
Open    Access

Journal of Mathematical & 
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024                   Volume 3(4): 1-7

Review Article

A Simple Elementary Proof of Fermat's Last Theorem

Former Professor of Mathematics, Narayanaguru College of Engineering, Manjalummood, Tamil Nadu, India

Chandramohanan MR 

*Corresponding author
Chandramohanan MR, Former Professor of Mathematics, Narayanaguru College of Engineering, Manjalummood, Tamil Nadu, India.

Received: July 17, 2024; Accepted: July 23, 2024, Published: August 30, 2024

Keywords: Standard Notations of Algebra, FLT stands for 
Fermat's Last Theorem

Historical Introduction
Pierre de Fermat (20th August 1601-12th January 1665), a 
Frenchman of Paris had no Mathematics training and he evinced 
no interest in its study until he was past 30 [2,3,5].

To him it was merely a hobby to be cultivated in leisure time. Yet 
no practitioner of his day made greater discoveries or contributed 
more to the advancement of Mathematics. By profession he was 
a lawyer and a politician. His contributions to number theory 
overshadow all else. Adamently refusing to bring his work to the 
state of perfection and their publication, he thwarted the several 
efforts of others to make the results available in print under his 
name [2,3]. Most of what little we know about his investigations, is 
found in the letters to his friends or notes in the margin of whatever 
book he happened to be using. This habit of communicating results 
piece meal, usually as challenges, was particularly annoying to 
the Parisian Mathematicians. At one point they angrily accused 
Fermat of posing impossible problems and threatened to break off 
correspondence unless more details were forthcoming. Because 
his parliamentary duties demanded an ever-greater portion of his 
time, Fermat was given to inserting notes on the margins of his 
personal copy of the Bachet edition of Diophantus-Arithmatica, 
many of his theorems in number theory. 

These were discovered five years after his death by his son Samuel, 
who brought out a new edition of Arithmatica, incorporating his 
father's celebrated marginalia. By far the most famous is the one 
written in 1637 in the margin of Arithmatica, which states that: 
It is impossible to write a cube as a sum of two cubes, a fourth 
power as a sum of two fourth powers and in general, any power 
beyond the second, as a sum of two similar powers in non-zero 
integers. For this, I discovered a truly wonderful proof, but the 
margin is too small to contain it. The above statement of Fermat 
is known as Fermat's Last Theorem (hereafter we write in short 
FLT). Despite efforts of many mathematicians and amateurs, it 

couldn't be proved for about 350 years. In 1955 Yuataka Taniyama 
of Japan announced a theory on elliptic curves, which turned 
out later as a link leading to a proof of FLT. After some hectic 
research, he published his findings in 1955 along with a conjecture, 
known as Yutaka Taniyama Conjecture (now known as Modularity 
Theorem). It states that, for every elliptic curve y2 = ax3 + bx 
+c  over the rational field ℚ, there exists non-constant modular 
functions, f(z) and ϕ(z) such that 

He died in 1958. Goro Shimura, a close friend of Taniyama, 
tried very hard for about 25 years in search of a proof of this, but 
could not succeed. Later Kenneth Ribet of USA made intensive 
research on the conjecture, but could not find the connection 
between the Taniyama Conjecture and the FLT. But he arrived 
at the conclusion that — If the Taniyama–Shimura Conjecture 
is true, then it should imply that the FLT is also true. During the 
year 1986, Andrew Wiles of Cambridge, UK got the journal in 
which Ribet's research was published.

On 23rd June 1993, Andrew Wiles announced a proof of FLT, but 
it had some flaw [5]. When all his efforts to correct the flaw failed, 
he returned to avail of the assistance of Richard Taylor who was 
once a student of Andrew Wiles and later his colleague, in research 
on rectifying the flaw. Together, Andrew Wiles and Richard Taylor 
published their proof of FLT, for international scrutiny in May 
1995. The proof consists of two parts: Modular Elliptic Curves 
and FLT by Andrew Wiles and Ring Theoretic properties of some 
Hecke Algebras by Richard Taylor. Wile's proof is based on one 
significant point in the paper by Richard Taylor. This approach was 
much simpler and shorter than Wile's original proof of 1993 [5]. 
Still the number of pages is more than 200, whereas the original 
proof contained about 1000 pages. The Taniyama Conjecture was 
fully proved by C. Breuil, B. Conrad, F. Diamond and R. Taylor in 
1999, based on the Wile's work. Now the conjecture has become 
a Theorem known as the Modularity Theorem.

ABSTRACT
In this article we attempt to describe a short proof of Fermat's Last Theorem. The Fermat's diophantine equation xn = yn + zn gives rise to an equation of   
(n-1)th degree, which can be proved to have no positive rational roots. This proves the case for any odd prime n. For n = 4 we use the principle of reductio-
ad-absurdum along with a polynomial equation of degree 3. Further Beal's conjecture is examined and proved to be true.
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Andrew Wiles came to the conclusion that Fermat could never 
have proved FLT with the limited methods available to him and 
that Fermat's claim of having a simple proof, was far from truth [5].

When n = pk where p is prime, the Fermat's equation xn = yn + zn  
becomes                                            which is of the form  up = vp + 
w p. If this equation cannot have a non-trivial integer solution, then 
there will be no solution of the form u = xk, v = yk,w=zk, implying 
that xn=yn+zn  will not have non-zero integer solution. Thus, it 
is sufficient to prove FLT for n=4 and n= an odd prime. Fermat 
used his method of `infinite descent' to prove the impossibility 
of satisfying x4=y4+z4. Euler proved FLT for n=3 in 1770 by 
using the method of `infinite descent'. Kummer proved FLT for 
all prime between 3 and 100 except 37, 59, 67 which are called 
irregular primes [5].

In this paper, we attempt to present some arguments which is 
probably the method for the simple proof of FLT, anticipated by 
Fermat in 1637.

Fermat's Last Theorem
The diophantine equation

                                                                            (1)

has no non-trivial integer solution when n is a positive integer 
greater than 2.

For n = 1, it is trivially true, since (p + q,p,q) satisfies (1) where 
p,q are co-primes.

For n = 2 we can rewrite (1) as

                                                                            (2)

Where                      . That is,

                                                                            (3) 

Assuming x,y,z are integers, u and v  will be rational numbers so 
that u – v  and u + v  are also rational. Therefore, we may take

                and                  , where p and q are co-primes.

Solving the last two equations we see that

                                                                             (4)

so that                 ,                  and              will satisfy

As a general statement we can say that x2 = y2 +z2  has infinitely 
many solutions in Pythagorean triples as (i) integers (ii) rational 
numbers (iii) real numbers.

FLT for n = 3
                  implies                        (5)
 
where           and          . Also, we let               ,           where 

h,p, q are positive integers and p, q are coprimes. Factoring the 
last equation
                                                                                (6)  

As in Section 2, u and v are rational numbers satisfying

                                                                     (7)
 
and then

                                                                      (8)

Since                 it follows that                and          .

It will be shown that the last two equation (7) and (8) have no 
positive rational solution. 

The solution of (5) will be the common solution of (7) and (8) 
which can be found by determining the equation of the pair of 
lines joining origin to the points of intersection of (7) and (8) 
along with (7). The required pair of lines will have equation in the 
form, after homegenizing the right-hand side of (8) by using (7).

                                                                                          (9)

where

                                                                                       (10)

and

 
                                                                                     (11)

Clearly h and a are rationals and                since           and q >p . 
By (10) and (11) we have

                                                                                   (12)

and

                                                                                   (13)

The slope           of the lines contained in (9) is given by

                                                                                  (14)

where                                                so that (h,a,b)  form a 
Pythogorean triple of real numbers with h and a rational; it will be 
shown that b cannot be rational. For if b is rational then (h,a,b) is 
a rational Pythogorean triple, so that there exist rational numbers 
λ, μ such that
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                                                                              or
                    

i)

                    ii)                                                        or

                    iii)  

Case (i)
                                                     (15)

In this case                                  and                         by using

(12) and (13).
 
That is              and

μ is irrational, contradicting the assumption that both  λ and μ  are 
rational                  cannot be a rational Pythogorean triple

is irrational. Now                 is clearly irrational, since b is 

irrational and         are rational, whereas            must be rational 

where           ,             and x,y,z are positive integers satisfying  

                    . 

Hence equation (9) cannot have any positive rational solution, 
so that (7) and (8) and hence (5) cannot have a positive rational 
solution ⇒ Equation (1) cannot have any positive integral solution 
for n = 3.

Alternatively, if

where A and B are coprimes then we have

so that B is even          say

A and B0  are both odd or both even.

If                      and                     are odd then we have

a contradiction. If  A and B0  are even then A  and B = 2B0  are also 
even so that 2 is a common factor of A  and B . This contradiction 
proves that λ  cannot be rational.         is irrational. Similarly

is irrational.

Now

                     b

say where  C and D  are coprimes ⇒
 
                                                    and

 
                                  C and D  are M(3)  a contradiction. This 
contradiction proves that  b          is irrational.

  

is irrational since h and a are rational but b is irrational. This 
proves  case (i).

Case (ii)

                                                                 (16)

In this case we have

These imply

                                                                   (17)

is rational but λ–μ  is irrational ⇒  Both λ and μ cannot be rational, a 
contradiction to the assumption that both λ  and μ  are rational. Now

                           cannot be rational, since both λ, μ cannot be 

rational, nor rational multiples of a monomial surd. As in case
(i) it follows that (5) cannot have a positive rational solution so 
that FLT for n =3 holds in this case.

Alternatively, we have

and

say where A and B are coprimes.

                                               and

           is even           say
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                                            or
and

is even ⇒ A is even. Thus, both A and B are even, a contradiction.

     λ + μ is irrational. Similarly,  λ – μ  is also irrational.

Hence if  λ  is rational

is irrational and if  μ is rational, then                      is irrational. 

Also if λ and μ  are rationals then both λ + μ  and λ – μ  are rationals.
⇒ Both  λ and μ  cannot be rational according to the values of

λ + μ and λ – μ ⇒ Both λ and μ cannot be rational              , 

and        cannot be rational.

cannot be rational, i.e., m is irrational. This proves case (ii).

Case (iii)

                is irrational, a contradiction, since p and q  are positive 

integer ⇒ (7) and (8) and hence (5) cannot have a positive 
rational solution ⇒ FLT for n=3 holds in this case. Thus, FLT 
holds for n = 3. Before considering the proof for odd n >3 , we 
need a lemma proved below.

Lemma
When n is an odd prime greater than 3

are all irrational for any positive integer r such that 0 < r < n.

                   Let θ

                                                                                          (18)

where

                                                                                  
                                                                                          

(19)

The LHS is a polynomial in tan2  θ with integer coefficients and 
is also a polynomial in tan  θ of degree 2t. Since n divides each of

                               and n does not divide (–1)t  and n2  does not 

divide         the polynomial in (19) is irreducible over Q the field 

of rational numbers, by Eisenstein's criterion [1,2,4] and the 
equation has no rational value for           , for n>3.
 
Since

the assertion of the lemma is true.

FLT for an Odd Prime n > 3
Assume n = 2t + 1 where t > 2, is a positive integer and n is a 
prime.

In this case, it will be proved that

                                                                (20)

has no positive rational solution. By factorization of (20) we can 
rewrite it as [5]

                                                                                      (21)

As in Sections 2 and 3 we assume
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where        are real numbers satisfying
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equations in u v. The common solutions of these pairs will be 
the solution of equation (20). By showing that none of the t pairs 
have a positive rational solution, it will follow that equation (20) 
has no positive rational solution and hence equation (1) has no 
non-trivial integer solution.

The above equations imply that
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is irrational, since                  is irrational irrespective of u, v 

being rational or not, for n > 3 ⇒         is irrational and so is

For any particular value of r, the lines joining origin to the points 
of intersection of (22) and (23) is of the form

That is

                                                                                          (25)
 

where 

                                                                                          (26)

                                                                                          (27)

Clearly                    since                                           by choice 

and hr and ar are irrational.
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and

 
                                                                                      (29)
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contradiction to the assumption that             is rational, where

            ,             are both rational when equation (1) has a positive 

integral solution. This contradiction proves that m is irrational 
for each r such that               . As in Case (i) it follows that FLT
holds in this case also.

Case (iii)              and

Hence

                                                 or

Discarding the second condition and by letting
in succession and multiplying we have

by using (24)

                                                                                     (33)

From [6] for any odd integer n we have

By letting x=-1 implies

is irrational a contradiction since p,q  are positive integers. Hence 
(22) cannot hold and (20) has no positive rational solution for each  
r such that 0 < r < t  and hence FLT holds in this case also. FLT 
holds for n >3  in all the three cases.

Thus, FLT holds for all odd prime n > 3.

FLT for n = 4
By letting n = 4  in equations (5) to (10), the equation (10) becomes

Letting                     or                                       we have

                                                                   (34)

      (                                                                             (35)                           

Similarly

                                                                                  (36)

From x4= y4 + z4  we have x ≡ y + z mod 2 so that x-y ≡ z mod 2
and x –z ≡ y mod 2 or 

( ) ( )0 mod 2h q p h q p′ ′ ′− ≡ ≡ −                     (37)    

In order to prove the falsity of h' ≡ 0 mod2, we consider the 
possibilities (i) h' ≡ 0 ≡ h mod2 and (ii)  h' ≡ 0 ≡ (q– p) mod2  and 
prove that these conditions are invalid.

In the former possibility, we have x – z ≡ 0 ≡ y mod 2 and x –y 
≡ 0 ≡ z mod 2 implying that x, y, z are even positive integers. 
This contradiction proves that possibilities (i) is invalid. In the 
possibility (ii) we have h' ≡ 0 mod2 and q ≡ p mod2 so that h' is 
even and p, q are odd positive integers, since they are coprimes. 
Also y = h' q'  is even and hence x, z are odd, h' p' is also even.

If q'  is even then                                        , say

Let                                                so that

                                                                  (38)

                   and                    are factors of 32.

There are five possibilities to be considered
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(i)                 and                       . The first condition means

                    which does not satisfy the second condition.

(ii)                 and                       . This means

                                                    cannot be a positive integer.

(iii)                and

The solution for (x, y, z) is trivial with z=0.

(iv)                and                                                  so that

             cannot be a positive integer.

(v)                and                                               so that

cannot be a positive integer. Hence equation (38) cannot have any 
positive integral solution so that the assumption that     is even, 
is false.          is odd.

Similarly p' is odd
From (36) it may be noted that the  

so that x  is even, when                   or

and      is odd.

Now RHS of (36) is xM (4) and LHS = M (8) at least.
                                     is even.

This contradicts the earlier assertion that x is odd. This proves 
that the possibility (ii) is also invalid. Hence by the principle 
of symbolic logic we must have h' ≢ 0 mod 2 Similarly we can 
prove that h ≢ 0 mod 2. Now equations (37) implies (q – p) ≡ 0 
≡ (q'– p') mod 2so that p, q are  odd, since they  are coprimes and 
similarly p',q' are odd. Thus h,p,q and h', p', q' are all odd positive 
integers. Hence y = h'q', z=hq are odd integers and hence x must 
be an even positive integer. We shall show that this statement is 
invalid. Suppose x4 = y4 + z4 where x, y, z are positive integers such 
that their GCD = 1. Letting X = x2, Y = y2, Z = z2  we have X2 = 
Y2 +Z2 so that (X, Y, Z)   form a Pythagorean triple with solution 

where P, Q  are coprimes (with Q > P) in which Y  and Z  can 
be exchanged due to symmetry. Clearly Z / Y  is even so that X  
must be an odd integer.

         and hence x must be an odd integer. Hence the requirement 
that x  is even and y,z are odd, cannot be satisfied. Also y /z is 
even implies q /q' is even contradicting the earlier assertion that   
q and q' are odd. These contradictions prove that x4 = y4 + z4 has 
no positive integral solution i.e. FLT is true for n = 4'.

The method of simple proof of FLT might be the method explained 
in the above Sections 3, 4 and 5.

Comparison between Beal's Conjecture and FLT
Inspired by the FLT, Andrew Beal, a banker from Texas, USA [5] 
proposed the following conjecture: If xa = yb + zc where a,b,c are 
positive integers and may be different as well as greater than 2 and
x, y, z  are positive integers, have solutions then x, y, z have a 
common factor greater than 2. The dissimilarity between FLT 
and Beal's equation is that in FLT we consider values of x, y, z  
such that any two of them must be co-primes, whereas in Beal's
equation, no two of them are co-primes but all of them have a 
common factor greater than 2.

Without loss of generality we assume Max(a,b,c) > 2 and there is 
an initial solution of Beal's equation without a common factor of
x, y, z. Let L = LCM (a,b,c) so that there exists positive integers
a', b',c' such that L = aa' = bb' = cc'. Choose m= Min (a', b', c'). 
Multiplying the initial Beal's equation by pL where p is any odd 
prime or an even integer from the set {2,4,8,16,32,...} if m > 2  
or from the set {4,8,16,32,...} if m = 1. We note that pm will be a

common factor of the new x,y,z since                    , 

and                          implies that pm  is common for the new 

values of x,y,z. Since L has either an odd prime or 4 as a factor 
when Max (a,b,c) > 2 there will be at least one choice of p such that
pm is a common factor of new x, y, z after multiplication of the 
initial Beal's equation by pL. As examples, consider

                                   32=23+13                                     (i)

and

                                  53=112+22                                   (ii)

Multiplying these by 36 the results are 812 = 183 + 93 and  
453=2972+542 so that the common factor is 9.  Multiplying (i) 
and (ii) by 26 the results are 242=83+43 and 203=882+162 so that 
the common factor is 4. Hence Beal's conjecture is true in general 
since Max (a, b, c) > 2 and p is chosen as stated above.
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