassian.com/continuous-delivery/principles/continuous-
integration-vs-delivery-vs-deployment.

7.	 Kim G, Humble J, Debois P, Willis J (2016) The DevOps
Handbook IT Revolution Press.

8.	 Salesforce (n.d.) Salesforce CLI Command Reference.
Salesforce Developer Documentation https://developer.
salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/
sfdx_cli_reference/cli_reference_top.htm.

9.	 MuleSoft (n.d.) Integrating Salesforce with MuleSoft.
MuleSoft Documentation.

10.	 Salesforce Best Practices for Continuous Integration and
Delivery. (n.d.). Retrieved from https://developer.salesforce.
com/docs/atlas.en-us.ci_devops.meta/ci_devops/ci_devops_
best_practices.htm.

