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ABSTRACT

In this article we attempt to describe a short proof of Fermat's Last Theorem. The Fermat's diophantine equation x" = y"+ z" gives rise to an equation of
(n-1)™ degree, which can be proved to have no positive rational roots. This proves the case for any odd prime n. For n = 4 we use the principle of reductio-
ad-absurdum along with a polynomial equation of degree 3. Further Beal's conjecture is examined and proved to be true.
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Historical Introduction

Pierre de Fermat (20th August 1601-12th January 1665), a
Frenchman of Paris had no Mathematics training and he evinced
no interest in its study until he was past 30 [2,3,5].

To him it was merely a hobby to be cultivated in leisure time. Yet
no practitioner of his day made greater discoveries or contributed
more to the advancement of Mathematics. By profession he was
a lawyer and a politician. His contributions to number theory
overshadow all else. Adamently refusing to bring his work to the
state of perfection and their publication, he thwarted the several
efforts of others to make the results available in print under his
name [2,3]. Most of what little we know about his investigations, is
found in the letters to his friends or notes in the margin of whatever
book he happened to be using. This habit of communicating results
piece meal, usually as challenges, was particularly annoying to
the Parisian Mathematicians. At one point they angrily accused
Fermat of posing impossible problems and threatened to break off
correspondence unless more details were forthcoming. Because
his parliamentary duties demanded an ever-greater portion of his
time, Fermat was given to inserting notes on the margins of his
personal copy of the Bachet edition of Diophantus-Arithmatica,
many of his theorems in number theory.

These were discovered five years after his death by his son Samuel,
who brought out a new edition of Arithmatica, incorporating his
father's celebrated marginalia. By far the most famous is the one
written in 1637 in the margin of Arithmatica, which states that:
It is impossible to write a cube as a sum of two cubes, a fourth
power as a sum of two fourth powers and in general, any power
beyond the second, as a sum of two similar powers in non-zero
integers. For this, I discovered a truly wonderful proof, but the
margin is too small to contain it. The above statement of Fermat
is known as Fermat's Last Theorem (hereafter we write in short
FLT). Despite efforts of many mathematicians and amateurs, it

couldn't be proved for about 350 years. In 1955 Yuataka Taniyama
of Japan announced a theory on elliptic curves, which turned
out later as a link leading to a proof of FLT. After some hectic
research, he published his findings in 1955 along with a conjecture,
known as Yutaka Taniyama Conjecture (now known as Modularity
Theorem). It states that, for every elliptic curve y*= ax® + bx
+c over the rational field @), there exists non-constant modular
functions, f{z) and ¢(z) such that

f(z)2 = ag/ﬁ(z)3 +b¢(z)+c

He died in 1958. Goro Shimura, a close friend of Taniyama,
tried very hard for about 25 years in search of a proof of this, but
could not succeed. Later Kenneth Ribet of USA made intensive
research on the conjecture, but could not find the connection
between the Taniyama Conjecture and the FLT. But he arrived
at the conclusion that — If the Taniyama—Shimura Conjecture
is true, then it should imply that the FLT is also true. During the
year 1986, Andrew Wiles of Cambridge, UK got the journal in
which Ribet's research was published.

On 23" June 1993, Andrew Wiles announced a proof of FLT, but
it had some flaw [5]. When all his efforts to correct the flaw failed,
he returned to avail of the assistance of Richard Taylor who was
once a student of Andrew Wiles and later his colleague, in research
on rectifying the flaw. Together, Andrew Wiles and Richard Taylor
published their proof of FLT, for international scrutiny in May
1995. The proof consists of two parts: Modular Elliptic Curves
and FLT by Andrew Wiles and Ring Theoretic properties of some
Hecke Algebras by Richard Taylor. Wile's proof is based on one
significant point in the paper by Richard Taylor. This approach was
much simpler and shorter than Wile's original proof of 1993 [5].
Still the number of pages is more than 200, whereas the original
proof contained about 1000 pages. The Taniyama Conjecture was
fully proved by C. Breuil, B. Conrad, F. Diamond and R. Taylor in
1999, based on the Wile's work. Now the conjecture has become
a Theorem known as the Modularity Theorem.
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Andrew Wiles came to the conclusion that Fermat could never
have proved FLT with the limited methods available to him and
that Fermat's claim of having a simple proof, was far from truth [5].

When n = pk where p is prime, the Fermat's equation x"= y"+ z"
becomes (x*)P = (y¥)? + (z¥)P which is of the form w’=w+
w. Ifthis equation cannot have a non-trivial integer solution, then
there will be no solution of the form u = x*, v = y* w=zF, implying
that x"=y"+z" will not have non-zero integer solution. Thus, it
is sufficient to prove FLT for n=4 and n= an odd prime. Fermat
used his method of “infinite descent' to prove the impossibility
of satisfying x*=y*+z*. Euler proved FLT for n=3 in 1770 by
using the method of “infinite descent'. Kummer proved FLT for
all prime between 3 and 100 except 37, 59, 67 which are called
irregular primes [5].

In this paper, we attempt to present some arguments which is
probably the method for the simple proof of FLT, anticipated by
Fermat in 1637.

Fermat's Last Theorem
The diophantine equation

x"=y"+z2" (1

has no non-trivial integer solution when » is a positive integer
greater than 2.

For n =1, it is trivially true, since (p + ¢,p,q) satisfies (1) where
D»q are co-primes.

For n =2 we can rewrite (1) as

u’—v* =1 2)
Where u = i = X. That is,
z’ z
(u=v)(u+v)=1 (3)

Assuming x,),z are integers, u and v will be rational numbers so
that u —v and u + v are also rational. Therefore, we may take

P .
u-v= P and u+v= 4 , where p and ¢ are co-primes.

Solving the last two equations we see that

2 2 2 2
Toy=0 TP gpg Yoy 4P 4)
z 2gp z 2gp

sothat x=¢’+p° , y=¢* - p* and z=2pq will satisfy x* = y* + 2*
As a general statement we can say that x> = y> +7z has infinitely

many solutions in Pythagorean triples as (i) integers (ii) rational
numbers (iii) real numbers.

FLT forn=3
X=y"+z" implies v’ —v* =1 5)

X
where u == and v=X.A1s0, we let x—y=hp , z=hq where
z z

h,p, g are positive integers and p, g are coprimes. Factoring the
last equation

(u—v)(u2+uv+v2)=1 (6)

As in Section 2, u and v are rational numbers satisfying

n-v="> @)
q
and then
wrnvevi=4 (8)
p

Since x<y+z it followsthatx—y <z and p<gq.

It will be shown that the last two equation (7) and (8) have no
positive rational solution.

The solution of (5) will be the common solution of (7) and (8)
which can be found by determining the equation of the pair of
lines joining origin to the points of intersection of (7) and (8)
along with (7). The required pair of lines will have equation in the
form, after homegenizing the right-hand side of (8) by using (7).

= (u=v)

e (L an{Z o [ s

‘ vQ

L{ +MV+V

'U\Q

ie. au’ =2huv+v* =0 ©)
where
3
q 1
h=="5+= 10
AL (10)
and
3
-9 _
a= » 1 (1)

Clearly h and a are rationals and 4 > ¢ > 0 since L. land q>p.
By (10) and (11) we have 2
h—a=

3
2 (12)

and

3
27_1
p 2

(13)
The slope m = Y of the lines contained in (9) is given by
u

= hEl* —d? Zﬁ

a a
where p=+h*-a*>0=h’=a*+b*> so that (h,a,b) forma
Pythogorean triple of real numbers with / and a rational; it will be
shown that b cannot be rational. For if 4 is rational then (%,a,b) is
arational Pythogorean triple, so that there exist rational numbers
A, 1 such that

L0 (14)
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D h=A+u’a=2"— 1>, b=22u Or
i) h=2+u’,a=2Au,b=A> -y’ or
iil)b=0,h" =a’

Case (i)

h=2+u’a=2"—u*,b=22u (15)

In this case h+a=24" = 2i — and h—a=24" ——byusmg
(12) and (13).

3

ﬁ -
N
P

Tha’[is,u:‘/{_§ and 1= L _2 =
2

(1 1s irrational, contradicting the assumption that both A and « are
rational = (h,a,b) cannot be a rational Pythogorean triple = b

is irrational. Now s = =+ —Z is clearly irrational, since b is
a a

. . . v .
irrational and A, a are rational, whereas m = — must be rational

u
y X .. . . .
where v=-= , 4 == and x,y,z are positive integers satisfying
z z
Y=y +z.

Hence equation (9) cannot have any positive rational solution,
so that (7) and (8) and hence (5) cannot have a positive rational
solution = Equation (1) cannot have any positive integral solution
for n=3.

Alternatively, if

A=

-
|

9 _
p3
where 4 and B are coprimes then we have

A*=4¢’-p’ and B’ =4p’
so that B is even = 2B, say

=4B; =4p’or p’ =B => A’ +B; =4q’ =

A and B, are both odd or both even.

If A=2k—1 and B, =2k,-1 are odd then we have

M (4)+2+M(4)=M (4)or M (4)=2

a contradiction. If 4 and B, are eventhen4 and B=2B, are also
even so that 2 is a common factor of 4 and B . This contradiction
proves that A cannot be rational. .. 4 is irrational. Similarly

3 V3

4 2

1s irrational.

3 ’34 op?
qg 1 q —-p C
b=2iu= 3(73_2]: ¥=f
p p D

Now

say where Cand D are coprimes =

= =3C, and D=M(2)=2D,

G :>D M(3

= D=2D,=M(6) = Cand D are M(3) a contradiction. This
contradiction proves that b =21 is irrational.

4q—

h b
SomM=—t—
a da

is irrational since / and a are rational but b is irrational. This
proves case (i).

Case (ii)

h=2+u’,a=2ub=2" - (16)

In this case we have
2¢° 1
hva=(A+u) ==L _—

h—a :(/1—/1)2 :% by using(12) and (13)

These imply

4ﬂy=(/1+y)2—(/1—,u)zzzpi3— (17)

is rational but A is irrational = Both A and x cannot be rational, a
contradiction to the assumption that both 4 and i are rational. Now

2 2
m="t = (22442 ) £ (A7 - ) = 247 2p
244 2Au
v_A K . .
Som=—= Y cannot be rational, since both A, u cannot be
u

rational, nor rational multiples of a monomial surd. As in case
(1) it follows that (5) cannot have a positive rational solution so
that FLT for n =3 holds in this case.

Alternatively, we have

3
A—pu=|—=
H 2
and
2¢ 1 4
A+pu= |—4—-——=—
a 2 B
say where 4 and B are coprimes.
. A*=4¢’—p® and B* =2p’

‘. Biseven =238, say
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4B; =2p° or p’=2B;

and
A* =4q° —2B?

is even = A is even. Thus, both 4 and B are even, a contradiction.

~. A+ pis irrational. Similarly, A —x is also irrational.

Hence if A is rational

is irrational and if x is rational, then A = y+ \/g is irrational.

Alsoifdand i are rationals then both L+ 1 and A —u are rationals.
= Both A and x cannot be rational according to the values of

A
A+ uand A — u = Both A and x cannot be rational = —
y7,
Y7

and <= cannot be rational.

A

+—=

h
SMmM = —
a

alo
P

A
-
u
cannot be rational, i.e., m is irrational. This proves case (ii).

Case (iii)

-2 _34 is irrational, a contradiction, since p and ¢ are positive
q

integer = (7) and (8) and hence (5) cannot have a positive
rational solution = FLT for n=3 holds in this case. Thus, FLT
holds for n = 3. Before considering the proof for odd n >3 , we
need a lemma proved below.

Lemma
When n is an odd prime greater than 3

tan’ (Zj,sin2 (E) and cos’ (E)
n n n
are all irrational for any positive integer » such that 0 <r <n.

T
Let0 =— or n@=rr = tannf =0
n

than 9_(zjtan3 0*(’51]%5 O++(-1) tan" =0 (18)

where ;==L
2

IR e ———

The LHS is a polynomial in tan? § with integer coefficients and
is also a polynomial in tan 6 of degree 2¢. Since n divides each of

giRee

divide (Yj the polynomial in (19) is irreducible over Q the field

j and n does not divide (—1)" and n*> does not

of rational numbers, by Eisenstein's criterion [1,2,4] and the
equation has no rational value for tan2 g, for n>3.

Since
) 1

) tan® 6
sin’ @ = =
1+tan" @

1+tan’ @’
the assertion of the lemma is true.

FLT for an Odd Prime n >3
Assume n = 2t + 1 where ¢ > 2, is a positive integer and n is a
prime.

In this case, it will be proved that

u"—v'=1 (20)

has no positive rational solution. By factorization of (20) we can
rewrite it as [5]

t
2rrm
— 2_»9 it 2 =1
(u=-9T] {u urcos( p ]+v } (21)
r=l1
As in Sections 2 and 3 we assume
" (22)
q
2
u2—2uvcos(m)+v2:q’ (r=l20r) (23
n P,
where 4 are real numbers satisfying
pr
hdh 4_9 (24)
P P, PP

With each of the ¢ quadratic equations contained in equation
(23) we can adjoin equation (22) to have ¢ pairs of simultaneous
equations in u# v. The common solutions of these pairs will be
the solution of equation (20). By showing that none of the # pairs
have a positive rational solution, it will follow that equation (20)
has no positive rational solution and hence equation (1) has no
non-trivial integer solution.

The above equations imply that

2
u® —Zlecos(ﬂj-#v2 —(u—v)2 :q—’—p—z
n

P4

2( 2
ie. 4uvsin’ [Ej = pz(qzqr—lJ
n qa\pp
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2

p D,

2
—1=4uy [qzj sin’ (E)
p n

C . oY .. . .
is irrational, since sin (7j is irrational irrespective of u, v
n

. . q. . . . .
being rational or not, for n > 3 = —— isirrational and so is

2 2
% —cos® (Zj =1+ 4m{qZ] sin’ (ZJ —cos’ [Ej
pPp, n p n n

For any particular value of 7, the lines joining origin to the points
of intersection of (22) and (23) is of the form

2 2
u? —2uvcos(ﬂj+v2 :ﬂ(u—v)2 q—z
n b, p

That is

, 2 2 2 , 2
" {&1} z{ﬁ(lﬂ [&1] o
2y rp, n pp.

ie au’ —2huv+av’ =0 (25)

where
b= 2 cos (21) (26)
a, = Z% -1 @7)

Clearly 4. >a, >0 since1> cos(zr—”j,q >p 4, > p, by choice
n

and /_and a_ are irrational.

From (26) and (27)
h,—a, =1—cos (zr—”) =2sin’ (Zj (28)
n n
and
2
h +a, :@ —2cos’ [Zj
pp, n
2 @ —cos’ [E]
P’p, n (29)

The slope m = Y of the lines contained in (25) is given by

u
I s (30)
aV
By letting b= / hf - b}_z >( we have
h tb,
m== (1)
and
h=a’+b’ (32)
for (r=1,2,....,t)

Thus (4,,a,,b,) from a Pythogorean triple of real number so that
there exist real numbers 4,4, such that

() b, =24 +p, a, =224, , b, =2 or

() h, =7+, a =A"—pu?, b =24 OF

(iii) =0 and h =+,

Case (i) h, =47 +p7,a, = 22,44y, by = A7 — 1]

In this case,

2
ho+a, =(A,+ 4, )y = 2|:qquCOSZ (MH
p

. n

n

h—a,=(4 —p,) =2sin’ (Zj
by using (28) and (29)

2
"'4/1r‘Llr: ﬂ’r+/ur 2_ ﬂ’r_/ur 2:2|:q%_1:|
( ) ) r’p,

is irrational = Both A, and Ky cannot be rational, and cannot
be monomial surds. This is a contradiction to the assumption

. . x .
that m =5 is rational, where v = R , u == are both rational
z z

when equation (1) has a positive integral solution.

.. From (31)

m=

(W) -u) 4w
241, B ya ’ A,

cannot be rational. The above contradiction proves that m cannot
be rational. It follows that FLT holds in this case.

Case (ii) =42+ 42,0, = 37 —4'.b, = 24,

>

In this case
2 rr
h +a =231 =2 %ﬂ:osz [—j
pp n

h —a, =242 sin’ (Z)
n

? . (rm
ody = [ _cos? [EJ and x4, =sin [—)
\p’p, n n

2
But ¢, =(4} -4} )= 44 _1 s jrrational.
pp

Hence both (4, —#,) and (4, +x,) cannot be rational.

(,13 + yf)iu,y,.

2
»

. h b,
Som= =

a A-n

»

(htu) _2tm A-m
= A—u A tu,

cannot be rational since both (/lr + ,ur) and (/1r - ,ur)

cannot be rational, and cannot be monomial surds. This is a
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contradiction to the assumption that m = Y is rational, where
u
V= Y U= % are both rational when equation (1) has a positive
z z
integral solution. This contradiction proves that m is irrational
for each  such that 0 < <¢ . As in Case (i) it follows that FLT

holds in this case also.

Case (iii) b, =0 and 1 =*a,

—cos(zrﬂj (q 4 —lj
n p pr
2
'.%=cos2 (Zj or cos(zr_ﬁjzl
pp, n n

Discarding the second condition and by letting » =1,2,...,¢
in succession and multiplying we have
7”72'
n

Hence
q9’q,
2
p p}’

q qlqz qt HCOS
p p1p2 |

by using (24)
. ! T
3 q—n = H cos’ (—
p r=1 n

From [6] for any odd integer n we have

(33)

x_

- —H{x —2xcos(2n )+1}

By letting x=-1 implies

1= 22t1_[cos2 (zj
| n

is irrational a contradiction since p,g are positive integers. Hence
(22) cannot hold and (20) has no positive rational solution for each
7 such that 0 <r <t and hence FLT holds in this case also. FLT
holds for n >3 in all the three cases.

Thus, FLT holds for all odd prime n > 3.

FLT for n=4
By letting n=4 in equations (5) to (10), the equation (10) becomes

4
l—m‘*%(l—m)4

Letting 5 = 1 +1 or lzm_l:(ﬂj we have
X

4
(/1+1)4—1+q—4/14 =

4
:(1+‘1—4Jz4+412+6/12+4/1=0
p p

(p'+q*) A +2p" (247 +52+2) =0 (34)

733 2 2
(p“+q4)£ rp J+2p{2(—h€? j—{h—pj“}
X X X
4 4\13
...(p +q )h :2x|:2h2p2

p
Similarly

—3hpx +2x° } (35)

44
+ /

(» 4 )h3:2x[
p

From x*= y* +z* we have x =y +z mod 2 so that x-y =z mod 2

and x —z =y mod 2 or

h(g-p)=0="h'(q

In order to prove the falsity of #' = 0 mod2, we consider the
possibilities (i) 2'= 0=/ mod2 and (ii) #'=0=(g—p) mod2 and
prove that these conditions are invalid.

2h%p? =3h p'x+2x° ] (36)

- p' ) mod 2 (37)

In the former possibility, we have x —z=0 =y mod 2 and x —y
=0 = z mod 2 implying that x, y, z are even positive integers.
This contradiction proves that possibilities (i) is invalid. In the
possibility (ii) we have #' = 0 mod2 and q = p mod2 so that /' is
even and p, g are odd positive integers, since they are coprimes.
Alsoy="h'q" is even and hence x, z are odd, /' p' is also even.

If g is even then y =/h'q' =M (4)=4y, . sa
xt = =(4y) = (x—z)(x+z)(x2 +Z2):256y14
Let x—z =2k y,,x+z =2k,y, so that
2(x*+27)=4(k’+k5 )y} and ¥ +27 =2(k +k] )y =
Bkik, (K +k3 ) vy =256y =
lky (K +k;) =32 (33)
. (kik,) and (& +43 ) are factors of 32.

There are five possibilities to be considered
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(i) kk, =1 and k] +k; =32. The first condition means

k, = k, =1 which does not satisfy the second condition.

(i) kk, =2 and k’+k; =16. This means

(ky+k ) =16+4=20=k, +k cannot be a positive integer.
(iii) kk, =4 and k' +k} =8 = k, =k, =2 = z=0>
The solution for (x, y, z) is trivial with z=0.

(iv) kk, =8 and k! +k;} =4 = (k, +k, )2 =20 so that

ky + ki cannot be a positive integer.

(V) kk, =16 and &} + k2 =2 =(k, +k )" =34 so that k, +£,

cannot be a positive integer. Hence equation (38) cannot have any
positive integral solution so that the assumption that 4' is even,
is false. = ¢' is odd.

Similarly p' is odd
From (36) it may be noted that the LHS = M (2°)

= x[2h°p” =3h'p'x+2x" | = M (4)
= 4is a factor of [ 24 p” = 3h'p'x + 2" |
= 2x* =3h'p'x = M (4) (since h'p" is even)
< 2x=3hp' = M (4)
so thatx is even, when h'= M (4) or p'=M (2)= k' =M (2)
and p' is odd.

Now RHS of (36) is xM (4) and LHS = M (8) at least.
Sx.M(4)=M(8)= x is even.

This contradicts the earlier assertion that x is odd. This proves
that the possibility (ii) is also invalid. Hence by the principle
of symbolic logic we must have /' # 0 mod 2 Similarly we can
prove that # # 0 mod 2. Now equations (37) implies (¢ —p) =0
= (g p') mod 2so that p, g are odd, since they are coprimes and
similarly p',q"are odd. Thus A,p,q and /', p', ¢' are all odd positive
integers. Hence y = /'q', z=hq are odd integers and hence x must
be an even positive integer. We shall show that this statement is
invalid. Suppose x*=y*+ z*where x, y, z are positive integers such
that their GCD = 1. Letting X = x%, ¥ = )* Z = z* we have X*=
Y*+Z?so that (X, Y, Z) form a Pythagorean triple with solution

X=0"+P, Y=0"-P, Z=20P

where P, O are coprimes (with O > P) in which Y and Z can
be exchanged due to symmetry. Clearly Z/ Y is even so that X
must be an odd integer.

. x* and hence x must be an odd integer. Hence the requirement
that x is even and y,z are odd, cannot be satisfied. Also y /z is
even implies ¢ /¢’ is even contradicting the earlier assertion that
g and ¢'are odd. These contradictions prove that x* = y* + z* has
no positive integral solution i.e. FLT is true for n = 4".

The method of simple proof of FLT might be the method explained
in the above Sections 3, 4 and 5.

Comparison between Beal's Conjecture and FLT

Inspired by the FLT, Andrew Beal, a banker from Texas, USA [5]
proposed the following conjecture: If x*=)?+ z°where a,b,c are
positive integers and may be different as well as greater than 2 and
X, ¥, z are positive integers, have solutions then x, y, z have a
common factor greater than 2. The dissimilarity between FLT
and Beal's equation is that in FLT we consider values of x, y, z
such that any two of them must be co-primes, whereas in Beal's
equation, no two of them are co-primes but all of them have a
common factor greater than 2.

Without loss of generality we assume Max(a,b,c) > 2 and there is
an initial solution of Beal's equation without a common factor of
X, ¥,z Let L = LCM (a,b,c) so that there exists positive integers
a', b'.c'such that L =aa’'= bb' = cc'. Choose m= Min (da', b', ¢').
Multiplying the initial Beal's equation by p* where p is any odd
prime or an even integer from the set {2,4,8,16,32,...} if m > 2
or from the set {4,8,16,32,...} if m = 1. We note that p” will be a

. AN ’ \b
common factor of the new x,,z since p“x* =(p"x)’, p'y" =(p")
4 < . . .
and p“z¢ = ( p° z) implies that p” is common for the new

values of x,y,z. Since L has either an odd prime or 4 as a factor
when Max (a,b,c) > 2 there will be at least one choice of p such that
p"is a common factor of new x, y, z after multiplication of the
initial Beal's equation by p*. As examples, consider

32=23+13 6]
and

5=117+2 (ii)

Multiplying these by 3¢ the results are 812 = 18° + 9° and
453=297*+54? so that the common factor is 9. Multiplying (i)
and (ii) by 26 the results are 24°=83+4* and 20°=882+16? so that
the common factor is 4. Hence Beal's conjecture is true in general
since Max (a, b, ¢) > 2 and p is chosen as stated above.
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