ISSN:2754-6705

AN
&(ﬁ&SCIENTIFIC

RS Research and Community

Journal of Mathematical &
Computer Applications

v

Review Article Open @ Access

Plugin Architecture in Java and Python

Nilesh Jagnik

Mountain View, USA

ABSTRACT
Supporting plugins in software projects can drastically improve its usability, while also making the code easier to manage and test. The plugin architecture
can be implemented with or without the help of dependency injection frameworks. In this paper we discuss providing plugin support with the help of a

dependency management framework called Guice in Java. We also discuss how this can be done in Python only using language features.

*Corresponding author
Nilesh Jagnik, Mountain View, USA.

Received: January 06, 2022; Accepted: January 13, 2022, Published: January 20, 2022

Keywords: Usability, Extensibility, Plugins, Dependency
Injection, Reflective Programming

Introduction

Many software tools and products allow extension of their
functionality by supporting third party contributions that add
to the functionality of the tool. This is commonly observed in
web browsers and programming IDEs. However just about any
software can be built to support pluggable functionality. This
includes both locally running applications and cloud services.

Plugin architecture refers to designing systems that can support
plugins. There are special considerations required when designing
a system that supports plugins. Certain design patterns should be
followed to ensure that plugins are easy to build, test and deploy.
In this paper we discuss these design patterns and considerations.

We then discuss ways to achieve the plugin architecture in
Java and Python. In Java, we can utilize popular dependency
injection frameworks to support plugins easily. In Python, although
dependency injection frameworks exist, we discuss a method to
support plugins that does not use an external framework.

Benefits of Plugin Architecture

Extensibility

Supporting plugins in your application or service significantly
boosts its usability. It allows software to evolve as user needs
change. New features can be added easily. Similarly, new
integrations with other software can also be provided with ease.
This allows for a lot of flexibility in the usage of software. Plugins
can be utilized in this manner not only by third party developers
but also by the software owners too.

Clear Ownership Model

Software owners can clearly document plugins which are
developed and maintained by third parties. This allows feature
requests and bugs to be directed accordingly. Statistics like usage

and endorsement counts can also be displayed to allow users to
make an informed decision while choosing plugins.

Additionally, software owners may choose to provide some official
plugins which they would develop and maintain themselves. This
separation allows for easy project management for all plugin
owners.

Separation from Framework Code

Software owners can clearly define a contract related to plugin
behavior. They can then develop the core functionality of their
software assuming this contractual agreement. Failure to uphold
these requirements could lead to errors which could be attributed
as a plugin failure, rather than a framework failure. This allows
framework owners to focus on the functionality of the core
framework without worrying about details specific to plugin
implementations. Similarly, it allows plugin developers to focus
on development of implementation of plugins without knowing
details about framework architecture.

Code separation also allows plugins to be tested independently
of framework code and vice versa. This leads to healthier code.

Plugin B

Plugin C

Framework

—

Figure 1: Plugin Architecture

PluginArchitecture
Let us discuss the general setup in a framework that supports
plugins.

J Mathe & Comp Appli, 2022

Volume 1(1): 1-3

Citation: Nilesh Jagnik (2022) Plugin Architecture in Java and Python. Journal of Mathematical & Computer Applications. SRC/JMCA-E125.

DOI: doi.org/10.47363/JMCA/2022(1)E125

Framework and Plugin Interface

The framework owner defines a contract for plugins by the
means of an interface. The framework code should not make
any assumptions about the plugin beyond what is specified in
the plugin interface. It is good practice for the framework owner
to write several different plugins to provide default functionality
and also to test that the framework works currently with different
plugins.

The careful structuring above allows development of plugins using
the defined plugin interface.

Registering Plugins

After developing plugins, the framework must allow a way to
register these plugins. This makes the framework aware of the
presence of the plugin. All plugins must be registered with a
unique id that allows the users of the framework to specify the
plugins they want to use.

Dependency Injection

Dependency injection is a technique that can be used to satisfy
a larger set of requirements than what is needed for the plugin
architecture. However, dependency injection frameworks are
readily available in many languages. Leveraging these frameworks
makes it easier to implement a plugin architecture.

What is Dependency Injection?

In Object Oriented Programming, the programmer is required to
write code that builds objects. This is normally done by calling
the constructor of an object. This constructor could have some
dependencies on other objects and thus it might need to create
these objects by calling their constructors. As the system grows
in functionality, the construction logic may get more and more
complex. The construction logic gets even more complex when
different objects need to be constructed in different ways based
on flags or other state.

Dependency injection solves this problem by decoupling object
creation logic from the rest of the code. The constructor of an
object only specifies the dependencies it needs and does not
actually construct these dependencies itself. This separates the
concerns of object creation from object behavior.

ugins are operators on two integers.
/** Plugi perat t integ */
public interface Operator ({

int operate(int left, int right);
}

Dependency Injection for Plugins

Dependency injection frameworks separate object creation logic
from object functionality. We can utilize this to develop core
framework logic without the concern of how the dependencies
are created. We can take this one step further by also removing
the concern of what type of object is created. This is done by
specifying a plugin dependency as an interface or abstract class.
Then based on flags or user specified configuration, the object
creation logic can decide which concrete object to inject. The
plugins should obviously implement the interface to qualify as a
valid dependency. This allows development of framework code
by specifying only a plugin interface as a dependency. At runtime,
the real plugin injected can vary based on user specifications.

public class Add implements Operator {
public int operate(int left, int right) {
return left + right;
}
}

public class Multiply implements Operator {
public int operate(int left, int right) {
return left + right;
}
}

How Dependency Injection is Implemented

Although dependency injection frameworks can used without
needing to know how they work, in languages like Python, we have
fewer options for dependency injection frameworks. Knowing
about the inner workings would help us develop a lightweight
version for supporting plugins.

There are two language features that are utilized by dependency
injection frameworks. These are reflection and annotations.

public class PluginModule extends AbstractModule {
public void conrigure() {
Multibinder<Operator> opBinder =
Multibinder.newSetBinder (binder(),
Operator.class) ;
opBinder.addBinding() .to(aAdd.class) ;
opBinder.addBinding() .to(Multiply.class) ;

// bind other plugins here
}
}

Annotations

Annotations can be added to classes and objects attaching metadata
to them. This metadata could be of many forms, but commonly
contains information that could allow making runtime decisions
about the usage of these classes and objects. Decisions about
which dependency is appropriate to inject can also be made with
the help of these annotations. In the later sections, we will see
how this works in Java and Python.

Reflection

Reflection or Reflective programming allows a program to
introspect and manipulate the internal properties of a program.
For example, in Java it is possible to obtain the name of an objects
class and annotations. Using the names of object types along with
extra supporting information provided by annotations allows
dependency inject frameworks to make decisions regarding
which dependency is the right one to inject in various situations.
In practice, a dependency injection framework could use user
specified input or configuration to make these decisions.

public class Calculator {
@Inject
Calculator(Set<Operator> operators) {
// Framework code can execute one or more
// plugins based on runtime inputs
}
}

Plugin Architecture in Java Using Guice

In Java, plugin support can be implemented with the use Guice
(pronounced Juice), which is a popular dependency injection
framework.

Plugin Interface

To start, an interface should be defined for the plugin. The interface
sets expectations that the core framework has from each plugin.
In this case, the plugin should be an operator that operates on two

J Mathe & Comp Appli, 2022

Volume 1(1): 2-3

Citation: Nilesh Jagnik (2022) Plugin Architecture in Java and Python. Journal of Mathematical & Computer Applications. SRC/JMCA-E125.

DOI: doi.org/10.47363/JMCA/2022(1)E125

integers and returns an integer.

Plugin Implementations
Let us consider a couple of implementations of the interface above.
These will implement the operate() method in different ways.

Registering Plugins

The next step is to let the dependency injection framework know
about existence of these plugin implementations. In Guice, this is
done via creating a Guice module and specify bindings.

Framework Code

The core framework code can specify plugins as a dependency. It
can then decide which plugins to execute depending on flags and
other runtime inputs. The @Inject annotation tells the dependency
injection framework that a dependency must be provided by it.

Python

There are many data science and Machine Learning applications
where Python is the language of choice. Developing extensible
software for these applications requires building a plugin
architecture in Python.

Dependency Injection in Python

There are several available dependency injection frameworks for
Python. However dependency injection is not as popular in Python
as it is in other languages. Since migration to a framework may
not always be an option, we discuss a way to achieve the plugin
architecture using Python language features only instead of relying
on a dependency injection framework.

Registry

Registry is the container for all plugin implementations. The
framework code will find all plugins inside the registry and can
make decisions about what plugins to execute. This is similar to
binding plugin implementations in Java using Guice.

Decorators

Python has syntactic sugar that allows calling methods on class
and method definitions. We can utilize this feature in addition to
abstract classes to trigger registration of plugins automatically.

Abstract Plugin Class

Python does not have direct support for interfaces like Java. But
it does have abstract classes which behave similar to interfaces.
We will use abstract classes to define the plugin contract.

class Registry:
Framework code can find all plugin implementations
4 inside this container.

REGISTRY = [1

def call (self, plugin):

Registry.REGISTRY.append(plugin)

Real Implementations

Real implementations work the same as in Java and provide actual
functionality of each plugin. However, we decorate the class
implementations with the @Registry tag. This will automatically
trigger the code that adds plugins to the registry.

Framework Code

Framework code can directly access the Registry to get all
registered plugins. It can then make decisions about which plugins
to actually execute based on runtime inputs.

class Operator(abc.AEC) :
mr Al ract class for

nnm

plugins.

def operate(left, right):
pass
@Registry()
class Add(Operator):

def operate(left, right):
return a + b

@Registry()
class Multiply(Operator) :
def operate(left, right):
return a * b

Conclusion

The plugin architecture can add a lot of value to any software
application by making it more extensible, testable and easy
to manage. We discussed how the plugin architecture can be
implemented using dependency injection frameworks in Java. We
also showed by we can use dependency injection fundamentals to
build support for Python using only language features.

References

1. Maxwell Mapako (2021) “Building a plugin architecture with
Python” https://mwax911.medium.com/building-a-plugin-
architecture-with-python-7b4ab39ad4fc

2. Roman Mogylatov (2021) “Dependency injection and
inversion of control in Python” https://python-dependency-
injector.ets-labs.org/introduction/di_in_python.html

3. Charles White (2020) “Plugin Architecture in Python” https://
dev.to/charlesw001/plugin-architecture-in-python-jla

4. Glen McCluskey (2019) “Using Java Reflection” https://www.
oracle.com/technical-resources/articles/java/javareflection.
html

5. Guice Multibindings (2021) https://github.com/google/guice/
wiki/Multibindings

6. Abstract Base Classes (Dec 2021) https://docs.python.org/3/
library/abe.html

7. Kevin D Smith, Jim J Jewett, Skip Montanaro, Anthony
Baxter (2003) “PEP 318 — Decorators for Functions and
Methods” https://peps.python.org/pep-0318

Copyright: ©2022 Nilesh Jagnik. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Mathe & Comp Appli, 2022

Volume 1(1): 3-3

