Journal of Media &

Management

Review Article

ISSN: 2755-0109

\?‘.»SCIENTIFIC

Research and Community

v
Open @ Access

Kubernetes Traffic Management using Istio

Pallavi Priya Patharlagadda

United States of America

ABSTRACT

When infrastructures transition from monolithic to microservices, containers might provide consistency and granularity in resource management. We
can now treat one computer as multiple computers, thanks to microservices. This decreased resource waste by enabling programs to scale up and down
computers in response to demand. But how can traffic be directed to services that are hosted on-premises, in a hybrid cloud, or on multi cloud deployments?
The idea is to use service mesh to handle such scenarios in microservices. The idea of service mesh is to increase Kubernetes’ efficacy and security. One use
of this service mesh concept is Istio. In this paper, we also discuss why we need Istio even though Kubernetes has Ingress.

*Corresponding author
Pallavi Priya Patharlagadda, United States of America.

Received: January 11, 2022; Accepted: January 18, 2022; Published: January 25, 2022

Problem Statement

In 2014, Google made Kubernetes open-source, and during the
following three years, its growth was exponential. It evolved
into a container scheduling solution that helped with distributed
application deployment and scheduling by treating several
computers as if they were a single machine. The flexibility of
computing resources must be strong since a single machine’s
resources are limited and Internet applications may experience
traffic floods at different periods (due to the rapid increase of
user scale or diverse user qualities). Large-scale applications are
too complex for a single computer to handle, while small-scale
applications using the entire host would be a waste. To put it
briefly, Kubernetes allows the system to automatically attain and
maintain the desired state of the service. How then can you control
the flow of traffic via the service after the application is live? We’ll
examine how Kubernetes handles service management and how
Istio has modified it below.

Introduction

Service Mesh

By adding observability, stability, and security capabilities to
applications at the platform level as opposed to the application level,
Kubernetes service meshes are a useful tool. Interest in this technology
has increased due to the popularity of microservices and Kubernetes,
with several enterprises using Kubernetes service mesh solutions.

The architecture of microservices heavily relies on the network.
Traffic management between application services is possible using
a service mesh. Although there are alternative methods for managing
network traffic, they are not as long-lasting as a service mesh as
they require manual, prone to mistake effort that puts more of an
operational load on the DevOps team.

A Kubernetes service mesh is often implemented as a collection
of network proxies that are deployed inside of containers together
with an application code sidecar. These sidecar proxies oversee
communication between containerized microservices and serve as an
entry point for service mesh capability. Proxies under the control of the

control plane make up the data plane of the Kubernetes service mesh.

Kubernetes and service mesh architectures came into being together
with the rise of cloud-native apps. A single containerized service may
have hundreds of instances, while an application may have thousands
of instances of each service. Since each of these instances varies
often, dynamic scheduling is necessary, and Kubernetes assists in
handling this.

Istio

Istio is a service mesh solution that works with any vendor or
platform that enables developers to execute, connect, secure,
control, and monitor distributed microservices systems. In
workloads based on virtual machines and containers, it controls
how services communicate with one another.

Istio is helpful on any platform because it is independent and
open-source, but it works best with Kubernetes. By integrating the
two, you can protect communication between pods and services
both on the network and in applications.

Software for container orchestration gains more functionality
by integrating with Istio. Failure and traffic management are not
tasks that Kubernetes typically solves, but rather multi-container
workloads like microservices. Istio fills this void by building
dependable and more effective solutions.

Advantages of Using Istio with Kubernetes

Organizations may offer decentralized apps at scale with the help

of Istio. Network activities like inter-service traffic management,

encryption, authorization, debugging, and auditing are made easier

with its assistance.

In addition to the functions that standard Kubernetes delivers,

Istio supports the following

¢ Cloud-Native Application Security: encryption, robust
identity-driven authorization, and authentication allows you
to concentrate on application-level security.

J Media Managem, 2022

Volume 4(1): 1-4

Citation: Pallavi Priya Patharlagadda (2022) Kubernetes Traffic Management using Istio. Journal of Media & Management. SRC/JMM-E101.

DOI: doi.org/10.47363/JMM/2022(4)E101

« Efficient Traffic Management: use error injection, failover,
retries, and extensive routing rules to provide fine-grained
control over network traffic and behavior. The incorporation
of Chaos Monkey enables SREs to introduce delays and errors
during post-production testing, hence enhancing resilience.

e Service Mesh Monitoring: You can track, monitor, and
resolve issues with the help of Itsio’s service-level visibility.
In the absence of detailed information, bottlenecks are difficult
to fix quickly. Maintaining API responsiveness and turning
off faulty services and replicas is simple with a service mesh.

* Easy Deployment with Kubernetes: Virtual machines and
containers are only two examples of the classic and new
workloads for which Istio provides network visibility and
management.

* Simplified Load Balancing: Advanced features allow canary
installations, offer client-based routing and automate load
balancing.

* Policy Enforcement: Policies including access control,
quotas, and rate limitations are enforced with the use of a
configuration API and policy layer.

How Istio Works?

Istio employs a proxy to snoop on all of your network traffic,
enabling a wide range of application-aware functionality
contingent on your setup.

The control plane programs the proxy servers dynamically,
adjusting them in response to changes in the environment or the
rules based on your intended configuration and its perception of
the services. The means of communication between services is the
data plane. The network is unable to distinguish between different
types of traffic, determine who is sending or receiving it, or make
any choices regarding it in the absence of a service mesh.

Istio Supports Two Data Plane Modes

e Sidecar Mode: sidecar mode, which runs alongside VM-
based services and launches an Envoy proxy with each pod
you launch in your cluster.

* Ambient Mode: ambient mode makes use of a per-node
Layer 4 proxy and, for Layer 7 functionality, a per-namespace
Envoy proxy.

Istio Architecture & Components

Two planes make up the Istio service mesh: the control plane and

the data plane

* The data plane is made up of several intelligent proxies that
are installed as sidecars next to the application and are based
on the Envoy open source project.

* To route traffic, the control plane sets up and maintains

proxies.
P Service A @ Serace B
| p=i
O = O
u s L 1]

Istio Data Plane

Envoy proxies, installed as sidecars and running alongside
application instances in Kubernetes pods, make up the data
plane. The Envoy proxies oversee network connections between
microservices and manage traffic for the system’s services.

With Istio, developers may add proxies to their applications
without requiring any modifications to the code by deploying
Envoy as a sidecar. By implementing transport layer security
(TLS) and traffic encryption policies, as well as listing routing rules
(supporting HTTP, gRPC, and TCP), the Envoy proxy manages
traffic.

All application traffic passes via these Envoy proxies, which
promote observability by gathering a lot of data and providing
insightful information about traffic.

Istio Control Plane

Three essential parts make up the Istio control plane

e Pilot: Talks to the Envoy sidecar using the Envoy API.
The pilot is in charge of route, traffic control, and service
inspection.

* Citadel: Manages credential and certificate management, user
authentication, and secure communication between services.

e Galley: In charge of processing, distributing, and managing
configurations.

Envoy

To mediate inbound and outgoing traffic for services in a service
mesh, Istio uses Envoy, a high-performance proxy. It restricts data
plane traffic interaction to envoy proxies exclusively. Istio runs
Envoy proxies alongside services in a pod by deploying them as
sidecar containers. This makes sense since it enhances services
with Envoy’s inherent qualities, which include

* Load balancing

* Dynamic service discovery

* TLS termination

» Circuit breakers

* HTTP/2 and gRPC proxies

* Health checks

* Fault injection

» Staged rollouts with %- based traffic split

* Rich metrics

Istio can extract rich telemetry and impose policies via a sidecar
deployment. Istio can provide this information to monitoring
systems so they can understand the behavior of the entire mesh.
You may also add Istio functionality to current deployments using
this sidecar proxy paradigm without having to rewrite or re-
architect the code.

Envoy proxies facilitate the following important Istio functionality

and tasks

¢ Traffic Control: it allows you to control TCP, gRPC, HTTP,
WebSocket, fine-grained traffic management, and extensive
routing rules.

* Network Resilience: features such as setup retries, circuit
breakers, fault injection, and failovers.

¢ Security and Authentication: Istio may impose rate limits,
access control, and security controls thanks to Envoy proxies.
By utilizing the configuration API, you may specify it.

* Pluggable Extensions: this WebAssembly-based architecture
allows you to generate telemetry for your mesh traffic and
impose custom policies

J Media Managem, 2022

Volume 4(1): 2-4

Citation: Pallavi Priya Patharlagadda (2022) Kubernetes Traffic Management using Istio. Journal of Media & Management. SRC/JMM-E101.

DOI: doi.org/10.47363/JMM/2022(4)E101

Istiod

Istiod offers configuration, service discovery, and certificate

management. During runtime, it translates the high-level routing

rules governing traffic behavior into Envoy-specific settings and
distributes them to sidecars.

* Service Discovery: The pilot is in charge of taking platform-
specific techniques for service discovery and combining
them into a common format that sidecars that follow the
Envoy API may use. Istio facilitates discovery across several
contexts, such as Kubernetes and virtual machines. The Traffic
Management API of Istio can assist Istiod in fine-tuning an
Envoy setup to impose more detailed control over traffic
inside a service mesh.

e Security: To accomplish robust service-to-service and end-
user authentication, Istiod security offers integrated identity
and credential management. Istio can also assist you in
improving unencrypted traffic inside a service mesh. Istio
allows you to apply regulations based on service identification,
rather than comparatively erratic layer three or layer four
network identities. To manage service access, you may also
take advantage of Istio’s authorization features.

e Certificate Management: To provide secure mTLS
communication within the data plane, Istiod performs the
role of a certificate authority (CA), creating certificates.

The Need for an Istio Management Plane

Even though Istio has had plenty of time to develop and is still
releasing new features every quarter, a lot of organizations are
looking to improve Istio by adding a management plane. This will
make it easier to configure Istio and give you access to features
like enhanced multi-cluster capabilities, software lifecycle
management, advanced/federated security with builds that are
ready for FIPS, backported CVEs, and everything else you need
for successful Day 2 operations [1].

Kubernetes Ingress vs Istio Gateway

The only traffic that kube-proxy can transport is inside a Kubernetes
cluster. A CNI-created network houses the pods of a Kubernetes
cluster. The creation of an ingress, a Kubernetes resource object,
allows for communication with devices outside the cluster. The
Kubernetes edge nodes that govern north-south traffic are home to
an ingress controller that powers it. It is necessary to dock ingress
to different ingress controllers, such as traffic and the nginx ingress
controller. Ingress is easy to use, however, it only applies to HTTP
traffic. A restricted set of fields, including service, port, HTTP path,
etc., must match for it to be able to route traffic. Routing TCP
traffic, including that from MySQL, Redis, and other RPCs, is
thus not viable. For this reason, you’ll find individuals annotating
ingress resources with nginx configuration language. The service’s
Load Balancer or Node Port are the only options for directly
routing traffic north-south; the former requires support from cloud
vendors, while the latter requires extra port management [2-5].

Istio Gateway manages traffic moving north-south into and
out of the cluster, much as Kubernetes Ingress. To transport
connections to and from the mesh’s edge, Istio Gateway defines
a load balancer. The standard outlines several open ports, the
protocols they employ, the SNI load balancing settings, etc. The
CRD extension known as Gateway takes advantage of the sidecar
proxy’s capabilities as well.

Envoy

In Istio, Envoy is the sidecar proxy by default. Istio expands its
control plane using the xDS protocol from Enovy. Before delving
into Envoy’s xDS protocol, let’s brush up on some fundamental
vocabulary. The words below are basic terms in Envoy together
with their corresponding data structures [3-6].

Envoy Proxy Architecture Diagram

host B host C

k| A (ot el VT S o T e
Upsiream Rloute action: route/redirect direct_response
Sedncar wrﬁw:nsmwmcuwmm

[| woceteun |
|_Routo Discovery Servicn }, | yjgteney | /"__":m—“_

mﬂmﬂﬁtﬂu —‘ oliner ey Hilp corrasnee manuge

[Endgort Dacovey Sers | % s g
| Listanar Dscormry Senvies | o “vopads oy
Seerel Discawary Sanvice admin L
- e . P B
Matric Serce tracing o R
r wid e ey

[ealth Discevery Sanice | ooy un
'}

Denwrestream hostporfURL intercapted by sidecar proxy

hostA send request

Basic Terminology

These are the fundamental phrases of Envoy that you ought to

be aware of

e Downstream: The host that made the request connects to
Envoy, makes the request, and gets the answer. This host is
known as the downstream host.

e Upstream: The host that receives the requests, or the
upstream host, accepts connections and requests from Envoy
and responds to them.

e Listener: A listener is a specified network address that
downstream clients can connect to, such as a port or UNIX
domain socket. Envoy allows connections with downstream
hosts by exposing one or more listeners.

¢ Cluster: An Envoy cluster is a collection of logically
equivalent upstream hosts. Envoy uses service discovery to
find out who is in a cluster. Proactive health checks are one
way to potentially find out how well each cluster member is
doing. Envoy uses a load-balancing strategy to choose which
cluster member to route requests through.

Envoy allows for the configuration of many listeners, the setup
of a filter chain (filter chain table) by each listener, and scalable
filtering, making it easier to control traffic behavior through the
use of private RPC, encryption, and other features [7-9].

The MOSN open-source project by Ant Group is one example
of how the xDS protocol, which was introduced by Envoy and is
the default sidecar proxy in Istio, can conceivably be used as a
sidecar proxy in Istio as long as it is implemented [10].

J Media Managem, 2022

Volume 4(1): 3-4

Citation: Pallavi Priya Patharlagadda (2022) Kubernetes Traffic Management using Istio. Journal of Media & Management. SRC/JMM-E101.

DOI: doi.org/10.47363/JMM/2022(4)E101

1 Istic Mesh I
e v
|
]
! Senice A Senice B |
|
I
[} f Data Plata ' I
| i ¥ |
Intaud | ! Butoens
T i +—>
! |
I
| |
| |
| |
I | '
] | l
| r | l
* |
| G| gtiod| Piot | | Chadel || Galey |
e
|
I
| |
e e, |

The following are only a few of the features that make Istio a very

feature-rich service mesh.

* Traffic Management: This is the most basic feature of Istio.

* Policy Control: Permits the use of telemetry capture,
charging, quota management, and access control systems.

* Observability: The sidecar proxy implements this.

* Security Authentication: The Citadel component handles
certificate and key management.

e Traffic Management in Istio: Istio provides users with traffic
control assistance by defining the following CRDs.

e Gateway: A gateway is an HTTP/TCP connection receiver
that operates at the network’s edge.

* Virtual Service: This is the real virtual service that links the
Istio Gateway with the Kubernetes service. It is also capable
of carrying out other tasks, such as creating a set of traffic
routing rules that will be used when a host is addressed.

e Destination Rule: After traffic has been routed, the access
policy is decided by the policy specified by the Destination
Rule. It specifies the flow of traffic, to put it simply. Load-
balancing setups, connection pool sizes, and external detection
configurations (which identify and remove problematic hosts
from the load-balancing pool) are a few examples of these
rules.

¢ Envoy Filter: Istio Pilot generates a proxy configuration,
the Envoy Filter object defines filters for proxy services that
allow customization of that configuration. Primary users often
don’t utilize this setup very often.

e Service Entry: Istio service mesh services are not by default
able to find services outside of the mesh. By enabling the
insertion of new entries to the Istio service registry, Service
Entry allows automatically detected services inside the mesh
to connect to and route to manually added services.

Conclusion

It just requires using Kubernetes to manage microservices and then
implementing service mesh if the item managed by Kubernetes is
a pod and the object managed in service mesh is a service. Use a
serverless platform like Knative if you don’t even want to maintain
a service; however, that is an afterthought.

References
1. Available at: https://www.solo.io/topics/istio/istio-
architecture/.

2. Available at: https://thenewstack.io/why-do-you-need-istio-
when-you-already-have-kubernetes/.

3. Available at: https://www.opsmx.com/blog/what-is-istio-and-
why-is-it-necessary-for-kubernetes/.

4. Available at: https://www.solo.io/topics/istio/istio-
kubernetes/.

5. Available at: https://tetrate.io/blog/what-is-istio-and-why-
does-kubernetes-need-it/.

6. Available at: https://kubebyexample.com/learning-paths/
istio/intro.

7. Available at: https://istio.io/latest/docs/concepts/traffic-
management/.

8. Available at: https://dev.to/techworld with nana/step-by-
step-guide-to-install-istio-service-mesh-in-kubernetes-dod.

9. Available at: https://birthday.play-with-docker.com/istio-
docker-desktop/.

10. Available at: https://jimmysong.io/en/blog/service-mesh-the-
microservices-in-post-kubernetes-era/.

Copyright: ©2022 Pallavi Priya Patharlagadda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

J Media Managem, 2022

Volume 4(1): 4-4

