
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2025 Volume 4(4): 1-4

Review Article

Understanding Distance Metrics in KNN Imputation: Theoretical
Insights and Applications

USA

Vaibhav Tummalapalli

*Corresponding author
Vaibhav Tummalapalli, Atlanta, USA.

Received: June 26, 2025; Accepted: July 04, 2025, Published: July 10, 2025

Keywords: Imputation, Machine Learning, K-Nearest Neighbors,
Scaling, Distance Metrics

Introduction			
Handling missing data is a crucial step in data preprocessing.
Among the various imputation methods, KNN imputation is
popular for its simplicity and non-parametric nature. The method
works by finding the k-nearest neighbors of a data point (with
missing values) and imputing the missing values using the
neighbors’ attributes.

The performance of KNN imputation is influenced by the distance
metric employed, which determines the "nearest" neighbors.

This paper explores the most common distance metrics –
Euclidean, Manhattan, Minkowski, and Cosine - and their impact
on the imputation process.

Distance Metrics
Euclidean Distance
Euclidean distance is derived from the Pythagorean theorem
and measures the straight-line distance between two points in
multidimensional space. It assumes all dimensions are equally
important and uncorrelated. Imagine two points in a plane; the
Euclidean distance is the length of the straight line connecting them.
It provides an intuitive notion of "closeness" for continuous variables.

Figure 1: Pythagorean Theorem

Taking the square root on both sides,

For two points with ‘n’ dimensions

Suitable for Continuous Data
Euclidean distance is ideal for datasets where the features are
continuous and numerical. It measures the "as-the-crow-flies"
straight-line distance between two points in multidimensional
space, which is meaningful only when the features can be treated
as continuous variables. Examples include Physical measurements
(e.g., height, weight, temperature) and Geographic coordinates
(e.g., latitude and longitude).

Assumes the Features are On the Same Scale or Normalized
Euclidean distance is sensitive to the magnitude of the variables.
Features with larger scales can disproportionately influence
the distance calculation, even if they are not more important.
Therefore, feature normalization or standardization is often
necessary to ensure all features contribute equally. Common
techniques include:
•	 Min-Max Scaling: scales features to a range of [0, 1]

•	 Z-Score Normalization: Transforms features to have a mean
of 0 and standard deviation of 1

ABSTRACT
K-Nearest Neighbors (KNN) imputation is a widely used technique for handling missing data in machine learning and statistical modeling. The success
of KNN imputation heavily depends on the choice of distance metric, as it determines the "closeness" of neighbors. This paper provides a comprehensive
overview of the key distance metrics used in KNN imputation, including their theoretical background, mathematical formulations, use cases, and the
implications of their selection on imputation outcomes [1-6].

Citation: Vaibhav Tummalapalli (2025) Understanding Distance Metrics in KNN Imputation: Theoretical Insights and Applications. Journal of Mathematical &
Computer Applications. SRC/JMCA-245. DOI: doi.org/10.47363/JMCA/2025(4)208

J Mathe & Comp Appli, 2025 Volume 4(4): 2-4

For example, in a dataset with features like income (measured in
thousands) and age (measured in years), income would dominate
the Euclidean distance unless scaled appropriately.

Ideal When the Variance of all Features is Similar
Euclidean distance assumes that the variance of the features is
relatively uniform. Features with significantly different variances
can distort the distance metric: Features with high variance
contribute more to the distance, even if they are less relevant.
Features with low variance may have minimal impact, even if
they are important.

To address this:
•	 Standardize the Features: Normalize each feature to have

a unit variance, ensuring equal contribution.
•	 Assess Feature Importance: Use domain knowledge or

feature selection techniques to eliminate irrelevant features
that could skew the distance calculation.

Manhattan Distance
Manhattan distance, also known as taxicab or city block distance,
measures the distance between two points by summing the absolute
differences of their coordinates. If you navigate a grid-like city,
the Manhattan distance is the total blocks walked along streets
(no diagonal shortcuts allowed).

Figure 2: Manhattan Distance

In the above visual the blue line represents the Manhattan distance,
and the green line represents the Euclidean distance.

For two points P = (x1, y1) and Q = (x2 , y2) in a 2D space, the
Manhattan Distance is:

For higher dimensions (n - dimensional space):

Appropriate for Continuous or Ordinal Data
Manhattan distance is well-suited for datasets with continuous or
ordinal features. It measures the distance between two points by
summing the absolute differences across dimensions, effectively
calculating the "grid-based" or "city block" distance.

This makes it particularly effective when:
•	 The data represents quantities or magnitudes that are naturally

independent along each dimension.
•	 The variables are ordinal, such as rankings, where the order

matters but the exact differences between values may not be
meaningful.

Examples
•	 Continuous Data: Measurements like temperature, age, or

sales figures.
•	 Ordinal Data: Ratings on a scale (e.g., "low," "medium,"

"high") converted to numerical values.

Less Sensitive to Outliers Compared to Euclidean Distance
Manhattan distance is less influenced by outliers because it
sums absolute differences rather than squaring deviations (as in
Euclidean distance).

This property makes it robust in scenarios where:
•	 Data contains extreme values or irregularities that could skew

distance calculations.
•	 The focus is on capturing overall deviations rather than

amplifying the impact of large differences in specific
dimensions.

•	 In a dataset with an extreme value in one feature (e.g., annual
income ranging from $30,000 to $1,000,000), Manhattan
distance minimizes the disproportionate influence of that
feature compared to Euclidean distance. It ensures that
neighbors selected for imputing a missing value are not
dominated by a single extreme feature, leading to more
balanced imputations.

Useful When Dimensions have Different Units or Scales
Manhattan distance does not inherently assume that features are
on the same scale. However, its reliance on absolute differences
means it is more interpretable when the features have varying units
or scales. While scaling may still be necessary for fair comparison,
it is often less critical than with Euclidean distance.

•	 Combining attributes like height (in inches) and weight (in
pounds) without heavy preprocessing, as the method measures
deviations independently for each feature.

•	 Comparing customer behaviors where one feature is
transaction frequency (counts per year) and another is average
transaction value (in dollars)

Manhattan distance is not suitable when the features in the dataset
are highly correlated. If features are strongly correlated (e.g.,
height and weight), Euclidean or other metrics may better capture
their relationship. When the relationship between features involves
diagonal movement in the feature space, Manhattan distance may
fail to capture the geometry.

Minkowski Distance
Minkowski distance generalizes both Euclidean and Manhattan
distances by introducing a parameter p. It offers flexibility in
measuring distance. By tuning the parameter p, Minkowski
distance transitions between different forms

When p = 2 Minkowski reduces to Euclidean distance and when
p = 1 it reduces to Manhattan.

Data Includes Mixed Distributions
If your dataset contains variables with different distributions (e.g.,
some Gaussian and some skewed), Minkowski distance allows
you to tune ‘p’ to adapt to the characteristics of the data.

Citation: Vaibhav Tummalapalli (2025) Understanding Distance Metrics in KNN Imputation: Theoretical Insights and Applications. Journal of Mathematical &
Computer Applications. SRC/JMCA-245. DOI: doi.org/10.47363/JMCA/2025(4)208

J Mathe & Comp Appli, 2025 Volume 4(4): 3-4

Handling High-Dimensional Data
In high-dimensional spaces, Minkowski distance can reduce
overemphasis on outlier dimensions by choosing appropriate P
values (e.g., P = 1 or P = 1.5).

Scaling or Normalization is Feasible
Minkowski distance assumes that all dimensions are equally
important. If you can scale or normalize the features to ensure
comparability, this distance metric becomes effective for
imputation.

Need a Generalized Approach
If you're unsure whether Manhattan or Euclidean distance is
more suitable for the data, Minkowski distance provides a unified
framework to test both (and intermediate metrics) by varying p.

Cosine Metric
Cosine similarity measures the angle between two vectors,
focusing on direction rather than magnitude. It is often used for
high-dimensional data. Two vectors with similar directions but
different magnitudes are considered close. Think of comparing
the orientation of arrows regardless of their length [7].

Distance is computed as 1 - Similarity(X,Y)

High-Dimensional Datasets
In datasets with many features, such as text, documents, or
embeddings, the Euclidean or Manhattan distances may not be
effective because:

•	 Dimensionality increases uniformly: In high-dimensional
spaces, most points tend to be equidistant, making it harder to
distinguish "closeness" using metrics like Euclidean distance.

•	 Sparsity of Data: High-dimensional data is often sparse (e.g.,
text encoded as bag-of-words or TF-IDF vectors). In such
cases, cosine similarity focuses on the overlap of non-zero
dimensions, making it robust to sparsity.

Example: Text Embeddings
•	 Scenario: You have sentence embeddings for a set of

documents or queries, where each embedding represents the
semantic meaning of a text in a 300-dimensional vector space.

•	 Why Cosine Similarity Works: The semantic similarity
between two documents depends on the alignment (direction)
of their vectors, not their magnitudes. For instance:

Document A: [0.1, 0.2, 0.3, 0.4]
Document B: [0.2, 0.4, 0.6, 0.8]
Despite having different magnitudes, they point in the same
direction, indicating high similarity.

When Magnitude of Features is Less Important
Cosine similarity disregards the magnitude (length) of the vectors
and instead measures the angle between them, which represents
their directional alignment. This is crucial when:

•	 Feature Magnitudes Differ Significantly: If features have
different scales or units, Euclidean or Manhattan distances
might overemphasize high-magnitude features, while cosine
similarity remains unaffected.

•	 Normalization: Cosine similarity inherently normalizes
vectors (dividing by their magnitudes), ensuring fair

comparison regardless of scale.

Example: Text Classification
•	 Scenario: Comparing two news articles represented as word

frequency vectors.
 Article A: [5, 0, 3, 8] (mentions "economy" 5 times, "market"

3 times, etc.)
	 Article B: [15, 0, 9, 24] (same distribution but with higher

counts).
•	 Why Cosine Similarity Works: Both articles focus on the

same topics ("economy" and "market") but differ in verbosity.
Cosine similarity captures their semantic similarity without
being influenced by verbosity.

When Features Represent Semantic or Relational Information
Cosine similarity excels in capturing relational similarities, which
are often crucial in applications involving embeddings or sparse
data. For instance:

•	 Document-Topic Relationships: TF-IDF vectors or topic
distributions often represent the importance of words in a
document relative to a corpus. Cosine similarity identifies
similar topics or contexts despite differences in word counts.

•	 User-Item Preferences: In recommendation systems, user
preferences for items (e.g., ratings) can be represented as
sparse vectors. Cosine similarity captures shared preferences
without being influenced by absolute ratings.

Example: Recommendation Systems
•	 Scenario: Two users rate movies on a scale of 1–5. Their

preferences can be represented as vectors:

 User A: [5, 0, 3, 0, 4] (likes action and drama).
 User B: [10, 0, 6, 0, 8] (same preferences but rates higher).

•	 Why Cosine Similarity Works: By focusing on shared
preferences and ignoring magnitude, cosine similarity
identifies their preferences as aligned.

Use in Sparse Data
Sparse datasets - where most features are zero - are common
in text analytics, recommendation systems, and bioinformatics.
Cosine similarity performs well here because:

•	 It only considers non-zero dimensions, effectively ignoring
irrelevant features.

•	 It measures overlap in the active dimensions of the vectors,
emphasizing meaningful relationships.

Example: TF-IDF Vectors
•	 A corpus of documents represented as TF-IDF vectors

typically has thousands of dimensions (one per term), but most
terms are absent in any given document. Cosine similarity
focuses on terms that co-occur, identifying documents with
similar content even if most terms differ.

When Not to Use Cosine Similarity
Cosine similarity is not ideal when:
•	 Magnitude of Features is Relevant: For datasets where the

absolute values matter (e.g., income levels, temperature),
metrics like Euclidean or Manhattan distance are better suited.

•	 Low Dimensionality: In datasets with few features, other
metrics like Euclidean distance might be more interpretable
and effective

Citation: Vaibhav Tummalapalli (2025) Understanding Distance Metrics in KNN Imputation: Theoretical Insights and Applications. Journal of Mathematical &
Computer Applications. SRC/JMCA-245. DOI: doi.org/10.47363/JMCA/2025(4)208

J Mathe & Comp Appli, 2025 Volume 4(4): 4-4

Copyright: ©2025 Vaibhav Tummalapalli. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Conclusion
The choice of distance metric significantly impacts the performance
of KNN imputation. Understanding the nature of the dataset -
whether it's numerical, categorical, high-dimensional, or prone
to outliers - guides the selection of the most appropriate metric.
Future work could explore hybrid approaches that combine
multiple distance metrics to handle diverse data characteristics
within the same dataset.

References
1.	 Geek for Geeks (2025) How to choose the distance metrice

https://www.geeksforgeeks.org/how-to-choose-the-right-
distance-metric-in-knn/.

2.	 KD Nuggets (2020) Most Popular distance metrics https://
www.kdnuggets.com/2020/11/most-popular-distance-
metrics-knn.html.

3.	 Geek for Geeks (2025) K-Nearest Neighbor (KNN) Algorithm
https://www.geeksforgeeks.org/k-nearest-neighbours/.

4.	 USTC Newly K Elissa (2020) K-Nearest Neighbors (KNN)
Classification with Different Distance Metrics. https://www.
ustcnewly.com/teaching/2020_2_3.pdf?utm_source=chatgpt.
com.

5.	 Jason Brown Lee (2020) KNN Imputation for missing values
in Machine learning https://machinelearningmastery.com/
knn-imputation-for-missing-values-in-machine-learning/.

6.	 Scikit Lea, KNN Imputer scikit-learn 1.5.2 documentation
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.
KNNImputer.html.

7.	 Arkopal Choudhury, Michael R Kosorok (2020) Missing
Data Imputation for Classification Problems. https://arxiv.
org/abs/2002.10709.

