Journal of Media &

Management

Review Article

ISSN: 2755-0109

AN
&(ﬁ&SCIENTIFIC

RS Research and Community

v
Open @ Access

Comprehensive Study of Git and Github & Implementing Them

as Learning Objectives in Modern Education

Harika Sanugommula

Independent Researcher

ABSTRACT

implementing Git & GitHub in modern day education.

Git and GitHub are pivotal in modern software development, providing developers with robust tools for version control and collaboration. Git, a distributed
version control system, allows multiple developers to work on code simultaneously while maintaining a comprehensive history of changes. GitHub, built on
Git, enhances this functionality by offering a platform for hosting repositories, facilitating collaboration, and integrating various development tools. This
paper explores the architecture of Git, the features of Git & GitHub, common workflows, how to integrate Git & GitHub, best practices along with mainly

*Corresponding author
Harika Sanugommula, Independent Researcher.

Received: November 15, 2022; Accepted: November 22, 2022; Published: November 29, 2022

Keywords: Git, GitHub, Version Control, Collaboration, Software
Development

Introduction

In the rapidly evolving field of software development, effective
version control and collaboration are essential for success. Git,
created by Linus Torvalds in 2005, is a distributed version control
system that allows developers to manage code changes efficiently.
GitHub, launched in 2008, leverages Git’s capabilities by providing
auser friendly platform for hosting and sharing repositories. This
paper examines the architecture of Git, the features of GitHub,
common workflows, and best practices to optimize development
processes.

Git Architecture

Distributed Version Control: Each developer has a complete copy
of the repository, enabling offline access and faster operations.
Snapshots: Git tracks changes as snapshots, allowing users to
view the entire project state at any commit.

Features on Git & GitHub

Git and GitHub offer essential tools for version control and
collaboration, each with unique features that support developers
in managing code effectively. Core features of Git include its
powerful branching and merging capabilities, allowing developers
to create separate branches for different features or bug fixes,
which can then be merged back into the main branch when
ready. This promotes parallel development, making it easier for
multiple team members to work on various aspects of a project
simultaneously. Git also includes a staging area, a temporary
space where developers can prepare changes before committing
them to the repository. This feature allows for selective inclusion
of changes, ensuring that only finalized updates are committed.
Additionally, Git maintains a comprehensive commit history that
logs all changes made to a project, providing a chronological
record that can be used to review or revert to previous versions
as needed.

GitHub builds on Git’s functionality by offering a range of
collaborative features through a centralized platform. It provides
repository hosting, making it easy to store, share, and manage
Git repositories. GitHub also includes robust collaboration tools
like pull requests, issues, and project boards, which streamline
team communication and enable developers to discuss and review
changes before merging them into the main codebase. Furthermore,
GitHub supports integration with CI/CD (Continuous Integration
and Continuous Deployment) tools, enabling teams to automate
testing, deployment, and other workflows directly within the
platform. This integration enhances efficiency by allowing code to
be automatically tested and deployed after every change, ensuring
a consistent and reliable development pipeline. Together, Git and
GitHub provide a powerful suite of tools for version control and
collaborative coding, promoting both individual productivity and
seamless teamwork.

1. It is a software 1. It is a service

2. It is installed locally on the system 2. It is hosted on Web

3. It is a command line tool 3. It provides a graphical interface

4. It is a tool to manage different versions 4. It is a space to upload a copy of

of edits, made to files in a git repository the Git repository

5. It provides functionalities of Git like VCS,
Source Code Management as well as
adding few of its own features

5. It provides functionalities like Version
Control System Source Code Management

Source: https://medium.com/edureka/gitvsgithub67¢511d09d3e

Common Workflows

e Centralized Workflow: All changes are made in a central
repository, suitable for small teams.

e Feature Branch Workflow: Each new feature is developed
in its own branch, promoting isolation and easier code review.

* Fork and Pull Request Workflow: Common in opensource
projects, where developers fork repositories, make changes,
and submit pull requests for review.

J Media Managem, 2022

Volume 4(6): 1-3

Citation: Harika Sanugommula (2022) Comprehensive Study of Git and Github & Implementing Them as Learning Objectives in Modern Education. Journal of

Media & Management. SRC/JMM-E103. DOI: doi.org/10.47363/JMM/2022(4)E103

Why and how to Integrate Git & GitHub?

Integrating Git and GitHub is necessary to enhance collaboration
among developers, streamline version control, and provide remote
access to code. It facilitates code reviews through pull requests,
offers backup and redundancy, and integrates with CI/CD tools
for automated testing and deployment. Additionally, it supports
project management with issue tracking and allows teams to
maintain organized workflows, making it essential for efficient
software development. The integration of Git and GitHub occurs
through a series of steps that facilitate seamless collaboration and
version control in software development.

Setting Up a GitHub Repository

Create a New Repository: Users start by creating a new repository
on GitHub, which serves as a central location for their project.
Initialize with a README: Optionally, you can initialize the
repository with a README file to describe the project.

Cloning the Repository

Developers clone the GitHub repository to their local machines
using the following command: git clone <repositoryurl>

This command downloads a copy of the repository, allowing
developers to work on it locally.

Making Changes Locally

Creating Branches: Developers create branches for new features
or bug fixes using:

git checkout b featurebranch

Committing Changes: After making changes, developer’s stage
and commit those changes:

git add <file>

git commit m “Description of changes”

Pushing Changes to GitHub

Once local changes are committed, developers push their branches
back to the GitHub repository: git push origin featurebranch
This updates the remote repository with the new commits, making
them accessible to collaborators.

Creating a Pull Request

After pushing changes, developers can initiate a pull request (PR)
on GitHub to merge their changes into the main branch. This is
typically done through the GitHub web interface, where they can
describe the changes and request reviews.

Code Review and Collaboration

Team members can review the pull request, comment on specific
lines of code, and suggest changes. This collaborative review
process helps maintain code quality. Once the PR is approved, it
can be merged into the main branch via GitHub.

Merging Changes

After approval, the changes are merged into the main branch
using the GitHub interface. This can involve either a fastforward
merge or a merge commit, depending on the project’s workflow.

Continuous Integration/Deployment (CI/CD)

Many teams integrate CI/CD tools with GitHub to automate testing
and deployment processes. For example, when a pull request is
created or updated, automated tests can run to ensure that the
code changes do not introduce new issues. Tools like GitHub
Actions can be configured to deploy the code automatically after
successful tests.

Syncing with the Main Branch

Developers frequently sync their branches with the main branch
to incorporate the latest changes. This can be done by pulling
updates: git pull origin main

A Few Commonly used Commands

1. Gitinit it initializes an existing directory as a Git repository.

2. Git status displays the status of our working directory.

3. Git log it shows all commits in the current branch’s history.

4. Git rm (name of file) delete’s the file from project and stage
the removal for commit

5. Git commit we can create a new commit from changes added
to the staging area.

6. Git checkout by this command we can switch to another
branch and check it out into our working directory

Best Practices

Adopting best practices in version control is essential for efficient
and effective collaborative development. One key practice is
frequent commits, where developers commit changes regularly
rather than waiting until larger changes accumulate. Frequent
commits capture incremental changes, making it easier to
understand the evolution of a project and enabling developers to
pinpoint issues when debugging. This approach supports greater
transparency, as each change is recorded in the project’s history,
which can significantly simplify project management, especially
in larger teams.

Another crucial best practice is using descriptive commit messages.
Each commit should come with a clear, informative message
detailing the purpose of the change. Descriptive messages not
only help the developer who made the changes but also make it
easier for others reviewing the project to understand the context
and intent behind each update. Effective messages may include
information on what was added, removed, or fixed, giving a
snapshot of the codebase’s progress and enabling smoother team
collaboration.

Lastly, it is essential to regularly sync with remote repositories.
Frequent synchronization with the central repository ensures that
developers are working with the latest version of the project,
helping to prevent conflicts that might arise if multiple people
are working on the same files. Regular syncing allows teams to
pull in updates and integrate them into their local workspaces,
facilitating a smoother and more cohesive development workflow.
Together, these best practices frequent commits, clear commit
messages, and regular syncing create a structured, communicative,
and conflictfree environment, which is especially important for
collaborative and largescale projects.

Implementing Git & GitHub in Modern Day Education
Incorporating Git and GitHub into modern education offers
students valuable, realworld experience in version control and
collaborative development, skills that are essential in today’s
technology centrist world. Git, a widely used distributed version
control system, enables students to manage project changes
systematically, track their progress over time, and resolve conflicts
in collaborative projects. GitHub, as a platform for hosting and
sharing Git repositories, complements these skills by providing
an environment for teamwork, where multiple contributors can
engage in code reviews, project sharing, and collaborative coding.
Together, these tools are pivotal in teaching students how to work
effectively within teams on largescale projects and contribute to
opensource initiatives.

J Media Managem, 2022

Volume 4(6): 2-3

Citation: Harika Sanugommula (2022) Comprehensive Study of Git and Github & Implementing Them as Learning Objectives in Modern Education. Journal of

Media & Management. SRC/JMM-E103. DOI: doi.org/10.47363/JMM/2022(4)E103

To successfully integrate Git and GitHub into educational
programs, strategies for implementation might include embedding
Git/GitHub projects directly into the curriculum. Courses that
involve programming or collaborative assignments can incorporate
these tools in practical exercises, ensuring that students gain
handson experience. Schools and universities can also host
workshops and offer online resources to provide foundational
skills in Git and GitHub, giving students opportunities to develop
confidence in using these tools outside a traditional classroom
setting.

The benefits of using Git and GitHub for students are farreaching.
Students acquire core skills in version control and software
development practices that are in high demand in the job market.
Additionally, Git and GitHub projects promote active learning
and engagement, encouraging students to explore coding, project
management, and collaborative skills in an interactive manner.
This exposure to realworld development tools prepares students
for future careers in technology, engineering, and other fields
where these competencies are crucial.

Conclusion

Git and GitHub have transformed the software development
landscape, providing powerful tools for version control and
collaboration. By understanding Git’s architecture and leveraging
GitHub’s features, development teams can enhance their workflows,
improve code quality, and foster effective collaboration. Adopting
best practices ensures that projects are managed efficiently, leading
to successful software development outcomes.

References

1. S Chacon, B Straub, Pro Git, Apress, 2014.

2. J Smart (2015) “Version Control with Git,” IEEE Software
32:104107.

3. ABeasley (2016) “The Benefits of Using Git and GitHub in
Software Development,” Journal of Software Engineering
and Applications 9: 2534.

4. MM H S Rahman, R Reaz (2018) “An Introduction to Git
and GitHub,” International Journal of Computer Applications
179: 1117.

5. “GIT CHEAT SHEET” (2021) Github. https://education.
github.com/gitcheatsheeteducation.pdf.

Copyright: ©2022 Harika Sanugommula. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

J Media Managem, 2022

Volume 4(6): 3-3

