

Review Article
Open Access

High Frequency RF Propagation Models in Dense 6G Networks: Challenges and Optimization

Pratik Jangale

Austin, TX, USA

ABSTRACT

The shift to high frequency spectrum bands, such as millimeter wave (mmWave) and terahertz (THz), is critical to realizing the high data rates, ultralow latency, and massive connectivity required for 6G networks. However, these frequencies come with unique propagation challenges, particularly in dense urban environments. This paper explores the key propagation characteristics of high frequency RF signals and presents an overview of their modeling approaches. Additionally, it highlights the challenges associated with shadowing, diffraction, penetration losses, and environmental factors. Various optimization strategies are proposed, including reconfigurable intelligent surfaces (RIS), hybrid beamforming, and adaptive channel modeling, which aim to improve signal reliability in dense network scenarios. The paper concludes by addressing future research directions, including AI-driven propagation models and cross layer optimization for 6G networks.

***Corresponding author**

Pratik Jangale, Austin, TX, USA.

Received: February 06, 2024; **Accepted:** February 13, 2024; **Published:** February 20, 2024

Keywords: 6G Networks, High Frequency Propagation, Beamforming, Propagation Models, Dense Network Optimization

Introduction

The evolution towards 6G networks promises unprecedented network capabilities, such as peak data rates of terabits per second and ultra-low latency for mission critical applications. However, to meet these goals, 6G networks will increasingly rely on higher frequency bands like mmWave (30–100 GHz) and THz (100 GHz–10 THz) [1]. These frequencies provide higher bandwidth but come with significant propagation challenges due to increased susceptibility to path loss, blockage, and scattering.

This paper investigates the propagation features of these frequencies and provides insights into the importance of accurate propagation models to optimize network performance in dense urban and indoor environments. Furthermore, it explores practical techniques to mitigate propagation issues and achieve robust network performance [2].

Comparison Between 5G And 6G

As global communication demands grow, the shift from 5G to 6G marks a major evolution in wireless technology. While 5G focuses on enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-type communication (mMTC), 6G will push the boundaries with terabit-per-second speeds, integrated AI, and new applications like extended reality (XR) and autonomous systems. Additionally, 6G aims to overcome coverage and environmental challenges through innovations like reconfigurable intelligent surfaces (RIS) and quantum communication, enabling smart cities, connected healthcare, and space networks [3, 4].

High-Frequency Rf Propagation Characteristics

High-frequency bands exhibit distinct propagation behaviors that differentiate them from sub-6 GHz frequencies used in 5G networks. Key propagation features include.

Free-space Path Loss

Path loss increases exponentially with frequency and distance. In mmWave and THz bands, signal attenuation can severely affect coverage, requiring more base stations or relay nodes to maintain service quality [5]. Free-space path loss (FSPL) refers to the reduction in signal strength as it travels through an unobstructed medium. It is expressed mathematically as:

$$\text{FSPL}(dB) = 20 \log_{10}(d) + 20 \log_{10}(f) + 20 \log_{10}\left(\frac{4\pi}{c}\right)$$

Where:

- d = Distance between transmitter and receiver (in meters)
- f = Signal frequency (in Hz)
- c = Speed of light (3×10^8 m/s)

Impact at High Frequencies:

- **Frequency Dependence:** Since FSPL increases with f , signals at mmWave (30–100 GHz) and THz (>100 GHz) frequencies experience much higher losses than sub-6 GHz bands which are regularly used in 5G networks.
- **Range Limitation:** To compensate for high FSPL, dense deployments of base stations or relay nodes are necessary, especially in urban environments.
- **Power Amplification Issues:** Higher frequencies require high power amplifiers, making energy efficiency a key challenge.

Blockage and Diffraction

High-frequency signals have limited ability to diffract around obstacles. Blockages caused by buildings, vehicles, and other obstructions introduce shadowing and signal degradation, especially in dense urban areas. High-frequency signals, especially at mmWave and THz, have weak diffraction abilities due to their short wavelengths. This makes them prone to **blockage** by common objects such as buildings, trees, and even humans [6].

- **Knife-Edge Diffraction Model:** This model predicts signal degradation when encountering sharp objects. It is expressed as:

$$D(v) = 20 \log_{10} \left(\frac{1+j}{2} \cdot \int_v^\infty e^{j\frac{\pi}{2}t^2} dt \right)$$

Where v represents the relative position of the obstruction, and $D(v)$ indicates the diffraction loss (in decibels)

$\int_v^\infty e^{j\frac{\pi}{2}t^2} dt$ represents Fresnel Integral.

- **Shadow Fading:** Refers to the signal degradation caused by obstacles in the propagation path, measured in decibels (dB). This results in intermittent dead zones, especially in urban deployments.
- **Mitigation:** Beamforming and RIS can re-direct signals around obstacles, but they require precise control of beam direction and high computational power.

Atmospheric and Molecular Absorption

At frequencies beyond 100 GHz, atmospheric gases like oxygen and water vapor significantly absorb energy, causing further attenuation. This absorption varies with environmental conditions, such as humidity and temperature, complicating network design [2,7]. Absorption occurs due to the interaction of RF signals with atmospheric molecules such as oxygen (O_2) and water vapor (H_2O). It becomes a significant concern beyond 100 GHz, where specific frequencies are absorbed more.

Key Absorption Frequencies:

- **60 GHz Band:** Oxygen absorption peaks, limiting long distance communication.
- **183 GHz and 325 GHz:** Water vapor absorption becomes significant.
- **Environmental Sensitivity:** Changes in humidity, rainfall, and fog can drastically affect signal strength.
- **Attenuation Model:**
- The attenuation due to molecular absorption is modeled as:

$$L(f, d) = 10 \log_{10} \left(e^{k(f) \cdot d} \right)$$

Where:

- $k(f)$ is the absorption coefficient at frequency f , and d is the transmission distance.

Design Considerations:

- Communication systems in high-frequency bands may need short-range cells (e.g., picocells and femtocells) or repeaters to counteract absorption effects.
- Adaptive modulation schemes can adjust based on environmental feedback, enhancing reliability.

Multipath and Scattering

Accurate modelling of multipath effects is essential for optimizing beamforming and antenna design.

This **multipath propagation** leads to several copies of the transmitted signal arriving at different times, causing **fading** and intersymbol **interference (ISI)**. In dense urban environments, high-frequency RF signals are reflected off surfaces like metal, glass, and concrete [2].

Multipath fading:

It can be modeled using Rayleigh or Rician models depending on Line of Sight (LoS)

- **Rayleigh Model:** Used when there is no direct line-of-sight (LoS) path.

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad r \geq 0$$

- **Rician Model:** Used when a dominant LoS path exists, with a K-factor representing the power ratio between the LoS path and multipath components.

Scattering:

- **Diffuse Scattering:** Occurs when the signal reflects off rough surfaces, creating multiple weaker signal components.
- **Specular Reflections:** Strong reflections from smooth surfaces like glass, which can improve signal strength but also cause destructive interference.

Rf Propagation Model For 6G Networks

Ray-Tracing Model

High-frequency RF propagation in 6G networks particularly at **mmWave (30-300 GHz)** and **THz (>300 GHz)** bands requires specialized models. Traditional models (e.g., Friis, Okumura-Hata) fail to capture the complexities introduced by **severe path loss**, **blockages**, and **multipath interference**.

Ray tracing models simulate RF propagation by calculating the precise paths taken by signals in complex environments. These models account for **reflections**, **diffractions**, and **scattering** thus capturing signal interactions with buildings, terrain, and other objects [5].

Pros and Challenges:

- **High precision:** Suitable for small cell planning in dense urban areas.
- **Computational complexity:** Real-time deployment requires significant computational resources.
- **Detailed environmental input:** Requires 3D models of the deployment area, which can be difficult but if available can be a great asset to creating these models accurately.

Statistical Models

Statistical or empirical models predict propagation behaviour based on measurements taken in similar environments [4]. These models simplify the complex propagation process by focusing on large scale trends like path loss, shadowing, and fading like

- COST-231-Hata Model

The COST-231-Hata model extends the traditional Hata model for urban areas, covering frequencies up to 2 GHz. However, its use in mmWave or THz bands is limited due to the lack of high-frequency propagation characteristics.

$$PL(dB) = 46.3 + 33.9 \log_{10}(f) - 13.82 \log_{10}(h_b) - a(h_m) + [44.9 - 6.55 \log_{10}(h_b)] \log_{10}(d)$$

Where:

f = Frequency in MHz

h_b = Base station antenna height (m)

h_m = Mobile station antenna height (m)

d = Distance between transmitter and receiver (km)

$a(h_m)$ = Correction factor for mobile antenna height

- ITU-R Model

This model is widely used for indoor propagation and applies frequency-dependent path loss parameters:

$$PL(dB) = PL_0 + 10n \log_{10}(d) + kf$$

Where:

- PL_0 = Path loss at 1 meter

- n = Path loss exponent

- k = Frequency coefficient

This model cannot accurately capture the propagation characteristics of mmWave or THz signals.

Hybrid Models

Hybrid approach combines statistical models and ray-tracing simulations, to create multi-scale RF models for 6G [5].

These models operate at different levels of abstraction:

- Statistical models** for large-scale planning.
- Ray-tracing models** for precise small-area simulations (e.g., urban canyons).

Challenges And Possible Solutions In Dense 6G Networks

Penetration Loss

Penetration loss refers to the **attenuation of signal power** as high-frequency waves pass through obstacles. Materials like concrete, glass, metal, and wood have high absorption coefficients at mmWave and THz frequencies, leading to severe signal degradation [2]. For example, concrete walls may introduce losses of 20-30 dB, while metallic beams can cause near-total blockage. This necessitates **small cell deployments** and **distributed antenna systems (DAS)** to ensure good coverage indoors. Additionally, reconfigurable intelligent surfaces (RIS) are should be explored to reflect signals efficiently into shadowed zones [6].

Network Interference

Dense deployments **increase the probability of co-channel interference (CCI)** due to overlapping coverage areas, leading to decreased signal to interference-plus noise ratio (SINR). This affects the network's Quality of Service (QoS) and spectral efficiency [7]. Advanced techniques such as **inter-cell interference coordination (ICIC)** and **enhanced beamforming** should be employed to reduce interference

Mobility Management.

Handling mobility in high-frequency networks is particularly difficult as **mmWave and THz signals** have short coverage ranges and are susceptible to blockages, requiring **frequent handovers** [8].

In high-speed scenarios, such as **Vehicle-to-Everything (V2X)** communication, **beamforming and tracking algorithms** must dynamically adjust the direction of beams. **Soft handover techniques** need to be implemented, where multiple beams or links are maintained simultaneously, we need to ensure seamless transitions between cells without data loss [4].

Environmental Sensitivity

Signals at mmWave and THz frequencies are highly sensitive to environmental factors such as rain, fog, snow, and even atmospheric gases [5]. The specific attenuation γ due to rain can be calculated using:

$$\gamma(dB/km) = kR^\alpha$$

Where:

- k and α :** Coefficients dependent on frequency and polarization
- R:** Rainfall rate (mm/hr)

Fog and humidity also introduce absorption, particularly at THz frequencies, due to interaction with water vapor.

6G networks will employ **adaptive modulation and coding (AMC)** schemes to maintain link reliability under varying conditions. **Real-time beamforming and link aggregation** techniques will allow for seamless switching to lower frequencies.

Optimization Strategies

To overcome these challenges, some solutions are discussed above but we need to look further into optimization strategies being developed to ensure a robust and future-ready 6G network.

Reconfigurable Intelligent Surfaces (RIS)

Reconfigurable Intelligent Surfaces (RIS) consist of meta-materials that can be programmed to reflect, refract, or scatter electromagnetic waves. These surfaces manipulate the phase, amplitude, and polarization of incident waves, creating favorable propagation paths and reducing shadowing effects [7]. The **surface reflectivity coefficient** $R(\theta)$ adapts in real-time to changing network conditions:

$$R(\theta) = e^{j\phi(\theta)}$$

Where:

$R(\theta)$: Reflectivity at incidence angle θ

$\phi(\theta)$: Phase shift induced by RIS elements

In urban environments, RIS can dynamically adjust to provide non-line-of-sight (NLoS) communication by reflecting signals over obstacles. Furthermore, AI/ML-based control algorithms learning from past data and improving them based on current conditions need to be integrated to optimize RIS configurations for minimizing path loss and enhancing spectral efficiency.

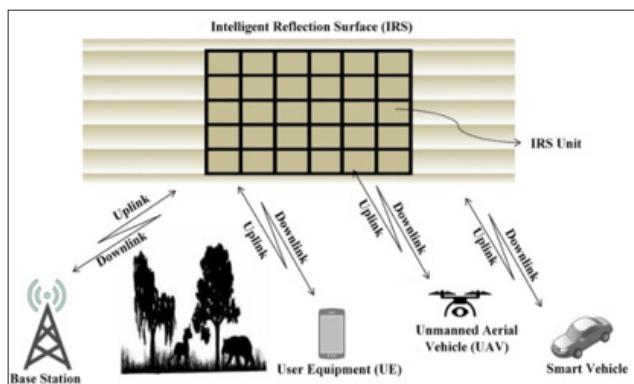


Figure 1: Intelligent Reflective Surfaces [10]

Hybrid Beamforming

Hybrid beamforming leverages a combination of analog phase shifters and digital precoding to achieve an optimal trade-off between hardware complexity and energy efficiency. This approach allows the system to steer narrow beams towards

intended users, minimizing interference with neighboring cells. Beam alignment and tracking algorithms are critical in V2X or UAV communication, where user mobility demands fast and accurate beam switching. Hybrid beamforming maximizes array gain and spectral efficiency with reduced power consumption [6].

Cooperative Multi Band Communication

One new optimization strategy involves cooperative multi-band communication, where the network dynamically switches between THz, mmWave, and sub-6 GHz frequencies to maintain reliability and performance. This technique ensures ultra-reliable low-latency communication (URLLC) by selecting the optimal frequency band based on link quality, environmental conditions, and user mobility. Additionally, carrier aggregation across multiple frequency bands enhances the effective data rate and ensures seamless communication even under adverse conditions, such as rain-induced attenuation at higher frequencies [9].

Future Direction

Further advancements are required to develop accurate and computationally efficient models for high-frequency RF propagation in dense 6G networks. These models must account for environmental variability, multi-band communication, and AI-driven optimization, while maintaining network sustainability [3]. Some methods that will prove effective in getting there are mentioned below.

- **Quantum RF Modeling**

With THz frequencies operating at extremely short wavelengths, quantum mechanical effects, such as tunneling and quantum **noise**, start to influence signal propagation

- **Cross Layer Optimization**

Cross-layer optimization is critical for 6G networks to achieve end-to-end performance by jointly optimizing parameters across the physical, MAC, and network layers.

- **Collaborative AI and ML Models**

Collaborative AI models aim to enhance propagation predictions by utilizing data from multiple sources, such as IoT sensors, UAVs, and edge devices. These models leverage federated learning (FL) to build global models while preserving data privacy.

Conclusion

The deployment of 6G networks at high frequencies presents significant propagation challenges that must be addressed to achieve reliable and efficient communication. Accurate RF models are essential for understanding signal behavior in dense environments. Optimization strategies, such as RIS, hybrid beamforming, and AI-driven models, play a pivotal role in overcoming these challenges. Future research efforts must focus on developing adaptive and sustainable solutions to ensure the successful realization of 6G networks[10].

References

1. M Giordani, M Polese, M Zorzi (2020) "Toward 6G Networks: Use Cases and Technologies," *IEEE Communications Magazine* 3: 55-61.
2. Rappaport (2019) "Wireless Communications and Applications Above 100 GHz," *IEEE Access* <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732419>.
3. A Goldsmith (2005) *Wireless Communications*. Cambridge University Press <https://dl.acm.org/doi/10.5555/993515>.
4. I Akyildiz (2014) "Terahertz Band: Next Frontier for Wireless Communications," *Physical Communication* 12: 16-32.
5. H Tataria, M Shafi, A F Molisch, M Dohler, H Sjöland, et al. "6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities," *Proceedings of the IEEE* 109: 1166-1199.
6. M Alazemi, N Alhussein, L Xiang (2022) "Wireless Communication in the Millimeter and Terahertz Bands: A Survey on Channel Modeling and Propagation," *IEEE Transactions on Communications* 70: 2152-2170.
7. Rappaport et al., "Wireless Communications and Applications Above 100 GHz," *IEEE Access*, 2019. DOI.
8. A Gupta, R Jha (2015) "A Survey of 5G Network: Architecture and Emerging Technologies," *IEEE Access* 3: 1206-1232.
9. Jun Tang, Qingtao Pan, Gang Liu (2021) "A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends," *IEEE/CAA Journal of Automatica Sinica* 10: 1627-1643.
10. M El-Sayed, M El-Mahallawy, HM El-Sayed (2002) A comprehensive survey on the future of wireless communication technologies: 6G networks-Opportunities, challenges, and open research issues. *Journal of the Egyptian Mathematical Society* 30:73.

Copyright: ©2024 Pratik Jangale. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.