
Open    Access

Journal of Mathematical & 
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2022                   Volume 1(1): 1-3

Review Article

Plugin Architecture in Java and Python

Mountain View, USA

Nilesh Jagnik

*Corresponding author
Nilesh Jagnik, Mountain View, USA.

Received: January 06, 2022; Accepted: January 13, 2022, Published: January 20, 2022

Keywords: Usability, Extensibility, Plugins, Dependency 
Injection, Reflective Programming

Introduction
Many software tools and products allow extension of their 
functionality by supporting third party contributions that add 
to the functionality of the tool. This is commonly observed in 
web browsers and programming IDEs. However just about any 
software can be built to support pluggable functionality. This 
includes both locally running applications and cloud services.

Plugin architecture refers to designing systems that can support 
plugins. There are special considerations required when designing 
a system that supports plugins. Certain design patterns should be 
followed to ensure that plugins are easy to build, test and deploy. 
In this paper we discuss these design patterns and considerations.

We then discuss ways to achieve the plugin architecture in 
Java and Python. In Java, we can utilize popular dependency 
injection frameworks to support plugins easily. In Python, although 
dependency injection frameworks exist, we discuss a method to 
support plugins that does not use an external framework. 

Benefits of Plugin Architecture
Extensibility
Supporting plugins in your application or service significantly 
boosts its usability. It allows software to evolve as user needs 
change. New features can be added easily. Similarly, new 
integrations with other software can also be provided with ease. 
This allows for a lot of flexibility in the usage of software. Plugins 
can be utilized in this manner not only by third party developers 
but also by the software owners too.

Clear Ownership Model
Software owners can clearly document plugins which are 
developed and maintained by third parties. This allows feature 
requests and bugs to be directed accordingly. Statistics like usage 

and endorsement counts can also be displayed to allow users to 
make an informed decision while choosing plugins.

Additionally, software owners may choose to provide some official 
plugins which they would develop and maintain themselves. This 
separation allows for easy project management for all plugin 
owners.

Separation from Framework Code
Software owners can clearly define a contract related to plugin 
behavior. They can then develop the core functionality of their 
software assuming this contractual agreement. Failure to uphold 
these requirements could lead to errors which could be attributed 
as a plugin failure, rather than a framework failure. This allows 
framework owners to focus on the functionality of the core 
framework without worrying about details specific to plugin 
implementations. Similarly, it allows plugin developers to focus 
on development of implementation of plugins without knowing 
details about framework architecture. 

Code separation also allows plugins to be tested independently 
of framework code and vice versa. This leads to healthier code.

Figure 1: Plugin Architecture

PluginArchitecture
Let us discuss the general setup in a framework that supports 
plugins. 

ABSTRACT
Supporting plugins in software projects can drastically improve its usability, while also making the code easier to manage and test. The plugin architecture 
can be implemented with or without the help of dependency injection frameworks. In this paper we discuss providing plugin support with the help of a 
dependency management framework called Guice in Java. We also discuss how this can be done in Python only using language features. 



Citation: Nilesh Jagnik (2022) Plugin Architecture in Java and Python. Journal of Mathematical & Computer Applications. SRC/JMCA-E125. 
DOI: doi.org/10.47363/JMCA/2022(1)E125

J Mathe & Comp Appli, 2022                   Volume 1(1): 2-3

Framework and Plugin Interface
The framework owner defines a contract for plugins by the 
means of an interface. The framework code should not make 
any assumptions about the plugin beyond what is specified in 
the plugin interface. It is good practice for the framework owner 
to write several different plugins to provide default functionality 
and also to test that the framework works currently with different 
plugins. 

The careful structuring above allows development of plugins using 
the defined plugin interface. 

Registering Plugins
After developing plugins, the framework must allow a way to 
register these plugins. This makes the framework aware of the 
presence of the plugin. All plugins must be registered with a 
unique id that allows the users of the framework to specify the 
plugins they want to use.

Dependency Injection
Dependency injection is a technique that can be used to satisfy 
a larger set of requirements than what is needed for the plugin 
architecture. However, dependency injection frameworks are 
readily available in many languages. Leveraging these frameworks 
makes it easier to implement a plugin architecture.

What is Dependency Injection?
In Object Oriented Programming, the programmer is required to 
write code that builds objects. This is normally done by calling 
the constructor of an object. This constructor could have some 
dependencies on other objects and thus it might need to create 
these objects by calling their constructors. As the system grows 
in functionality, the construction logic may get more and more 
complex. The construction logic gets even more complex when 
different objects need to be constructed in different ways based 
on flags or other state.

Dependency injection solves this problem by decoupling object 
creation logic from the rest of the code. The constructor of an 
object only specifies the dependencies it needs and does not 
actually construct these dependencies itself. This separates the 
concerns of object creation from object behavior.

Dependency Injection for Plugins
Dependency injection frameworks separate object creation logic 
from object functionality. We can utilize this to develop core 
framework logic without the concern of how the dependencies 
are created. We can take this one step further by also removing 
the concern of what type of object is created. This is done by 
specifying a plugin dependency as an interface or abstract class. 
Then based on flags or user specified configuration, the object 
creation logic can decide which concrete object to inject. The 
plugins should obviously implement the interface to qualify as a 
valid dependency. This allows development of framework code 
by specifying only a plugin interface as a dependency. At runtime, 
the real plugin injected can vary based on user specifications.

How Dependency Injection is Implemented
Although dependency injection frameworks can used without 
needing to know how they work, in languages like Python, we have 
fewer options for dependency injection frameworks. Knowing 
about the inner workings would help us develop a lightweight 
version for supporting plugins.

There are two language features that are utilized by dependency 
injection frameworks. These are reflection and annotations.

Annotations
Annotations can be added to classes and objects attaching metadata 
to them. This metadata could be of many forms, but commonly 
contains information that could allow making runtime decisions 
about the usage of these classes and objects. Decisions about 
which dependency is appropriate to inject can also be made with 
the help of these annotations. In the later sections, we will see 
how this works in Java and Python.

Reflection
Reflection or Reflective programming allows a program to 
introspect and manipulate the internal properties of a program. 
For example, in Java it is possible to obtain the name of an objects 
class and annotations. Using the names of object types along with 
extra supporting information provided by annotations allows 
dependency inject frameworks to make decisions regarding 
which dependency is the right one to inject in various situations. 
In practice, a dependency injection framework could use user 
specified input or configuration to make these decisions. 

Plugin Architecture in Java Using Guice
In Java, plugin support can be implemented with the use Guice 
(pronounced Juice), which is a popular dependency injection 
framework.

Plugin Interface
To start, an interface should be defined for the plugin. The interface 
sets expectations that the core framework has from each plugin. 
In this case, the plugin should be an operator that operates on two 



Citation: Nilesh Jagnik (2022) Plugin Architecture in Java and Python. Journal of Mathematical & Computer Applications. SRC/JMCA-E125. 
DOI: doi.org/10.47363/JMCA/2022(1)E125

J Mathe & Comp Appli, 2022                   Volume 1(1): 3-3

Copyright: ©2022 Nilesh Jagnik. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

integers and returns an integer.

Plugin Implementations
Let us consider a couple of implementations of the interface above. 
These will implement the operate() method in different ways.

Registering Plugins
The next step is to let the dependency injection framework know 
about existence of these plugin implementations. In Guice, this is 
done via creating a Guice module and specify bindings. 

Framework Code
The core framework code can specify plugins as a dependency. It 
can then decide which plugins to execute depending on flags and 
other runtime inputs. The @Inject annotation tells the dependency 
injection framework that a dependency must be provided by it.

Python
There are many data science and Machine Learning applications 
where Python is the language of choice. Developing extensible 
software for these applications requires building a plugin 
architecture in Python.

Dependency Injection in Python
There are several available dependency injection frameworks for 
Python. However dependency injection is not as popular in Python 
as it is in other languages. Since migration to a framework may 
not always be an option, we discuss a way to achieve the plugin 
architecture using Python language features only instead of relying 
on a dependency injection framework.

Registry
Registry is the container for all plugin implementations. The 
framework code will find all plugins inside the registry and can 
make decisions about what plugins to execute. This is similar to 
binding plugin implementations in Java using Guice.

Decorators
Python has syntactic sugar that allows calling methods on class 
and method definitions. We can utilize this feature in addition to 
abstract classes to trigger registration of plugins automatically.

Abstract Plugin Class
Python does not have direct support for interfaces like Java. But 
it does have abstract classes which behave similar to interfaces. 
We will use abstract classes to define the plugin contract.

Real Implementations
Real implementations work the same as in Java and provide actual 
functionality of each plugin. However, we decorate the class 
implementations with the @Registry tag. This will automatically 
trigger the code that adds plugins to the registry.

Framework Code
Framework code can directly access the Registry to get all 
registered plugins. It can then make decisions about which plugins 
to actually execute based on runtime inputs.

Conclusion
The plugin architecture can add a lot of value to any software 
application by making it more extensible, testable and easy 
to manage. We discussed how the plugin architecture can be 
implemented using dependency injection frameworks in Java. We 
also showed by we can use dependency injection fundamentals to 
build support for Python using only language features.

References
1.	 Maxwell Mapako (2021) “Building a plugin architecture with 

Python” https://mwax911.medium.com/building-a-plugin-
architecture-with-python-7b4ab39ad4fc

2.	 Roman Mogylatov (2021) “Dependency injection and 
inversion of control in Python” https://python-dependency-
injector.ets-labs.org/introduction/di_in_python.html 

3.	 Charles White (2020) “Plugin Architecture in Python” https://
dev.to/charlesw001/plugin-architecture-in-python-jla 

4.	 Glen McCluskey (2019) “Using Java Reflection” https://www.
oracle.com/technical-resources/articles/java/javareflection.
html 

5.	 Guice Multibindings  (2021) https://github.com/google/guice/
wiki/Multibindings 

6.	 Abstract Base Classes (Dec 2021) https://docs.python.org/3/
library/abc.html 

7.	 Kevin D Smith, Jim J Jewett, Skip Montanaro, Anthony 
Baxter (2003) “PEP 318 – Decorators for Functions and 
Methods” https://peps.python.org/pep-0318


