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Introduction			 
Handling missing data is a crucial step in data preprocessing. 
Among the various imputation methods, KNN imputation is 
popular for its simplicity and non-parametric nature. The method 
works by finding the k-nearest neighbors of a data point (with 
missing values) and imputing the missing values using the 
neighbors’ attributes.
 
The performance of KNN imputation is influenced by the distance 
metric employed, which determines the "nearest" neighbors. 

This paper explores the most common distance metrics – 
Euclidean, Manhattan, Minkowski, and Cosine - and their impact 
on the imputation process.

Distance Metrics
Euclidean Distance
Euclidean distance is derived from the Pythagorean theorem 
and measures the straight-line distance between two points in 
multidimensional space. It assumes all dimensions are equally 
important and uncorrelated. Imagine two points in a plane; the 
Euclidean distance is the length of the straight line connecting them. 
It provides an intuitive notion of "closeness" for continuous variables.

Figure 1: Pythagorean Theorem

Taking the square root on both sides,

For two points with ‘n’ dimensions

Suitable for Continuous Data
Euclidean distance is ideal for datasets where the features are 
continuous and numerical. It measures the "as-the-crow-flies" 
straight-line distance between two points in multidimensional 
space, which is meaningful only when the features can be treated 
as continuous variables. Examples include Physical measurements 
(e.g., height, weight, temperature) and Geographic coordinates 
(e.g., latitude and longitude).

Assumes the Features are On the Same Scale or Normalized
Euclidean distance is sensitive to the magnitude of the variables. 
Features with larger scales can disproportionately influence 
the distance calculation, even if they are not more important. 
Therefore, feature normalization or standardization is often 
necessary to ensure all features contribute equally. Common 
techniques include:
•	 Min-Max Scaling: scales features to a range of [0, 1]                      

•	 Z-Score Normalization: Transforms features to have a mean 
of 0 and standard deviation of 1       
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For example, in a dataset with features like income (measured in 
thousands) and age (measured in years), income would dominate 
the Euclidean distance unless scaled appropriately.

Ideal When the Variance of all Features is Similar
Euclidean distance assumes that the variance of the features is 
relatively uniform. Features with significantly different variances 
can distort the distance metric: Features with high variance 
contribute more to the distance, even if they are less relevant. 
Features with low variance may have minimal impact, even if 
they are important.

To address this:
•	 Standardize the Features: Normalize each feature to have 

a unit variance, ensuring equal contribution.
•	 Assess Feature Importance: Use domain knowledge or 

feature selection techniques to eliminate irrelevant features 
that could skew the distance calculation.

Manhattan Distance
Manhattan distance, also known as taxicab or city block distance, 
measures the distance between two points by summing the absolute 
differences of their coordinates. If you navigate a grid-like city, 
the Manhattan distance is the total blocks walked along streets 
(no diagonal shortcuts allowed).

Figure 2: Manhattan Distance

In the above visual the blue line represents the Manhattan distance, 
and the green line represents the Euclidean distance.

For two points P = (x1, y1) and Q = (x2 , y2 ) in a 2D space, the 
Manhattan Distance is:
                        

For higher dimensions (n - dimensional space):

Appropriate for Continuous or Ordinal Data
Manhattan distance is well-suited for datasets with continuous or 
ordinal features. It measures the distance between two points by 
summing the absolute differences across dimensions, effectively 
calculating the "grid-based" or "city block" distance.
 
This makes it particularly effective when:
•	 The data represents quantities or magnitudes that are naturally 

independent along each dimension.
•	 The variables are ordinal, such as rankings, where the order 

matters but the exact differences between values may not be 
meaningful.

Examples
•	 Continuous Data: Measurements like temperature, age, or 

sales figures.
•	 Ordinal Data: Ratings on a scale (e.g., "low," "medium," 

"high") converted to numerical values.

Less Sensitive to Outliers Compared to Euclidean Distance
Manhattan distance is less influenced by outliers because it 
sums absolute differences rather than squaring deviations (as in 
Euclidean distance). 

This property makes it robust in scenarios where:
•	 Data contains extreme values or irregularities that could skew 

distance calculations.
•	 The focus is on capturing overall deviations rather than 

amplifying the impact of large differences in specific 
dimensions.

•	 In a dataset with an extreme value in one feature (e.g., annual 
income ranging from $30,000 to $1,000,000), Manhattan 
distance minimizes the disproportionate influence of that 
feature compared to Euclidean distance. It ensures that 
neighbors selected for imputing a missing value are not 
dominated by a single extreme feature, leading to more 
balanced imputations.

Useful When Dimensions have Different Units or Scales
Manhattan distance does not inherently assume that features are 
on the same scale. However, its reliance on absolute differences 
means it is more interpretable when the features have varying units 
or scales. While scaling may still be necessary for fair comparison, 
it is often less critical than with Euclidean distance.

•	 Combining attributes like height (in inches) and weight (in 
pounds) without heavy preprocessing, as the method measures 
deviations independently for each feature.

•	 Comparing customer behaviors where one feature is 
transaction frequency (counts per year) and another is average 
transaction value (in dollars)

Manhattan distance is not suitable when the features in the dataset 
are highly correlated. If features are strongly correlated (e.g., 
height and weight), Euclidean or other metrics may better capture 
their relationship. When the relationship between features involves 
diagonal movement in the feature space, Manhattan distance may 
fail to capture the geometry.

Minkowski Distance
Minkowski distance generalizes both Euclidean and Manhattan 
distances by introducing a parameter p. It offers flexibility in 
measuring distance. By tuning the parameter p, Minkowski 
distance transitions between different forms

When p = 2 Minkowski reduces to Euclidean distance and when 
p = 1 it reduces to Manhattan.

Data Includes Mixed Distributions
If your dataset contains variables with different distributions (e.g., 
some Gaussian and some skewed), Minkowski distance allows 
you to tune ‘p’ to adapt to the characteristics of the data.
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Handling High-Dimensional Data
In high-dimensional spaces, Minkowski distance can reduce 
overemphasis on outlier dimensions by choosing appropriate P 
values (e.g., P = 1 or P = 1.5).

Scaling or Normalization is Feasible
Minkowski distance assumes that all dimensions are equally 
important. If you can scale or normalize the features to ensure 
comparability, this distance metric becomes effective for 
imputation.

Need a Generalized Approach
If you're unsure whether Manhattan or Euclidean distance is 
more suitable for the data, Minkowski distance provides a unified 
framework to test both (and intermediate metrics) by varying p.

Cosine Metric
Cosine similarity measures the angle between two vectors, 
focusing on direction rather than magnitude. It is often used for 
high-dimensional data. Two vectors with similar directions but 
different magnitudes are considered close. Think of comparing 
the orientation of arrows regardless of their length [7].

Distance is computed as 1 - Similarity(X,Y)

High-Dimensional Datasets
In datasets with many features, such as text, documents, or 
embeddings, the Euclidean or Manhattan distances may not be 
effective because:

•	 Dimensionality increases uniformly: In high-dimensional 
spaces, most points tend to be equidistant, making it harder to 
distinguish "closeness" using metrics like Euclidean distance.

•	 Sparsity of Data: High-dimensional data is often sparse (e.g., 
text encoded as bag-of-words or TF-IDF vectors). In such 
cases, cosine similarity focuses on the overlap of non-zero 
dimensions, making it robust to sparsity.

Example: Text Embeddings
•	 Scenario: You have sentence embeddings for a set of 

documents or queries, where each embedding represents the 
semantic meaning of a text in a 300-dimensional vector space.

•	 Why Cosine Similarity Works: The semantic similarity 
between two documents depends on the alignment (direction) 
of their vectors, not their magnitudes. For instance:

Document A: [0.1, 0.2, 0.3, 0.4]
Document B: [0.2, 0.4, 0.6, 0.8]
Despite having different magnitudes, they point in the same 
direction, indicating high similarity.

When Magnitude of Features is Less Important
Cosine similarity disregards the magnitude (length) of the vectors 
and instead measures the angle between them, which represents 
their directional alignment. This is crucial when:

•	 Feature Magnitudes Differ Significantly: If features have 
different scales or units, Euclidean or Manhattan distances 
might overemphasize high-magnitude features, while cosine 
similarity remains unaffected.

•	 Normalization: Cosine similarity inherently normalizes 
vectors (dividing by their magnitudes), ensuring fair 

comparison regardless of scale.

Example: Text Classification
•	 Scenario: Comparing two news articles represented as word 

frequency vectors.
          Article A: [5, 0, 3, 8] (mentions "economy" 5 times, "market" 

3 times, etc.)
	 Article B: [15, 0, 9, 24] (same distribution but with higher 

counts).
•	 Why Cosine Similarity Works: Both articles focus on the 

same topics ("economy" and "market") but differ in verbosity. 
Cosine similarity captures their semantic similarity without 
being influenced by verbosity.

When Features Represent Semantic or Relational Information
Cosine similarity excels in capturing relational similarities, which 
are often crucial in applications involving embeddings or sparse 
data. For instance:

•	 Document-Topic Relationships: TF-IDF vectors or topic 
distributions often represent the importance of words in a 
document relative to a corpus. Cosine similarity identifies 
similar topics or contexts despite differences in word counts.

•	 User-Item Preferences: In recommendation systems, user 
preferences for items (e.g., ratings) can be represented as 
sparse vectors. Cosine similarity captures shared preferences 
without being influenced by absolute ratings.

Example: Recommendation Systems
•	 Scenario: Two users rate movies on a scale of 1–5. Their 

preferences can be represented as vectors:

        User A: [5, 0, 3, 0, 4] (likes action and drama).
        User B: [10, 0, 6, 0, 8] (same preferences but rates higher).

•	 Why Cosine Similarity Works: By focusing on shared 
preferences and ignoring magnitude, cosine similarity 
identifies their preferences as aligned.

Use in Sparse Data
Sparse datasets - where most features are zero - are common 
in text analytics, recommendation systems, and bioinformatics. 
Cosine similarity performs well here because:

•	 It only considers non-zero dimensions, effectively ignoring 
irrelevant features.

•	 It measures overlap in the active dimensions of the vectors, 
emphasizing meaningful relationships.

Example: TF-IDF Vectors
•	 A corpus of documents represented as TF-IDF vectors 

typically has thousands of dimensions (one per term), but most 
terms are absent in any given document. Cosine similarity 
focuses on terms that co-occur, identifying documents with 
similar content even if most terms differ.

When Not to Use Cosine Similarity
Cosine similarity is not ideal when:
•	 Magnitude of Features is Relevant: For datasets where the 

absolute values matter (e.g., income levels, temperature), 
metrics like Euclidean or Manhattan distance are better suited.

•	 Low Dimensionality: In datasets with few features, other 
metrics like Euclidean distance might be more interpretable 
and effective
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Conclusion
The choice of distance metric significantly impacts the performance 
of KNN imputation. Understanding the nature of the dataset - 
whether it's numerical, categorical, high-dimensional, or prone 
to outliers - guides the selection of the most appropriate metric. 
Future work could explore hybrid approaches that combine 
multiple distance metrics to handle diverse data characteristics 
within the same dataset.
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