

Mini Review
Open Access

Higher Toxoplasma Gondii Seropositivity in COVID-19 and Tuberculosis Patients: A Case-Control Study

Yan Yan^{1*}, Chantsalmaa Davgadorj¹, Xu Wang¹ and Yonghua Zhou^{2*}

¹Clinical Medical Research Center, The Fifth People's Hospital of Wuxi, Wuxi Academy of Nantong University, Wuxi 214016, China

²Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China

ABSTRACT

Using a case-control study, we compared the antibody-positive profiles for Toxoplasma gondii in patients infected with SARS-CoV-2, tuberculosis (TB), HBV, and HIV-1 in Wuxi of China. As an important pathogen, Toxoplasma gondii has higher co-infection and reactivation rates in patients with SARS-CoV-2 and TB infection.

***Corresponding author's**

Yan Yan, Clinical Medical Research Center, The Fifth People's Hospital of Wuxi, Wuxi Academy of Nantong University, Wuxi 214016, China.

Yonghua Zhou, Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China.

Received: June 06, 2023; **Accepted:** June 16, 2023; **Published:** July 05, 2023

Keywords: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Vaccine, Coronavirus Disease 2019 (COVID-19), Toxoplasma Gondii, Tuberculosis

Patients and Methods

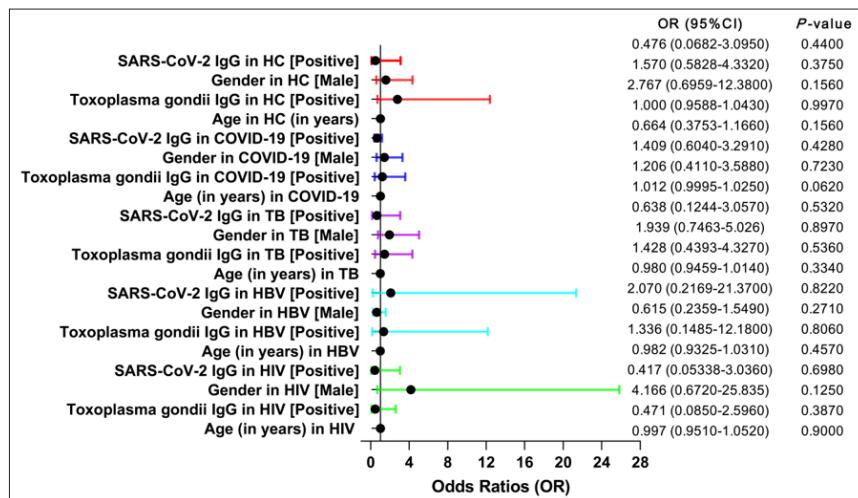
This study enrolled patients infected with SARS-CoV-2, tuberculosis (TB), HBV, and HIV-1 who were on active treatment in our hospital in 2020 and 2022. We also enrolled the health examination population as health control (HC) during the same period. The medical records and demographic information were collected through a clinical data system. The inclusion criteria were as follows: ① Patients whose diagnosis met the medical criteria; ② Patients aged ≥ 18 years. ③ Patients in 2022 who have immunized with the third dose of inactivated COVID-19 vaccine. This study was conducted following the Declaration of Helsinki (as revised in 2013) and approved by our hospital ethics committee (No. 2021-004-1). Toxoplasma gondii (T. gondii) IgM (or IgG) seropositivity was tested using indirect ELISA (Zhuhai Haitai Biotech, Zhuhai, China) following the product manuals. SARS-CoV-2 IgG was tested using INNOVITA® 2019-nCoV IgM/IgG kit following the manufacturer's instructions.

Results

Based on the COVID-19 patients' symptoms over the past three years, patients over 46 years with comorbidities were prone to developing severe illness, so we divided them into two age groups [1]. We have reported that TB patients had the weakest immunogenicity after vaccinating with the third dose of inactivated COVID-19 vaccine [2]. In this case-control study, compared to the SARS-CoV-2 IgG positivity (59.9%) of healthy control (HC), the IgG positivity (after vaccinating with the third dose of inactivated COVID-19 vaccine) of TB patients (25.9%), HBV patients (43.0%), or HIV-1 patients (33.9%) was significantly

lower ($P < 0.05$). In addition, SARS-CoV-2 IgG positivity of the HBV female patients was significantly lower than that of the HC female group ($P < 0.05$). The SARS-CoV-2 IgG positivity of COVID-19 patients was the initial antibody result (induced by vaccination) after admission, similar to that of the HC (Table 1).

T. gondii, as an opportunistic pathogen, infects nearly a third of people in the world; its prevalence closely relates to economic development and lifestyle [3, 4]. It still lacks research on COVID-19 and TB patients with T. gondii status in the Yangtze River Delta region of China, especially universal vaccination with the third dose of inactivated COVID-19 vaccine. In this case-control study, SARS-CoV-2 [T. gondii IgM: 60.8% ($P = .0000$)] and TB [T. gondii IgG: 33.0% ($P = .0073$), IgM: 53.6% ($P = .0000$)] infected patients had significantly higher T. gondii seropositivities compared with the HC (T. gondii IgG: 18.2%, IgM: 19.0%). On the contrary, HBV [T. gondii IgG: 5.1% ($P = .0062$), IgM: 3.8% ($P = .0016$)] and HIV-1 [T. gondii IgM: 6.5% ($P = .0222$)] infected patients had significantly lower T. gondii seropositivities than HC. T. gondii IgG positivity rankings (co-infection in 2022): TB (33.0%) > COVID-19 (24.9%) > HC (18.2%) > HIV-1 (9.7%) > HBV (5.1%). Our study demonstrated that SARS-CoV-2- and TB-infected patients also had significantly higher reactivation or new infection rates of T. gondii (IgM positive) compared with HC. In addition, IgM positivity of T. gondii showed significant gender and age differences in patients with COVID-19, TB, and HBV ($P < 0.05$). Notably, COVID-19 patients had ~2.4-fold higher T. gondii IgM positivity than IgG, and this fold was higher than in other groups. TB patients had ~1.6-fold higher T. gondii IgM positivity than IgG. The higher T. gondii infection status (IgM positive) suggests that T. gondii-infected patients may be susceptible to SARS-CoV-2 or TB co-infection (Table 1).


Table 1: Comparison of Toxoplasma Gondii Seropositivity in Patients Infected with SARS-CoV-2, TB, HBV, and HIV-1

Groups	Positive SARS-CoV-2 IgG, n/N (%)	P ^a	Toxoplasma Gondii				Positive Gondii IgG			
			Positive IgM, n/N (%)	P ^a	Positive IgG, n/N (%)	P ^a	Positive SARS-CoV-2 IgG, n/N (%)	P ^a	Negative SARS-CoV-2 IgG, n/N (%)	P ^a
HC	82/137 (59.9)	NA	26/137 (19.0)	NA	25/137 (18.2)	NA	9/82 (11.0)	NA	16/55 (29.1)	NA
Male	28/54 (51.9)	NA	11/54 (20.4)	NA	13/54 (24.1)	NA	2/28 (7.1)	NA	11/26 (42.3) §	NA
Female	54/83 (65.1)	NA	15/83 (18.1)	NA	12/83 (14.5)	NA	7/54 (13.0)	NA	5/29 (17.2)	NA
18-45	48/81 (59.3)	NA	12/81 (14.8)	NA	10/81 (12.3) §	NA	5/48 (10.4)	NA	5/33 (15.2) #	NA
≥46	34/56 (60.7)	NA	14/56 (25.0)	NA	15/56 (26.8)	NA	4/34 (11.8)	NA	11/22 (50.0)	NA
COVID-19	174/309 (56.3)	.4851	188/309 (60.8)	.0000	77/309 (24.9)	.1218	41/174 (23.6)	.0178	36/135 (26.7)	.7339
Male	100/184 (54.3)	.7463	110/184 (59.8)	.0000	28/184 (15.2) &	.1297	13/100 (13.0)*	.3944	15/84 (17.9) #	.0103
Female	74/125 (59.2)	.3949	78/125 (62.4)	.0000	49/125 (39.2)	.0001	28/74 (37.8)	.0018	21/51 (41.2)	.0024
18-45	93/158 (58.9)	.9527	113/158 (71.5) ¶	.0000	56/158 (35.4) ¶	.0002	35/93 (37.6) &	.0007	21/65 (32.3)	.0691
≥46	81/151 (53.6)	.3630	75/151 (49.7)	.0014	21/151 (13.9)	.0299	6/81 (7.4)	.4492	15/70 (21.4)	.0094
TB	29/112 (25.9)	.0000	60/112 (53.6)	.0000	37/112 (33.0)	.0073	9/29 (31.0)	.0118	28/83 (33.7)	.5665
Male	17/78 (21.8)	.0000	44/78 (56.4)	.0000	24/78 (30.8)	.3998	5/17 (29.4)	.0457	19/61 (31.1)	.3161
Female	12/34 (35.3)	.0032	16/34 (47.1)	.0013	13/34 (38.2)	.0044	4/12 (33.3)	.0867	9/22 (40.9)	.0064
18-45	15/51 (29.4)	.0008	25/51 (49.0)	.0000	14/51 (27.5)	.0285	2/15 (13.3) §	.7537	12/36 (33.3)	.0800
≥46	14/61 (23.0)	.0000	35/61 (57.4)	.0004	23/61 (37.7)	.2077	7/14 (50.0)	.0042	16/47 (34.0)	.2056
HBV	34/79 (43.0)	.0170	3/79 (3.8)	.0016	4/79 (5.1)	.0062	2/34 (5.9)	.3941	2/45 (4.4)	.0014
Male	24/51 (47.1)	.4411	3/51 (5.9)	.0291	3/51 (5.9)	.0095	2/24 (8.3)	.8724	1/27 (3.7)	.0008
Female	10/28 (35.7)	.0066	0/28 (0)	.0156	1/28 (3.6)	.1214	0/10 (0)	.2276	1/18 (5.6)	.7822
18-45	19/42 (45.2)	.1387	2/42 (4.8)	.0821	3/42 (7.1)	.3735	2/19 (10.5)	.9894	1/23 (4.3)	.1985
≥46	15/37 (40.5)	.0565	1/37 (2.7)	.0012	1/37 (2.7)	.0026	0/15 (0)	.1657	1/22 (4.5)	.0007
HIV-1	25/62 (40.3)	.0105	4/62 (6.5)	.0222	6/62 (9.7)	.1226	3/25 (12.0)	.8870	3/37 (8.1)	.0148
Male	19/56 (33.9) §	.0575	4/56 (7.1)	.0433	6/56 (10.7)	.0639	3/19 (15.8)	.0000	3/37 (8.1)	.0013
Female	6/6 (100.0)	.0778	0/6 (0)	.2535	0/6 (0)	.3167	0/6 (0)	.3481	0	NA
18-45	25/42 (59.5)	.9774	4/42 (9.5)	.0821	5/42 (11.9)	.6272	3/17 (17.6)	.4355	2/25 (8.0)	.7437
≥46	8/20 (40.0)	.1098	1/20 (5.0)	.0537	1/20 (5.0)	.0402	0/8 (0)	.3078	1/12 (8.3)	.0151

Notes: All selected people completed the vaccination of a third dose of inactivated COVID-19 vaccine, including COVID-19 patients in 2022. The quantification of the SARS-CoV-2 IgG against the virus spike protein was carried out using INNOVITA® 2019-nCoV

IgM (or IgG) kit (Beijing Yinnuo Biotech, China). Toxoplasma gondii seropositivities were tested using the Diagnostic Kit for IgM (or IgG) Antibody to Toxoplasma (Zhuhai Haitai Biotech, China) by following the manufacturer's instructions. COVID-19, coronavirus disease 2019; HC, healthy control; TB, Tuberculosis; HBV, hepatitis B virus; HIV-1, human immunodeficiency virus type 1; NA, not available; a, means a statistical comparison of the corresponding data between the people with underlying disease and HC in each age group; §, $P < 0.05$; #, $P < 0.01$; *, $P < 0.001$; †, $P < 0.0001$; &, $P < 0.00001$; These special symbol beside bracket indicates the comparison within the subgroups. Statistical analyses were performed using Chi-square test (P -value); A P -value < 0.05 is considered statistically significant.

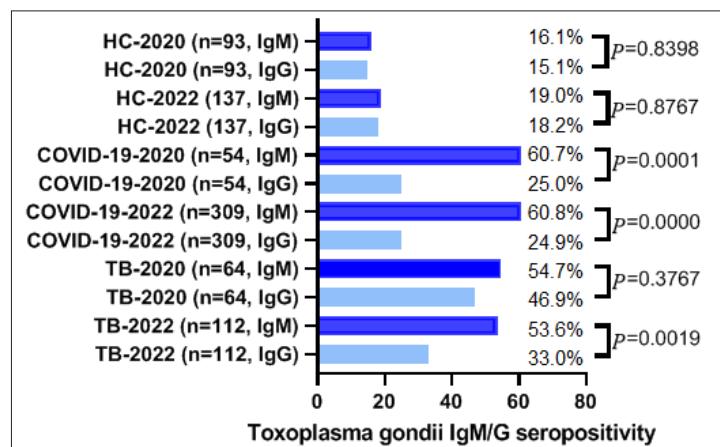

We further analyzed whether co-infection with *T. gondii* has a negative effect on the immunogenicity of inactivated COVID-19 vaccine, such as in TB patients. Compared with the *T. gondii* IgG positive plus SARS-CoV-2 IgG-positive population, the *T. gondii* IgG positive plus SARS-CoV-2 IgG-negative population in HC (29.1% vs. 11.0%), COVID-19 (26.7% vs. 23.6%), TB patients (33.7% vs. 31.0%) were higher. Our results also showed that aged TB patients (≥ 46 years) had significantly higher SARS-CoV-2 and *T. gondii* double-IgG seropositivity (50.0%, $P < 0.05$) than the 18-45-years-old subgroup and HC (≥ 46 years) (Table 1). However, two-way logistic regression analysis showed no significant relevance between *T. gondii* IgG and SARS-CoV-2 IgG positivity in these patients. The gender and age differences in all groups did not show significant relevance in patients with *T. gondii* IgG positive plus SARS-CoV-2 IgG negative (Figure 1).

Figure 1: Risk Factors Analysis of Toxoplasma Gondii IgG Seropositivity in Healthy Control (HC), COVID-19, Tuberculosis (TB), HBV, and HIV-1 Individuals during the Omicron SARS-CoV-2 Epidemic

Two-way regression analysis was used to calculate the Odds Ratios (OR) and 95%CI between Toxoplasma gondii serum IgG positivity and other risk factors, including SARS-CoV-2 IgG positive, gender, Toxoplasma gondii, and age. CI, confidence interval; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019.

After that, we focused on comparing the *T. gondii* seropositivity in patients infected with SARS-CoV-2 and TB in 2020 and 2022. Our results showed that *T. gondii* IgM seropositivities in COVID-19 [> 2.4 -fold (IgM/IgG) in 2020 or 2022] and TB (> 1.6 -fold in 2022) patients were significantly higher than IgG ($P < 0.05$). In addition, patients infected with SARS-CoV-2 and TB showed no significant differences in *T. gondii* IgM and IgG seropositivity between 2020 and 2022 (Figure 2). It suggests that the rates of co-infection or reactivation of *T. gondii* is not associated with COVID-19 vaccination.

Figure 2: Comparison of Toxoplasma Gondii IgM or IgG Seropositivity in Healthy, COVID-19 or Tuberculosis Individuals between 2020 and 2022

Peripheral blood samples from healthy control (HC), COVID-19 or tuberculosis individuals were collected and aliquoted during the 2020 Wuhan strain and 2022 Omicron variants prevalence. From January to June 2022, all individuals were immunized with the third dose of inactivated COVID-19 vaccines during the Omicron variants pandemic. Toxoplasma gondii IgM (or IgG) seropositivity was tested following the product manual. Statistical analysis is presented as positive serum rate. A *p*-value <0.05 is considered statistically significant.

Discussion

Given that Toxoplasma gondii and TB are intracellular parasites, these pathogens can cause CD4⁺ T-cell exhaustion and establish latent infections, which differ from HIV-1 and HBV in immunosuppression [3-5]. Furthermore, both *T. gondii* and TB easily transform from latent into an active state in immunosuppressed individuals by reducing the production of Th1-polarized cytokines and overproduction of Th2-polarized cytokines. However, regarding the clinical importance of co-infection, there is a lack of understanding of the effects of *T. gondii* co-infection in SARS-CoV-2 and TB patients. Therefore, this case-control study aims to investigate the underlying links between this co-infection using serological techniques.

Based on the clinical manifestations (from asymptomatic to severe) of TB co-infection cases, evidence indicates that it may be an immunosuppressive pathogen and induce opportunistic infections [3,5]. However, whether SARS-CoV-2 has similar effects to opportunistic infection remains to be addressed. A study has shown that latent pathogens can have different genetic strains and effects on a second pathogen [5]. *T. gondii* has higher seropositivities in ill pulmonary patients compared to healthy individuals and can complicate symptoms in immunosuppressed and immunodeficient patients [3,6]. Some studies suggest that latent protozoan parasite infections reduce the severity of viral infections [5]. Therefore, we sought to investigate the *T. gondii* seropositivities of original COVID-19 and recent infectious disease patients. It will help to understand the real world of the population infected with SARS-CoV-2 strains and vaccinated with the third-dose inactivated COVID-19 vaccine in Wuxi from September 2021.

SARS-CoV-2 virus and inactivated COVID-19 vaccine comprise all viral structural proteins that may induce a broader immune response profile, including Th2-polarized cytokines and neutralizing antibodies against receptor-binding domain (RBD). According to a previous study, SARS-CoV-2 can cause lower levels of CD4⁺ or CD8⁺ T cells and higher levels of IL-6 and IL-10 in severely ill patients, similar to the reactivate responses of *T. gondii* or TB [3,6,7]. Furthermore, previous cohort studies have not disclosed the effects of gender and age on the COVID-19 mRNA vaccine immunogenicity, possibly due to the high immunogenicity of mRNA vaccines, and being difficult to find such differences [8-11]. Our study has elucidated that the gender and age differences can affect the SARS-CoV-2 or *T. gondii* antibody response.

In summary, seroprevalence rates of *T. gondii* seropositivity show large geographical differences between countries, including HBV or HIV-1 co-infection. Our findings of *T. gondii* with HBV or HIV-1 co-infection rates (IgG) suggest that, unlike previous reports in other countries, levels of such co-infection were relatively low in the developed business hub of southeastern China [12-14]. Patients with SARS-CoV-2 and TB had higher rates of *T.*

gondii IgM seropositivity. They also developed higher *T. gondii* IgG seropositivities in SARS-CoV-2 IgG-negative individuals, which may be related to *T. gondii* reactivation or infection weakening the host's response to the SARS-CoV-2 genome of the COVID-19 vaccine. This phenomenon also requires further mechanistic studies to reveal the specific relevance, which may help to know the reason why TB patients vaccinated with the inactivated COVID-19 vaccine have the lowest immunogenicity.

Funding

This work was funded by the China Public Health Alliance Program (GWLM202005), the Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee (BJ2020094), and the Wuxi Key Laboratory of Medicine (ZDXK2021006).

Declaration of Competing Interest

The authors declare no conflict of interest.

References

1. Yan Yan, Xiufeng Jiang, Xu Wang, Bin Liu, Hui Ding, et al. (2021) CCL28 mucosal expression in SARS-CoV-2-infected patients with diarrhea in relation to disease severity. *The Journal of infection* 82: e19-e21.
2. Yan Yan, Chantsalmaa Davgadorj, Chunyan Lyu, Shiliang Zhang, Yuanwang Qiu (2022) Immunogenicity of a third dose of inactivated COVID-19 vaccine in people living with HIV-1, HBV, and tuberculosis during the Omicron variant epidemic: a cross-sectional study. *The Journal of infection* 85: e109-e111.
3. Yong-Xin Li, Cui-Ying Wei, Xiang-Yan Zhang, Yu-He Duan, Pi-Ning Zhang, et al. (2020) Toxoplasma gondii infection in patients with lung diseases in Shandong province, eastern China. *Acta tropica* 211: 105554.
4. Mahdi Parsaei, Adel Spotin, Mohammad Matini, Hossein Mahjub, Mohammad Aghazadeh, et al. (2022) Prevalence of toxoplasmosis in patients infected with tuberculosis; a sero-molecular case-control study in northwest Iran. *Comparative immunology, microbiology and infectious diseases* 81: 101720.
5. Roe K (2021) The role of polyspecific T-cell exhaustion in severe outcomes for COVID-19 patients having latent pathogen infections such as Toxoplasmagondii. *Microbial pathogenesis* 161: 105299.
6. C Bachmeyer, G Mouchnino, P Thulliez, L Blum (2006) Congenital toxoplasmosis from an HIV-infected woman as a result of reactivation. *The Journal of infection* 52: e55-7.
7. Yihao Liu, Qin Zeng, Caiguanxi Deng, Mengyuan Li, Liubing Li, et al. (2022) Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. *Cell discovery* 8: 10.
8. Marie Tré-Hardy, Roberto Cupaiolo, Alain Wilmet, Thomas Antoine-Moussiaux, Andrea Della Vecchia et al. (2021) Immunogenicity of mRNA-1273 COVID vaccine after 6 months surveillance in health care workers; a third dose is necessary. *The Journal of infection* 83: 559-564.
9. Mohamed Ahmed Syed, Hamda Abdulla A/Qotba, Ahmed Sameer Alnuaimi (2022) Effectiveness of COVID-19 vaccines. *The Journal of infection* 84: e118-e9.
10. Alexandre R Marra, Takaaki Kobayashi, Hiroyuki Suzuki, Mohammed Alsuhaimi, Bruna Marques Tofaneto et al. (2022) Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis. *The Journal of infection* 84: 297-310.

11. Thomas Lehrnbecher, Ulrich Sack , Carsten Speckmann, Andreas H Groll, Andreas Boldt et al. (2022) Longitudinal immune response to three doses of mRNA vaccine against COVID-19 in pediatric patients receiving chemotherapy for cancer. *Clinical infectious diseases* 76: e510-e513.
12. D Ouermi, J Simpore, A M G Belem, D S Sanou, D S Karou et al. (2009) Co-infection of Toxoplasma gondii with HBV in HIV-infected and uninfected pregnant women in Burkina Faso. *Pak J Biol Sci* 12: 1188-1193.
13. Jacques Simpore, Aly Savadogo, Denise Ilboudo, Marie Christelle Nadambega, Maria Esposito, et al. (2006) Toxoplasma gondii, HCV, and HBV seroprevalence and co-infection among HIV-positive and -negative pregnant women in Burkina Faso. *Journal of medical virology* 78: 730-733.
14. Nagwa Mostafa El-Sayed, Manar Ezzelarab Ramadan, Mohamed Ezzelarab Ramadan (2016) Toxoplasma gondii infection and chronic liver diseases: evidence of an association. *Tropical medicine and infectious disease.* *Trop Med Infect Dis* 1: 7.

Copyright: ©2023 Yan Yan, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.