ISSN:2754-6705

N

Journal of Mathematical & =\
&@?_}SCIENTIFIC

Computer Applications

NS~ Research and Community

v

Review Article Open @ Access

Optimized Search Solution for Storing and Retrieving Large Files
of Legacy Systems

Arjun Reddy Lingala
USA

ABSTRACT

As organizations transition from legacy systems to modern architectures, managing and retrieving historical data efficiently becomes a significant
challenge. Traditional relational databases are often unsuitable due to their high storage costs and limited scalability. In addition to this, organizations
acquire other organizations and the storage engines used in legacy companies will be slowly migrated to new processes that the parent organization uses,
but the companies wanted to retain the data of legacy systems for auditing and analysis purposes. Approach discussed in this paper involves converting
structured and unstructured legacy system data into files, which are then stored in HDFS for cost-effective, distributed storage. To enable fast search and
retrieval, we employ Elastic Search to index metadata and key terms extracted from these files. Since Elastic Search is designed for real-time indexing and
full- text search, it allows users to perform rapid lookups based on predefined attributes. However, storing complete file metadata in Elastic Search can
be inefficient. To optimize the process, we leverage HBaseas a NoSQL mapping layer that links search indices to the corresponding HDFS file paths. This
ensures that, rather than storing entire file details within Elastic Search, only essential metadata is indexed, and full records can be retrieved efficiently
using HBase as a key-value lookup store. The proposed system optimizes both storage costs and query performance by distributing large data across
HDEFS while leveraging the indexing capabilities of Elastic Search and the fast lookup capabilities of HBase. This architecture is particularly beneficial
for enterprises dealing with regulatory compliance, audits, and historical data access, where retaining legacy data is essential but needs to be both cost-
effective and easily searchable. The study concludes that the combination of HDFS for distributed storage, HBase for index mapping, and Elastic Search

for keyword-based searching provides an optimal balance between cost efficiency and performance for managing legacy system archives.

*Corresponding author
Arjun Reddy Lingala, USA.

Received: February 05, 2022; Accepted: February 10, 2022, Published: February 20, 2022

Keywords: Searching, Distributed Systems, Legacy systems,
Large files, Distributed systems, Key-Value mapping, Elastic
Search, HBase, Search Indexes, NoSQL

Introduction

In today’s digital landscape, organizations accumulate vast amounts
of data from various systems, many of which even- tually become
legacy or deprecated due to technological advancements or system
migrations [1-3]. Managing and retrieving historical data from
such systems presents several challenges, including high storage
costs, inefficient querying mechanisms, and scalability limitations.
Traditional relational databases, commonly used in legacy systems,
struggle with performance issues when handling large datasets,
making retrieval opera- tions slow and resource intensive. As a
result, enterprises seek optimized solutions to store, index, and
efficiently retrieve data while maintaining cost-effectiveness. To
address these chal- lenges, we propose an optimized search solution
that integrates Elastic Search, HBase, and Hadoop Distributed File
System [2,3]. The core idea behind our approach is to extract
data from legacy systems, convert it into large files, and store
them in HDFS, which offers a scalable, fault-tolerant, and cost-
efficient storage infrastructure [1]. Since querying data directly
from HDFS is inefficient due to its distributed nature, we employ
Elastic Search to create searchable indexes using key metadata and
terms extracted from the files [2]. However, since Elastic Search
is primarily designed for search rather than persistent storage, we
introduce HBase as a mapping layer to efficiently link the indexed

metadata to the corre- sponding file locations in HDFS [1,3]. The
proposed system architecture ensures an optimal balance between
storage effi- ciency, search performance, and retrieval speed using
HDFS for storage, Elastic Search for fast indexing, and HBase
as mapping layer [2]. This three-tiered architecture provides an
efficient and scalable alternative for handling large volumes of
legacy system data. By leveraging HDFS for cost-effective storage,
Elastic Search for high-speed indexing, and HBase for optimized
data retrieval, our solution significantly improves query response
times and reduces the overall computational and storage overhead
associated with legacy data management [1].

System Architecture

The architecture is designed to extract, store, and index data from
legacy systems while maintaining cost-effectiveness and high-
speed search capabilities. The raw data from legacy systems is first
converted into files and stored in HDFS, leveraging its distributed,
fault-tolerant, and cost-efficient storage model [1]. Since searching
for specific data within HDFS is inherently slow due to its file-
based structure, Elastic Search is used to create search indexes
containing metadata and key terms extracted from the files [2].
However, because Elastic Search is primarily designed for high-
speed indexing and search rather than data storage, HBase acts
as a mapping layer, linking the indexed records in Elastic Search
to their corresponding file paths in HDFS [3]. This structured
approach ensures that users can quickly search for and retrieve
large files with minimal latency, even when dealing with extensive

J Mathe & Comp Appli, 2022

Volume 1(1): 1-4



Citation: Arjun Reddy Lingala (2022) Optimized Search Solution for Storing and Retrieving Large Files of Legacy Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E165. DOI: doi.org/10.47363/JMCA/2022(1)E165

datasets. The architecture consists of three core components:
Storage layer, Indexing and Search layer, Mapping layer.

Storage

HDFS or other distributed storage platforms like S3 serves as
the primary storage repository for all data extracted from legacy
systems [1,4]. Given that legacy databases often store information
in structured formats in some cases, the data is converted into
structured or unstructured files before being stored in HDFS.
HDFEFS provides several advantages like scalability, fault tolerance,
and cost effectiveness. HDFS is not optimized for fast querying.
Searching for a specific piece of information within a vast
collection of files can be computationally expensive, making a
dedicated search layer necessary.

Indexing and Searching

Elastic Search is used to address the search inefficiencies of HDFS
by providing real-time, full-text search capabilities [1,2]. Instead
of searching entire files directly within HDFS, key metadata and
search terms are extracted from each file and indexed into Elastic
Search. This ensures that when users search for specific terms,
the system can quickly return relevant results without scanning
entire datasets. Elastic search provides key capabilities like high
speed search, metadata indexing, and scalability. Elastic Search
is effective at indexing and retrieving search results, but it is not
designed to store large files where a key value storage like HBase
can be used.

Mapping

HBase is integrated into the system as an intermediary data store,
which links Elastic Search index entries to actual file locations
in HDFS [2,3]. Since Elastic Search only indexes metadata and
key terms, it does not maintain references to the complete dataset.
HBase stores a mapping between indexed records in Elastic Search
and the corresponding file paths in HDFS, ensuring that relevant
data can be retrieved quickly without scanning entire directories.
HBase provides key value mappings, optimizes retrieval by
eliminating the need for full- directory scans by directly linking
indexed terms to stored files and ensures scalability.

Legacy System

—

Client

m
T

Figure 1: System Architecture and Data Flow

Data Flow and Execution

The efficiency of the proposed search solution is rooted in a well-
structured data flow and query execution mechanism. The system
follows a structured process to ensure that legacy system data is
effectively stored, indexed, and retrieved without unnecessary
computational overhead. The data flow consists of two phases
which include Storage and Indexing — which involves extracting,
storing, and indexing large files in HDFS while capturing relevant
metadata in Elastic Search and establishing lookup mappings
in HBase Search and Retrieval — handles user search queries,
identifying relevant indexed records in Elastic Search, retrieving

the corre- sponding HDFS file locations via HBase, and ultimately
fetching the requested files from HDFS [1-3].

Storage and Indexing

The first phase of the workflow is dedicated to the systematic
extraction, storage, and indexing of legacy system data [5].
It involves converting structured and unstructured data from
legacy systems into file formats suitable for scalable storage and
optimized retrieval.

Data Extraction from Legacy Systems: Legacy systems often
contain large volumes of structured and unstructured data stored
in relational databases, flat files, logs, or other proprietary systems.
Extracting this data requires careful han- dling to ensure data
integrity and format compatibility. Data stored in relational
databases is exported using SQL queries, typically formatted
into CSV, JSON, or XML files. Data from system logs, application
reports, scanned documents, and free- text repositories is extracted
in formats such as plain text, PDF, or other readable files. Before
storage, the extracted data undergoes cleaning, deduplication
ensuring consistency.

Storage: Once the data is converted into appropriate file formats
it is stored in HDFS, taking advantage of its fault- tolerant,
distributed, and cost-effective storage capabilities. Each file is
automatically replicated across multiple nodes to ensure data
availability and resilience against failures. Com- pression
techniques are applied to reduce storage overhead and improve
access speeds.

Indexing: Since searching for specific content directly within
HDFS is computationally expensive, an indexing mech- anism is
introduced using Elastic Search. The system extracts key metadata
and relevant search terms from each stored file and indexes them
to enable rapid query execution. Essential attributes such as file
name, creation date, file type, originating system, and other key
terms from the data file are captured as part of metadata extraction
and indexed within elastic search cluster enabling full-text search
and quick retrieval. Elastic Search ensures that the indexed data is
distributed across multiple nodes, ensuring high availability and
low latency querying [2].

Mapping Search Indexes: Elastic Search efficiently in- dexes
metadata, it does not store the actual data. To facilitate efficient
retrieval, HBase acts as an intermediary mapping layer that links
Elastic Search records to the corresponding file locations in HDFS.
Each indexed record in Elastic Search

is mapped to its corresponding HDFS file path within HBase.
HBase organizes mapping tables in a column-family structure,
optimizing lookups for search results [3]. The lookup mechanism
is designed to handle large-scale datasets while maintaining high
throughput and low latency.

Search and Retrieval

The second phase of the workflow focuses on executing user search
queries, retrieving metadata from Elastic Search, identifying file
locations via HBase, and fetching complete datasets from HDFS

[2].

Query Execution: When a user initiates a search request, the
system processes the query using Elastic Search, which rapidly
retrieves relevant metadata records. The system ana- lyzes the
search query to determine whether it requires exact match, phrase

J Mathe & Comp Appli, 2022

Volume 1(1): 2-4



Citation: Arjun Reddy Lingala (2022) Optimized Search Solution for Storing and Retrieving Large Files of Legacy Systems. Journal of Mathematical & Computer

Applications. SRC/JMCA-E165. DOI: doi.org/10.47363/JMCA/2022(1)E165

search, or keyword-based lookup by interpre- tation. Elastic Search
scans the indexed metadata and returns the most relevant records
in milliseconds. Search results are ranked based on relevance and
keyword match strength, with filtering options for refining results.

Retrieve File Location: The next step involves querying HBase to
retrieve the corresponding file locations in HDFS. Using the unique
document ID returned by Elastic Search, the system performs a
direct lookup in HBase to retrieve the associated HDFS file path.
HBase’s NoSQL architecture allows for high-speed mapping
retrieval, eliminating the need for complex relational joins [1].

Fetch File: After obtaining the HDFS file path from HBase, the
system proceeds to fetch the actual data from HDFS. Depending
on the user’s requirement, the system either streams the requested
file in chunks for real-time access or provides an option for full
file download [3].

Performance Optimization

To ensure the efficient storage, indexing, and retrieval of large
files from legacy or deprecated systems, multiple performance
optimizations have been implemented in the pro- posed search
solution [6]. These optimizations enhance query re- sponse times,
reduce computational overhead, improve storage efficiency, and
maintain system scalability. The performance enhancements are
categorized into data storage, indexing, query execution, and
retrieval optimizations, ensuring that the system remains robust
under high loads and large datasets.

Data Storage Optimizations

To reduce storage costs and improve retrieval speeds, files stored
in HDFS are compressed using algorithms such as Snappy, Gzip,
or LZ4 [7-9]. This ensures that large datasets occupy minimal
disk space while remaining fast to decompress. Legacy systems
often contain redundant data records, leading to excessive storage
consumption. Dedupli- cation is applied at both the file level in
HDFS to eliminate duplicate copies, ensuring optimal utilization
of storage re- sources. HDFS is configured with optimized block
sizes (e.g., 128MB or 256MB instead of the default 64MB) to
reduce excessive metadata overhead while ensuring that files are
efficiently distributed across nodes [1].

Indexing Optimizations

Efficient indexing plays a crucial role in maintaining high- speed
query performance while reducing memory and CPU overhead.
Custom language-specific analyzers, tokenizers, and stop-word
filtering can be implemented to improve search accuracy and
reduce irrelevant results. This is especially useful for processing
natural language text in legacy documents. Bloom filters are
enabled in HBase to quickly determine if a search index exists,
preventing unnecessary disk reads and reducing query execution
latency.

Query Execution Optimizations

Fast and low-latency query execution is essential for ensuring a
seamless user experience. Frequently executed queries (such as
searches for commonly accessed files) can be cached in Elastic
Search, eliminating the need for redundant query execution. HBase
uses block cache and region servers to store frequently accessed
file paths, significantly reducing lookup time. Search results can
be dynamically ranked based on keyword relevance, recency, and
access frequency, ensuring the most relevant files appear at the top.

Data Retrieval Optimizations

Retrieving large files from HDFS efficiently is a critical aspect
of the system, as traditional retrieval mechanisms can introduce
significant delays. Asynchronous data fetching from HDFS can
be implemented which allows users to start viewing or processing
data without waiting for the full download instead of waiting
for an entire file to be loaded. Large files can be retrieved
using parallelized multi-threaded access, ensuring faster data
loading speeds. All data retrieval operations can be logged and
monitored, allowing administrators to track usage patterns and
detect anomalies.

Conclusion

The proposed optimized search solution effectively ad- dresses
the challenges of storing, indexing, and retrieving large files
from legacy or deprecated systems by integrating HDFS, Elastic
Search, and HBase into a distributed architecture. This approach
ensures cost-efficient storage, high-speed indexing, and low-
latency retrieval, enabling organizations to preserve historical
data while maintaining scalability and accessibility. This paper
presents several notable advancements that includes converting
legacy system data into files and storing them in HDFS reduces
operational costs while ensuring high availability and scalability,
efficient indexing using Elastic Search by indexing key metadata
fields in Elastic Search, allowing for rapid query execution, and
integration of HBase as a lookup store enabling fast mapping of
search queries to HDFS file locations [1-3]. This solution offers
a practical and scalable alternative for organizations that need
to store and retrieve historical or legacy data efficiently without
maintaining outdated database systems. Despite its advantages,
the system presents opportunities for further enhancement in
advanced metadata extraction, Al-driven query optimization,
enhanced security and access control and many others. As data
volumes continue to grow, the demand for efficient, scalable search
architectures will become increasingly critical. This research
lays the foundation for future advancements in large- scale data
indexing and retrieval, with potential enhancements in Al-powered
search, real-time analytics, and cloud-based scalability [10-12].

References

1. D Borthakur (2010) “HDFS Architecture Guide,” Apache
Hadoop Project, [Online]. Available: https://hadoop.apache.
org/docs/r1.2.1/hdfs design.pdf.

2. S Gormley, Z Tong (2015) Elasticsearch: The Definitive
Guide, st ed. Sebastopol, CA, USA: O’Reilly Media.

3. J Kunze, RP Lee, MD Riedel (2010) HBase: The Hadoop
Database,” Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, New York,
NY, USA 1133-1136.

4. (2021) Amazon Web Services, Inc., “Amazon Simple Storage
Service Documentation,” Spring, [Online]. Available: https://
docs.aws.amazon.com/s3/.

5. BSSK Chaitanya, DAK Reddy, BPSE Chandra, AB Krishna,
RR K Menon (2019) “Full-text Search Using Database
Index,” 2019 5th International Conference On Computing,
Communication, Control And Automation (ICCUBEA),
Pune, India 1-5.

6. AK Mohideen, S Majumdar, M St-Hilaire, A El-Haraki (2020)
“A Data Indexing Technique to Improve the Search Latency
of AND Queries for Large Scale Textual Documents,”
2020 IEEE/ACM International Confer- ence on Big Data
Computing, Applications and Technologies (BDCAT),
Leicester, UK 37-46.

7. M Blott, T Preusser, NJ Fraser, GK Kuzmanov, K Vissers

J Mathe & Comp Appli, 2022

Volume 1(1): 3-4



Citation: Arjun Reddy Lingala (2022) Optimized Search Solution for Storing and Retrieving Large Files of Legacy Systems. Journal of Mathematical & Computer
Applications. SRC/JMCA-E165. DOI: doi.org/10.47363/JMCA/2022(1)E165

(2018) “A High-Bandwidth Snappy Decompressor in
Reconfigurable Logic,” 2018 28th International Conference
on Field Programmable Logic and Applications (FPL),
Dublin, Ireland 131-1315.

LP Deutsch (1996) “GZIP file format specification version
4.3,” Re- quest for Comments (RFC) 1952, May 1996.
[Online]. Available: https://dl.acm.org/doi/10.17487/
RFC1952.

M Bart'ik, S Ubik, P Kubal'ik (2015) ”LZ4 Compression
Algorithm on FPGA,” 2015 IEEE International Conference

10.

I1.

12.

on Electronics, Circuits, and Systems (ICECS), Cairo, Egypt
179-182.

Bennett E, Sako Dumnamene, Igiri Chima (2019) An Efficient
Algorithm for Data Compression in a Distributed System.
PD Turney, P Pantel (2010) “From Frequency to Meaning:
Vector Space Models of Semantics,” Journal of Artificial
Intelligence Research 37: 141-188.

SRK Saha (2017) “Natural Language Processing in the Digital
Era,” IEEE Transactions on Computational Social Systems
4: 81-89.

Copyright: ©2022 Arjun Reddy Lingala. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

J Mathe & Comp Appli, 2022

Volume 1(1): 4-4



